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Abstract

The continuing depletion of nutrients from agricultural soils in Sub-Saharan African is accompanied by a lack of substantial
progress in crop yield improvement. In this paper we investigate yield gaps for corn under two scenarios: a micro-dosing
scenario with marginal increases in nitrogen (N) and phosphorus (P) of 10 kg ha21 and a larger yet still conservative scenario
with proposed N and P applications of 80 and 20 kg ha21 respectively. The yield gaps are calculated from a database of
historical FAO crop fertilizer trials at 1358 locations for Sub-Saharan Africa and South America. Our approach allows
connecting experimental field scale data with continental policy recommendations. Two critical findings emerged from the
analysis. The first is the degree to which P limits increases in corn yields. For example, under a micro-dosing scenario, in
Africa, the addition of small amounts of N alone resulted in mean yield increases of 8% while the addition of only P
increased mean yields by 26%, with implications for designing better balanced fertilizer distribution schemes. The second
finding was the relatively large amount of yield increase possible for a small, yet affordable amount of fertilizer application.
Using African and South American fertilizer prices we show that the level of investment needed to achieve these results is
considerably less than 1% of Agricultural GDP for both a micro-dosing scenario and for the scenario involving higher yet still
conservative fertilizer application rates. In the latter scenario realistic mean yield increases ranged between 28 to 85% in
South America and 71 to 190% in Africa (mean plus one standard deviation). External investment in this low technology
solution has the potential to kick start development and could complement other interventions such as better crop varieties
and improved economic instruments to support farmers.
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Introduction

Farming looks mighty easy when your plow is a pencil and you’re

a thousand miles from the corn field. –Dwight D. Eisenhower,

1956.

The increases in global population and food demand clearly

indicate that current growth in agricultural productivity is not

sufficient to sustain the 9 billion people that will inhabit the Earth

by 2050 [1]. Feeding the world is a multifaceted and complex

challenge and a number of solutions have been offered, where

closing the yield gap is one of the most frequently cited

recommendations [2;3;4;5;6]. The FAO [1] suggests that 70% of

the required increase in crop production in developing countries

should be realized through boosting the productivity of fields

already under cultivation. Without this intensification, the in-

evitable cropland expansion will lead to deforestation, accelerate

land degradation and threaten natural habitats and biodiversity

[7]. A large part of this augmentation in crop production must

therefore come from soils in tropical regions which are often highly

weathered, have low levels of chemical soil fertility and will need

additional inputs to improve crop productivity [8]. Global fertilizer

use has already increased significantly since 1960 [9] and this

increase has played an important role in the Green Revolution,

benefitting many developing countries in South America and Asia.

Yet substantial progress is still lacking in Africa [10]. From 1960 to

2000, yields of staple crops such as wheat, rice and corn increased

in South America by over 180% while African yields did not

improve substantially (see Figure 1). These contrasting trajectories

reflect disparities in infrastructure development, primary crop

types grown, agricultural R&D and extension capacities, socio-

economic conditions as well as environmental differences

[10;11;12].

In many smallholder fields, fertilizer and manure inputs have

been too low for too long [8]. Agricultural soils cultivated without

adequate nutrient replenishment cannot reach their full crop

production potential and are at risk of irreversible degradation

[13]. In large parts of Africa, this has led to seemingly perpetual

low per capita food production [8]. Without maintaining adequate

soil fertility levels, crop yields cannot be sustained, increase over

time, or respond to improved agricultural management practices.
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To improve nutrient input, smallholder farmers need actionable

strategies such as micro-dosing: applications of small quantities of

fertilizers. Field studies have shown that micro-dosing presents an

attainable strategy for smallholder farmers in line with their

financial means that can result in significant yield gains [14].

Importantly, previous higher fertilizer rate recommendations have

ignored the sizeable but unlikely investment that would be

required by poor and risk adverse smallholders.

Fertilizer prices in Africa are often higher relative to other

developing countries. The small size of the fertilizer market, the

high transportation and handling costs and the inefficient supply

chain all contribute to the relatively high retail prices for fertilizers

in Africa [15]. Fertilizer price also varies across regions, through

different years and even among cropping seasons in the same year.

In a landlocked country such as Uganda, the prices for urea in

2000 ranged from 600 shillings kg21 (300 US$ ton21) in the

central districts to over 750 shillings kg21 (375 US$ ton21) in the

eastern districts while prices for phosphate (Diammonium

Phosphate, DAP) ranged from 560 shillings kg21 (280 US$

ton21) in the long rainy season to over 700 shillings kg21

(350 US$ ton21) in the short rainy season [16]. As a comparison,

US farmers in 2000 paid from US$80 to US$120/ton for Urea,

and US$140 to US$170/ton for DAP. Depending on the locations

and seasons, the NPK (Nitrogen-Phosphorus-Potassium) com-

pound fertilizer ranged from 700 shillings kg21 (350 US$ ton21) to

over 1000 shillings kg21 (500 US$ ton21) for 1:1:2 NPK, the most

common compound fertilizer in Uganda. The transportation cost

in Uganda is over one third of the total fertilizer cost while it is

about a fifth in Tanzania [17] due to the major sea port of Dar Es

Salaam. Moreover, there are global pressures that lead to price

volatility in fertilizer prices. For example, there was a fourfold

increase in the price of urea from 2000 to 2008, reaching over

500 US$ ton21, falling to around 200 US$ ton21 in 2009 and

which is currently at around 400 US$ ton21.

To formulate more realistic sustainable intensification pathways,

we need better estimates of smallholder yield gaps in tropical

countries and to then align these with local fertilizer prices and

associated investment costs. There are a number of yield gap

approaches that estimate different types of attainable yield

potentials across varying spatial and temporal scales [18]. Many

global assessments of yield gaps use crop models or data that

currently lack sufficiently detailed spatial information on soil

characteristics, crop management practices and crop responses to

fertilizers [19,20]. Mueller et al. [19] found that large crop

production increases are possible, but will require considerable

changes in nutrient and water management. Crop trials represent

a valuable source of information for yield gap analysis and could

be analyzed more comprehensively for this purpose, yet are rarely

collected systematically. Furthermore, nutrient specific analysis of

the relationships between fertilizers and crop yields has been

limited, especially in the tropical and subtropical regions where

crop yields are relatively low and must increase the most to meet

growing demands [21].

In this paper we analyze historic data from FAO corn fertilizer

trials carried out between 1969–1993 at 1358 locations in Africa

and South America (Figure 2) where corn is the most commonly

Figure 1. Cereal yield trends since 1960 in Africa, Sub-Sahara Africa (SSA), South America and Asia.
doi:10.1371/journal.pone.0060075.g001
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cultivated crop [18]. Mitscherlich-Baule crop response functions

were fit to the crop trial data by optimizing the factors describing

yield responses to elemental nitrogen (N) and phosphorus (P)

inputs as well as an initial (residual) soil N and P. Nitrogen and

Phosphorus specific fertilizer application rates from [22] were then

used as inputs to the crop response functions, and the resulting

yields were validated using sub-national yield statistics on corn

from the International Food Policy Research Institute (IPFRI) [23]

to estimate yield gaps in corn at the continental level. Only water-

limited (i.e. rain fed) yield potential as opposed to irrigated yields

potentials are considered here. Furthermore, we consider the

importance of soil nutrient stoichiometry and the viability of

micro-dosing [14,24] in order to further the African crop

productivity discourse [25,26]. Yield increases associated with

two different scenarios are considered here: 1) depicting a micro-

dosing strategy and 2) a topping up to a conservative estimate of

average nutrient fertilizer rates in the USA. Finally, the investment

costs of scaling up these scenarios are calculated using the latest

average fertilizer prices in Africa and South America and used to

evaluate whether these approaches can function as part of an

actionable development blueprint for Sub-Saharan Africa.

Materials and Methods

Crop Trials and Response Functions
Recently historic FAO crop fertilizer field trials have become

publically accessible (http://www.fao.org/ag/agl/agll/nrdb/).

These data were collected as part of FAO’s Fertilizer Programme

[27] that ran from 1969 until 1993. The purpose behind the

programme was to undertake trials to determine suitable fertilizer

application rates for locally grown crops and to demonstrate to as

many farmers as possible, the positive effect of fertilizer application

on crop yields and farm income. The information available from

the trials includes crop yields (kg ha21), and application rates of the

main nutrients (nitrogen (N), phosphorus (P) and potassium (K)

and farmyard manure (kg ha21)). Unfortunately, detailed soil or

meteorological information was not recorded. Nitrogen was mostly

applied as urea, phosphorus (P) was mostly applied as superphos-

phate and potassium as part of NPK compound fertilizers. All the

applied nutrients were recalculated to elemental application rates

(with P calculated from P2O5 and K from K2O). The application

rates of farm yard manure were converted to N, P-P2O5 and K-

K2O application rates following [28]. Data on corn yields from

trials with at least five N and P input combinations were selected

for this analysis. The Mitscherlich-Baule crop response function

was used to analyze relations between nitrogen (N) fertilizer input,

phosphorus-phosphate (P) fertilizer input and corn yields ymb:

ymb~a1 1{ exp {a2 a3zNð Þð Þ½ � � 1{ exp {a4 a5zpð Þð Þ½ � ð1Þ

The function allows for growth that plateaus with increasing

fertilizer application, and accommodates cases of both near perfect

factor substitution and near zero factor substitution, and performs

superior to a quadratic and von Liebig type production function

[29]. The growth plateau is represented by a1, which was set equal

to the maximum yield obtained in each field trial, while a3 and a5
represent the residual available nitrogen and phosphorus in the

soil. Taking account of residual soil phosphorus is important; the

cumulative cropland P surplus in certain countries in Western

Europe has led to a buildup of residual soil P with expected future

benefits to crop production, although lower and no effects are

generally expected for Latin America and Africa [30]. The

coefficients a2 and a4 describe the influence of the corresponding

N or P fertilization on yield. The parameters a2, a3, a4, and a5
were obtained by minimizing the sum of squared errors for all

applications in each experiment. The Nelder-Mead multidimen-

sional unconstrained nonlinear minimization algorithm was used

to minimize the objective function. Only those trials where a crop

response function could be fit were used. This resulted in a total of

1358 unique experiments with at least five N and P input

combinations; 752 in Africa and 606 in South America.

Figure 2. Crosses indicate locations of 1358 historic FAO corn field trials with at least five N and P input combinations in Africa and
South America carried out between 1969 and 1993. Colors indicate (subnational) maize (corn) yields (ton/ha) as collected by [23].
doi:10.1371/journal.pone.0060075.g002
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Current Fertilizer Application Rates
The fertilizer dataset of [22] containing crop fertilizer rates was

used to assign the current N and P inputs from chemical fertilizer

(Nfer, Pfer) and manure (Nman, Pman; see Figures S1, S2, S3) at

the trial locations and considered representative for corn fertilizer

rates [31]. Data on corn yields collected by IFPRI [23] were used

as a comparison with the yields obtained from the crop response

functions (Figure S4). The average cereal area, production and

yield as reported by FAOSTAT for 2008–2010 were calculated for

each of the scenarios. In the area scenario a constant production

was assumed and an increase in yield would reduce the

requirement for cropland. In the people scenario an increase in

yield would produce more on the same cropland area. We assume

the average cereal calorie content to be 3000 kcal kg21 and the

average annual calorie need of a person to be 1 million kcal

year21.

Costs
The cost of the two proposed scenarios was calculated using the

Agricultural GDP in US dollars for 2009 [32]: South America (SA)

$192 billion USD; Sub-Saharan Africa (SSA) $150 billion USD.

Then the costs for each region were calculated by taking the total

cost, dividing by the Agricultural GDP and multiplying by 100 to

arrive at the percentage of Agricultural GDP that would be

required to finance the scenario.

Results

An example of crop response trial data and the corresponding

modeled Mitscherlich-Baule crop response function is shown in

Figure 3. The median r2 obtained by fitting the individual crop

trials equaled 0.81; the 25th percentile equaled 0.66 and the 75th

percentile 0.91. The resulting median, 25th and 75th percentiles for

the a1, a2, a3 and a4 parameters obtained across all crop trials are

presented in Table 1. Median values corresponded to 0.017 ton

kg21, 68.4 kg N ha21, 0.29 ton kg21, 3.18 kg P ha21 for

parameters a1, a2, a3 and a4 respectively. This is in correspondence

with the parameter values reported by [29] and [33]. The results

from the individual crop trials indicate that out of the 1358 trials,

there were 1037 trials (76%) that responded stronger to added

phosphorus than nitrogen. Similarly, for 82% of the trials the pool

of residual soil N was larger than the accessible residual P. Clearly,

these site-specific analyses indicate that overall, phosphorus is the

nutrient most limiting crop yield. Nevertheless, at the same time,

the range of parameter values obtained highlights the variety of

crop yield responses depending on site-specific conditions.

Overall, the yields modeled using Mitscherlich-Baule crop

response functions show a good relationship (r2 = 0.94, Figure 4).

Yield Gaps and Potentials
The fertilizer dataset of Potter et al. [22] was used to assign the

current N and P inputs from chemical fertilizer (Nfer, Pfer) and

manure (Nman, Pman) to the crop response functions; the average

of these inputs and their distribution across Africa and South

America as well as manure and fertilizer nutrient specific

histograms are shown in Figures S1, S2, S3. Corn yield from the

crop responses functions was compared to IFPRI reported data in

Figure S4; median yields are comparable but there is a much

larger variability in the yields derived from the crop response

functions. This reflects both the coarser resolution of the IFPRI

data [23] and the more realistic representation of the frequency

distribution of yields that are attained at individual locations across

both continents from the FAO crop trial data.

To indicate the potential for production increase, we calculated

the average percentage yield increases resulting from an additional

application of 10 kg N ha21, 10 kg P ha21, and both. Adding only

N will lead to increases in crop production by ,4% and ,8%.

Adding only P, on the other hand, will lead to substantially larger

increases of ,12% and ,26% for South America and Africa

respectively (Figure 5). This highlights the critical importance of P,

of which many subsistence farmers may not be aware. The

addition of both nutrients leads to increases of ,15% and ,35%,

respectively, indicating that the effect of both nutrients is additive

once P is applied. Thus P is clearly the limiting nutrient in

improving crop yields.

In Africa, adding 10 kg ha21 of N or P will result in mean and

median percentage increases of respectively ,5.5 and ,5.7% and

,11.7 and ,16.3%; this would thus bring a significant proportion

of farmers with the lowest yields closer towards attaining average

yield levels and effectively shift a bulk of smallholders out of

current marginal productivity. Since these are indicative for

rainfed yields, additional water resources to attain these yield

increases would not be required [6]. A final experiment considers

the percentage yield increase that would be obtained if 80 kg ha21

of N and 20 kg ha21 of P - a relatively conservative estimate of

average rates in the USA - were applied (Figure 6). In South

America this would lead to average yield increases of 30%, up to

a maximum of 90% while in Africa these increases would be

considerably larger, i.e. average yield increases of 70%, up to

a maximum of 190%.

Even though these yield increases are considerable, they are

lower than the yield potentials generally estimated in other studies.

For example, yield gaps of 180 to 540% for maize have been

estimated for sub-Saharan Africa [34] while a yield gap of 118%

was found by Tittonell et al. [35] for western Kenya. Since most of

the crop trials were done more than 20 years ago, our results will

provide conservative yield estimates. In soils that have become

increasingly depleted, and with new and better crop varieties that

have become available since then, the response to fertilizer may be

even stronger than predicted here.

Implications
The implications for cropland expansion will be significant.

Unless both N and P nutrient inputs are increased considerably

and other complementary inputs and rural services such as seed,

irrigation, market access and extension are available to improve

crop yields, then necessary crop production gains will largely come

from cropland expansion. This would have considerable negative

impact on forest and grassland habitats and biodiversity [5]. In

contrast, improving cereal yield by just 5% globally, over 33

million ha of forest or grassland would be saved. To put the

benefits of these higher yields in context, our first scenario of

applying an additional 10 kg N ha21 and 10 kg P ha21 (leading to

a corn yield increase by 15% and 32% in South America and

Africa) would save more than 4 million ha and 25 million ha of

cropland conversion in South America and Africa respectively.

Alternatively, if such yield improvement occurs in the currently

cultivated cereal areas on these two continents, the improved

productivity could feed an additional 64 million and 150 million

people respectively.

Costs
Such a scenario would require a total investment of US$148

million in sub-Sahara Africa (using an average of fertilizer prices

paid by farmers in 2012 of Urea ($620/ton or 0.29$ kg21 N) and

DAP ($950/ton or 0.22$ kg21 P) and US$79 million in South

America (using an average fertilizer price paid by farmers in 2012

Affordable Nutrient Solutions for Food Security
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of Urea ($460/ton or 0.22$ kg21 N) and DAP ($680/ton or 0.16$

kg21 P)). The second scenario or larger nutrient inputs would

amount to investments of US$798 million in sub-Sahara Africa

and US$428 million in South America respectively. Maize yield

increases range from 15% to over 70%, and such an investment

would therefore bring considerable additional revenue to maize

farmers. We acknowledge the fact that the prices of both fertilizer

and maize vary with location so the actual profitability of fertilizer

investment would vary spatially.

However, the direct investment in fertilizers is actually very small

and is less than 1% of Agricultural GDP of both Sub-Saharan Africa

andSouthAmerica for themicro-dosing scenario.The calculation of

the investment in terms of the percentage of Agricultural GDP that

wouldbeneeded inSSA for scenario1equates todividing148million

USDbytheAgriculturalGDPof$150billionUSDmultipliedby100.

The percentage of investment in terms of Agricultural GDP for the

other scenario forSSAand the scenarios forSAwere calculated in the

same way (see Table 2).

Discussion

In reality a full development blueprint would need to have

a broader scope and costs would be compounded with investments

in roads, agricultural extension, (local) market access, etc. [5,6].

Nevertheless, external investment in this low technology solution

has the potential to kick start development and could complement

other interventions such as better crop varieties, improved

economic instruments to support farmers as well as new

technologies involving mobile phones, crowdsourcing and data

mining of internet searches [36,37]. To improve our understand-

ing of how best to target, design and support rural development, it

is insightful to compare the costs calculated here with the costs

involved in a project such as the Millennium Villages (MV). The

MV is an integrated approach to eradicate poverty by involving an

entire community in improving their livelihoods and health in

a sustainable way (http://www.millenniumvillages.org). The

focused investments calculated here are significantly lower per

person per year compared to the costs in the MV, which vary

between 35 to 100 USD per person per year [38]. However, we

clearly acknowledge that the MV has a much broader scope,

engages entire communities and contributes to many other aspects

of well-being and improved livelihoods as set out in the

Millennium Development Goals, which would not be part of the

scenarios suggested here.

We have clearly demonstrated the importance of phosphorus for

closing yield gaps in Africa. The phosphorus deficiency reflects soil P

supply problems that are of widespread concern in highly weathered

tropical soilsnotorious for lowlevelsofavailablePandexhibita strong

P fixation capacity [39]. For instance, approximately 82%of the land

area of the American tropics is deficient in P in its natural state [40].

Combinedwith the fact thatPreservesare likely tobecomeexhausted

during the next 30–300 years [41], this paints a bleak picture indeed.

Nevertheless, if recycling programs were put in place for animal and

Figure 3. A typical example of a fitted crop response trial with experimental (blue line with circles) and modeled data (black line
with squares) with eight N and P input combinations and resulting yields.
doi:10.1371/journal.pone.0060075.g003

Table 1. The median, 25th and 75th percentile values from the
distributions of the Mitscherlich-Baule crop response function
parameters (a1, a2, a3 and a4) fitted for the 1358 individual
crop trials.

Parameter Median 25th percentile 75th percentile

a1 0.017321 0.0077335 0.047077

a2 68.4297 21.6344 285.0599

a3 0.29219 0.047732 0.29219

a4 3.1803 0.99095 13.0806

doi:10.1371/journal.pone.0060075.t001
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human excreta some of these effects might be mitigated, e.g. [42].

Raising awareness of the need to provide a more balanced

stoichiometry is also a critical element in improving yields. If farmers

continue toaddincreasedsuppliesofNwithoutP, theywill soonreach

a saturation point in yields and effectivelywaste valuable resources as

well as contaminating groundwater due to the leaching of nitrogen.

This finding also has implications for the current fertilizer subsidy

programs in many developing countries. Most of these programs

focus mainly on N and do not emphasize the importance of P

sufficiently. Our results demonstrate that better balanced subsidy

Figure 4. Relationship between historic FAO experimental corn field trials with at least five N and P input combinations and corn
yields calculated with the Mitscherlich-Baule crop response function totaling 1358 unique nutrient-yield relations (r2 = 0.94).
doi:10.1371/journal.pone.0060075.g004

Figure 5. Mean corn yield increase (%) across trial sites at additional applications of 10 kg N ha21, 10 kg P ha21 or 10 kg N and P
ha21 (error bars refer to the standard deviation of the obtained yield increases observed across all trials).
doi:10.1371/journal.pone.0060075.g005
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schemes taking account of bothNandPwould have a larger effect on

crop yields.

Climate change is expected to generally have a negative impact

on corn in Africa with estimates of lowering yield ranging from 3

to over 12% [43]. Corn will be the most heavily impacted crop in

sub-Saharan Africa, where yield losses would occur in 65% of corn

growing regions for a 1uC warming, increasing to 100% losses in

areas subject to drought stress [44]. Although these pressures are

considerable, and will require adaptation and fundamental

changes to agricultural management, our results indicate that

significant increases in yield are possible by improved nutrient

management; especially during growing seasons when soil water

availability is not constraining crop yields. Thus, achieving trend-

growth in crop productivity through sufficient and balanced

nutrient applications coupled with effective storage policies could

partly offset negative climate change impacts on food security in

Africa. The risk averseness of poor farmers that are prone to

drought is one of the reasons why these farmers will be hesitant to

invest in higher fertilizer applications. However, we have shown

that a relatively small external investment would yield large

improvements in both crop production and sustainable use of soils.

In contrast to previous crop productivity assessments for Africa

and South America, our study allows farm input management

interventions to be directly based on small scale on-the-ground

observations accounting for both site-specific conditions, as well as

reflecting variability in soil conditions and climates. Furthermore,

the study provides yield gaps that are realistically attainable as the

assessment is based on farmers’ field trials and the costs associated

with these interventions amount to less than 1% of Agricultural

GDP in both Sub-Saharan Africa and South America. Crop field

trials might be considered costly by some but provide essential and

hard-won insights, and when analyzed comprehensively, have the

potential - through better formulated policies and agreements - to

reward global society with improved food security status for many.

Supporting Information

Figure S1 Current N and P inputs from chemical
fertilizer (Nfer, Pfer) and manure (Nman, Pman)
extracted and averaged from [22] for the 1358 trial
locations.

(TIF)

Figure S2 Histograms of the N and P nutrient inputs
from chemical fertilizer at the 1358 locations [22].

(TIF)

Figure S3 Histograms of the N and P nutrient inputs
from manure at the 1358 locations [22].

(TIF)

Figure S4 Boxplots of regionally reported corn yields
collected by IFPRI and corn yields obtained from the
1358 crop response functions (CRFs) with current N and
P inputs from chemical fertilizer and manure (Nman,
Pman) as reported by [22].

(TIF)

Figure 6. Mean corn yield increase (%) across trial sites at applications of 80 kg N ha21 and 20 kg P ha21 (error bars refer to the
standard deviation of the obtained yield increases observed across all trials).
doi:10.1371/journal.pone.0060075.g006

Table 2. Cost of the proposed scenarios expressed as the
percentage of Agricultural GDP.

Region Cost as a % of Agricultural GDP

Scenario 1 Scenario 2

SSA 0.10% 0.53%

SA 0.04% 0.22%

doi:10.1371/journal.pone.0060075.t002
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