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Abstract

Purpose: Excessive use of the Internet has been linked to a variety of negative psychosocial consequences. This study used
resting-state functional magnetic resonance imaging (fMRI) to investigate whether functional connectivity is altered in
adolescents with Internet gaming addiction (IGA).

Methods: Seventeen adolescents with IGA and 24 normal control adolescents underwent a 7.3 minute resting-state fMRI
scan. Posterior cingulate cortex (PCC) connectivity was determined in all subjects by investigating synchronized low-
frequency fMRI signal fluctuations using a temporal correlation method. To assess the relationship between IGA symptom
severity and PCC connectivity, contrast images representing areas correlated with PCC connectivity were correlated with the
scores of the 17 subjects with IGA on the Chen Internet Addiction Scale (CIAS) and Barratt Impulsiveness Scale-11 (BIS-11)
and their hours of Internet use per week.

Results: There were no significant differences in the distributions of the age, gender, and years of education between the
two groups. The subjects with IGA showed longer Internet use per week (hours) (p,0.0001) and higher CIAS (p,0.0001)
and BIS-11 (p = 0.01) scores than the controls. Compared with the control group, subjects with IGA exhibited increased
functional connectivity in the bilateral cerebellum posterior lobe and middle temporal gyrus. The bilateral inferior parietal
lobule and right inferior temporal gyrus exhibited decreased connectivity. Connectivity with the PCC was positively
correlated with CIAS scores in the right precuneus, posterior cingulate gyrus, thalamus, caudate, nucleus accumbens,
supplementary motor area, and lingual gyrus. It was negatively correlated with the right cerebellum anterior lobe and left
superior parietal lobule.

Conclusion: Our results suggest that adolescents with IGA exhibit different resting-state patterns of brain activity. As these
alterations are partially consistent with those in patients with substance addiction, they support the hypothesis that IGA as a
behavioral addiction that may share similar neurobiological abnormalities with other addictive disorders.
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Introduction

In the past decade, research has accumulated suggesting that

excessive Internet use can lead to the development of a behavioral

addiction [1]. Internet addiction (IA) is considered a serious threat

to mental health, and excessive use of the Internet has been linked

to a variety of negative psychosocial consequences. Using Young’s

Diagnostic Questionnaire [YDQ][2], Sinmoes et al. found that

11% of 12-to 18-year-old adolescents in Greece fulfilled the

criteria for IA [3]. Cao and Su found that 2.4% of adolescents in

China were classified as having IA [4]. Shek et al. [5] reported that

19.1% of Hong Kong Chinese adolescents had IA. Accordingly,

IA is prevalent across Eastern and Western societies, indicating

that it is a global disorder worthy of more attention [6].

Recently, ‘‘non-substance-related behavioral addiction’’ has

been proposed in psychiatry [7]. Contrary to the commonly held

belief that addiction is specific to dependence on drugs and

chemical substances, the term ‘‘addiction’’ has been used to refer

to a range of excessive behaviors, such as gambling[8], video game

playing[9], sex, and other behaviors. Although such behavioral

addictions do not involve a chemical intoxicant or substance, a

group of researchers have posed that some core aspects of

behavioral addiction are similar to those of chemical or substance

addiction[10]. Others have stated that behaviorally addicted

individuals share certain symptoms with and will experience
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similar consequences to people addicted to alcohol and other

drugs, including compulsive behaviors.

Internet addiction disorder (IAD) is a mental health problem

worthy of further scientific investigation. Indeed, the prevalence of

IAD has garnered so much attention that it should be included in

the DSM-V[11]. Neuroimaging studies offer an advantage over

traditional survey and behavioral research approaches because it

makes it possible to distinguish particular brain areas that are

involved in the development and maintenance of addiction. In this

study, we used resting-state functional magnetic resonance

imaging (fMRI) to investigate the default mode network (DMN)

in adolescents with IGA. The aims of this study were 1) to

investigate altered default network resting-state functional con-

nectivity (FC), 2) to examine whether any alterations are consistent

with those seen in the patients with substance addiction, and 3) to

determine whether there are any relationships between altered FC

and behavioral and personality measures in subjects with IAD.

Materials and Methods

Subjects
All subjects were recruited from the Department of Child and

Adolescent Psychiatry of Shanghai Mental Health Center. They

were 14 to 17 years old. We imaged seventeen subjects whose

behaviors corresponded with the DSM-IV criteria for IA

according to the modified Diagnostic Questionnaire for Internet

Addiction (i.e., the YDQ) criteria by Beard [12]. Twenty-four age-

and gender-matched healthy individuals with no personal or

family history of psychiatric disorders were also imaged as the

control group. All subjects were right-handed and none of them

smoked.

A basic information questionnaire was used to collect demo-

graphic information such as gender, age, final year of schooling

completed, and hours of Internet use per week. This study was

approved by the Ethics Committee of Ren Ji Hospital of Shanghai

Jiao Tong University School of Medicine. The participants and

their parents or legal guardians were informed of the aims of our

study before the magnetic resonance imaging (MRI) examinations

were conducted. Full and written informed consent was obtained

from the parents or legal guardians of each participant.

Inclusion and exclusion criteria
All subjects underwent a simple physical examination including

blood pressure and heart rate measurements, and were inter-

viewed by a psychiatrist regarding their medical history of nervous,

motor, digestive, respiratory, circulation, endocrine, urinary, and

reproductive problems. They were then screened for psychiatric

disorders with the Mini International Neuropsychiatric Interview

for Children and Adolescents (MINI-KID)[13]. The exclusion

criteria included a history of substance abuse or dependence,

previous hospitalization for psychiatric disorders, or a history of

major psychiatric disorders, such as schizophrenia, depression,

anxiety disorder, and psychotic episodes. The subjects with IAD

were not treated with psychotherapy or any medications.

The diagnostic questionnaire for IA was adapted from DSM-IV

criteria for pathological gambling by Young [2]. The YDQ we

used consisted of eight ‘‘yes’’ or ‘‘no’’ questions translated into

Chinese. It included the following questions: (1) Do you feel

absorbed in the Internet, as indexed by remembering previous

online activity or the desire for the next online session? (2) Do you

feel satisfied with your Internet use if you increase your amount of

online time? (3) Have you failed to control, reduce, or quit Internet

use repeatedly? (4) Do you feel nervous, temperamental,

depressed, or sensitive when trying to reduce or quit Internet

use? (5) Do you stay online longer than originally intended? (6)

Have you taken the risk of losing a significant relationship, job,

educational, or career opportunity because of the Internet? (7)

Have you lied to your family members, therapist, or others to hide

the truth of your involvement with the Internet? (8) Do you use the

Internet as a way of escaping from problems or of relieving an

anxious mood (e.g., feelings of helplessness, guilt, anxiety, or

depression)? Young asserted that five or more ‘‘yes’’ responses to

the eight questions indicate a dependent user. Later, Beard and

Wolf [12] modified the YDQ criteria to state that respondents who

answered ‘‘yes’’ to questions 1 through 5 and at least one of the

remaining three questions should be classified as suffering from IA.

Behavioral and personality assessments
Four questionnaires were used to assess the participants’

behavioral and personality features, namely the Chen Internet

Addiction Scale (CIAS)[14], Self-Rating Anxiety Scale (SAS)[15],

Self-rating Depression Scale (SDS) [16], and Barratt Impulsiveness

Scale-11 (BIS-11) [17]. All questionnaires were initially construct-

ed in English and then translated into Chinese.

MRI acquisition
MRI was conducted using a 3T MRI scanner (GE Signa HDxt

3T, USA). A standard head coil with foam padding was used to

restrict head motion. During resting-state fMRI, the subjects were

instructed to keep their eyes closed, remain motionless, stay awake,

and not to think of anything in particular. A gradient-echo echo-

planar sequence was used for functional imaging. Thirty-four

transverse slices [repetition time (TR) = 2000 ms, echo time(-

TE) = 30 ms, field of view (FOV) = 2306230 mm,

3.663.664 mm voxel size] aligned along the anterior commis-

sure-posterior commissure line were acquired. Each fMRI scan

lasted 440 s. Several other sequences were also acquired, including

(1) a sagittal T1-weighted 3D-magnetization prepared rapid

acquisition gradient echo sequence [TR = 9.4 ms, TE = 4.6 ms,

flip angle = 15u, FOV = 2566256 mm, 155 slices,16161 mm

voxel size], (2) axial T1-weighted fast field echo sequences

[TR = 331 ms, TE = 4.6 ms, FOV = 2566256 mm, 34 slices,

0.560.564 mm voxel size], and (3) axial T2W turbo spin-echo

sequences [TR = 3013 ms, TE = 80 ms, FOV = 2566256 mm, 34

slices, 0.560.564 mm voxel size].

Image analysis
Two-sample t-tests were used for group comparisons to examine

demographic differences between the two groups, and x2-tests

were used for gender comparisons. A two-tailed p-value of 0.05

was considered statistically significant for all analyses.

Structural brain MRI scans (T1- and T2-weighted images) were

inspected by two experienced neuroradiologists. No gross abnor-

malities were observed in either group. Functional MRI prepro-

cessing was performed using the Data Processing Assistant for

Resting-State fMRI V 2.0 (YAN Chao-Gan, http://www.restfmri.

net), which is integrated with MRIcroN toolset (Chris Rorden,

http://www.mricro.com), statistical parametric mapping (SPM5;

Wellcome Department of Imaging Neuroscience, London, UK),

and the Resting-State fMRI Data Analysis Toolkit (REST V1.8

software, Song et al., http://www.restfmri.net).

The first 10 volumes of each functional time-series were

discarded because of the instability of the initial MRI signal and

the initial adaptation of participants to the situation. Data from

each fMRI scan contained 220 time points, and the remaining 210

images were preprocessed. The images were subsequently

corrected for slice timing and realigned to the first image by

rigid-body head movement correction (patient data exhibiting
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movement greater than 1 mm with maximum translation in x, y,

or z, or 1u maximum rotation about the three axes were

discarded). No participant was excluded because of movement.

The functional images were normalized into standard stereotaxic

anatomical Montreal Neurological Institute (MNI) space. The

normalized volumes were resampled to a voxel size of

3 mm63 mm63 mm. The echo-planar images were spatially

smoothed using an isotropic Gaussian filter of 4 mm full width at

half maximum.

The time-series in each voxel was detrended to correct for linear

drift over time. Nine nuisance covariates (time-series predictors for

global signal, white matter, cerebrospinal fluid, and the six

movement parameters) were sequentially regressed from the time-

series[18,19]. Subsequently, temporal filtering (0.01–0.08 Hz) was

applied to the time-series of each voxel to reduce the impact of

low-frequency drifts and high-frequency noise[8,20–22]

The PCC template, which consisted of Brodmann’s areas 29,

30, 23, and 31, was selected as the region of interest (ROI) using

WFU-Pick Atlas software[23]. The blood oxygenation level-

dependent signal time-series in the voxels within the seed region

were averaged to generate the reference time-series. For each

subject and seed region, a correlation map was produced by

computing the correlation coefficients between the reference time-

series and the time-series from all other brain voxels. Correlation

coefficients were then converted to z values using Fisher’s z-

transform to improve the normality of the distribution[22]. The

individual z-scores were entered into SPM5 for a one-sample t-test

to determine the brain regions with significant connectivity to the

PCC within each group. Individual scores were also entered into

SPM5 for random effect analysis and two-sample t-tests to identify

the regions exhibiting significant differences in connectivity to the

PCC between the two groups. Multiple comparison correction was

performed using the AlphaSim program in the Analysis of

Functional Neuroimages software package, as determined by

Monte Carlo simulations. Statistical maps of the two-sample t-test

were created using a combined threshold of p,0.05 and a

minimum cluster size of 54 voxels, yielding a corrected threshold

of p,0.05. Regions exhibiting statistically significant differences

were masked on MNI brain templates. The CIAS developed by

Chen contains 26 items on a 4-point Likert scale. Its total score

ranges from 26 to 104 and represents the severity of Internet

addiction. Previous studies have shown that patients with IA have

impaired impulse control [24]. Therefore, contrast images

representing areas of correlation between activity in the seed

region and CIAS and BIS-11 scores and hours of Internet use per

week (hours) were generated for the 17 subjects with IGA to assess

the relationships between the severity of IGA symptoms,

impulsivity, and PCC connectivity, using a threshold of p,0.05

AlphaSim corrected.

Results

Demographic and behavioral measures
Table 1 lists the demographic and behavioral measures for the

IGA and control subjects. There were no significant differences in

the distributions of age, gender, and years of education between

the two groups. The subjects with IGA engaged in more hours of

Internet use per week (p,0.0001) and had higher CIAS

(p,0.0001) and BIS-11 (p = 0.01) scores than the controls. No

differences in SAS or SDS scores were found between the groups.

Between-group analysis of PCC connectivity
A between-group analysis was performed using a two-sample t-

test in SPM5. Compared with the control group, subjects with

IGA exhibited increased FC in the bilateral cerebellum posterior

lobe and middle temporal gyrus. Their bilateral inferior parietal

lobule and right inferior temporal gyrus exhibited decreased

connectivity (Table 2 and Figureô 1).

Correlation between PCC connectivity and CIAS and BIS-
11 scores and hours of Internet use per week in subjects
with IGA

Connectivity with the PCC was positively correlated with CIAS

scores in the right precuneus, posterior cingulate gyrus, thalamus,

caudate, nucleus accumbens, supplementary motor area (SMA),

and lingual gyrus, and it was negatively correlated in the right

cerebellum anterior lobe and left superior parietal lobule (Table 3

and Figure 2). There was no significant correlation between

connectivity with the PCC and BIS-11 scores or hours of Internet

use per week.

Note: The right part of the figure represents the patient’s left

side. PCC = posterior cingulate cortex; IGA = Internet gaming

addiction; CIAS = Chen Internet Addiction Scale.

Discussion

Accumulating research suggests that excessive Internet use can

lead to the development of a behavioral addiction [25,26]. People

experiencing IAD show clinical features that include craving,

withdrawal, and tolerance[11,27], increased impulsiveness [28],

and impaired cognitive performance in tasks involving risky

decision-making[29]. Some of these symptoms have been tradi-

tionally associated with substance-related addictions [30]. IA

comprises a heterogeneous spectrum of Internet activities that can

result in illness, such as gaming, shopping, gambling, or social

networking. Gaming represents a part of the postulated construct

of IA, and gaming addiction appears to be the most widely studied

form of IA to date [31]. In recent years, IAD has become more

prevalent worldwide and the recognition of its devastating impact

on users and society has rapidly increased. However, the

neurobiological mechanism of IAD has not been fully elucidated.

Some researchers support the claim that IAD shares similar

neurobiological abnormalities with other addictive disorders. Hou

et al.,[32] found dopamine transporter (DAT) expression levels in

the striatum were significantly lower in individuals with IAD using

99mTc-TRODAT-1 single photon emission computed tomogra-

phy brain scans. DATs play a critical role in the regulation of

striatal synaptic dopamine levels [33], and have been used as

markers of the dopamine terminals [34]. A reduced number of cell

membrane DATs may possibly reflect pronounced striatal

dopamine terminal loss or brain dopaminergic system impair-

ments, which has also been found in substance-related addiction

[35]. Because increased extracellular dopamine in the striatum is

associated with subjective descriptions of reward, such as high and

euphoria [36], individuals with IAD may also experience euphoria

as extracellular dopamine levels in the striatum increase. Patients

with pathological gambling demonstrated a high level of dopamine

in the ventral striatum during gambling[37]. Positron emission

tomography imaging studies have found increased release of

dopamine in the striatum during video game playing [38].

Some researchers [39–44] have applied resting-state fMRI in

patients with substance dependence to further understand its

mechanisms and help explain its behavioral and neuropsycholog-

ical deficits. A number of studies have identified key brain regions

thought to participate in addiction disorders, such as the nucleus

accumbens [45], dorsal striatum, and prefrontal cortex (PFC)

[46,47]. The results provided by Zhang et al.,[39] showed

activation pattern differences between heroin-dependent and
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healthy subjects, in regions including the orbitofrontal cortex

(OFC), cingulate gyrus, frontal and para-limbic regions such as the

anterior cingulate cortex (ACC), hippocampal/parahippocampal

regions, amygdala, caudate, putamen, posterior insula, and

thalamus. These regions are involved in brain networks under-

pinning reward, motivation, learning and memory, and the

control of other circuits. Tanabe et al.,[40]found that nicotine

consumption was associated with decreased activity in regions

within the DMN and increased activity in extra-striate regions.

They suggested that these effects of nicotine, in the absence of

visual stimuli or effortful processing, suggest that its cognitive

effects may involve a shift from networks that process internal

information to those that process external information. Another

study reported that smokers had greater coupling versus non-

smokers between left fronto-parietal and medial prefrontal cortex

(mPFC) networks. Smokers with the greatest mPFC-left fronto-

parietal coupling had the most dorsal striatum smoking cue

reactivity as measured during an fMRI smoking cue reactivity

paradigm[41]. A study performed by Ko CH et al., [48] evaluated

brain correlates of cue-induced craving to play online games in

subjects with IGA. Their results showed that the bilateral

dorsolateral prefrontal cortex (DLPFC), precuneus, left parahip-

pocampus, posterior cingulate and right anterior cingulate were

activated in response to gaming cues in the IGA group in a

manner that was stronger than in the control group. Thus, these

findings suggest that the neurobiological underpinnings of IGA are

similar to those of substance use disorders.

Table 1. Demographic and behavioral characteristics of the included participants.

Adolescent internet addiction
disorder group (n = 17) Control group (n = 24) p value

(Mean 6 SD) (Mean 6 SD)

Age(yeas) 16.9462.73 15.8762.69 0.22

Gender (M/F) 13/4 16/8 0.46

Education (yeas) 962.67 8.9662.84 0.96

Time for internet use per week (hours) 26.44621.47 10.50611.60 ,0.0001

Chen Internet Addiction Scale (CIAS) 64.5966.43 45.7067.81 ,0.0001

Self-Rating Anxiety Scale (SAS) 45.1267.41 42.3065.34 0.15

Self-rating depression scale (SDS) 50.7667.93 47.1367.31 0.16

Barratt Impulsiveness Scale-11 (BIS-11) 62.5367.12 56.2567.07 0.01

Abbreviation. SD: standard deviation.
Two-sample t test was used for group comparisons but chi-square was used for gender comparison.
doi:10.1371/journal.pone.0059902.t001

Figure 1. Significant between-group differences in functional connectivity between healthy control subjects and those with IGA.
Compared with the control group, the subjects with IGA exhibited increased FC in the bilateral cerebellum posterior lobe and middle temporal gyrus.
Several regions also exhibited decreased connectivity, including the bilateral inferior parietal lobule and right inferior temporal gyrus. (p,0.05,
AlphaSim-corrected). The t-score bars are shown on the right. Red indicates IGA.controls and blue indicates IAD,controls. Note: The left part of the
figure represents the patient’s right side. IGA = Internet gaming addiction; FC = functional connectivity.
doi:10.1371/journal.pone.0059902.g001
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Based on the model proposed by Volkowet al.,[49] a number of

neurobiological systems may mediate cue-induced gaming craving.

These include visual processing areas such as the occipital lobe or

precuneus that link gaming cues to internal information, and

memory systems that include the hippocampus, parahippocampus,

or amygdala and that provide emotional memories and contextual

information for the gaming cues. They also include reward systems

such as the limbic system and posterior cingulate that allow for the

evaluation of gaming-related information and provide expecta-

tions and reward significance, and they include motivation systems

such as the anterior cingulate and orbital frontal lobe that control

the desire for gaming. Finally, these systems include executive

systems such as the DLPFC and prefrontal cortex that allow one to

form a plan to get online for gaming.

We found subjects with IGA exhibited increased FC in the

bilateral cerebellum posterior lobe and middle temporal gyrus.

The bilateral inferior parietal lobule and right inferior temporal

gyrus exhibited decreased connectivity compared with the control

group. Connectivity with the PCC was positively correlated with

CIAS scores, which are related to the severity of the IGA, in the

right precuneus, posterior cingulate gyrus, thalamus, caudate,

nucleus accumbens, supplementary motor area, and lingual gyrus.

They were negatively correlated with the right cerebellum anterior

lobe and left superior parietal lobule.

The functions of the cerebellum are not limited to movement

and balance, as it also plays an important role in emotional and

cognitive processes [50,51]. It receives input from sensory systems

and other parts of the brain, and integrates these inputs to fine-

tune motor activity[52]. The posterior cerebellum is predomi-

nantly involved in cognitive regulation[53], signal processing, and

storage of relevant auditory-verbal memory processes[54]. Blood

flow (rCBF) apparently increases in the cerebellum when craving is

Table 2. Significant between-group differences in functional connectivity between specific brain regions and the posterior
cingulate cortex.

Peak MNI coordinate region Peak MNI coordinates Number of cluster voxels Peak T value

x y z

1 Left cerebellum posterior lobe 212 278 239 89 3.52

2 Right cerebellum posterior lobe 24 275 236 55 4.03

3 Left middle temporal gyrus 254 254 0 71 3.05

4 Right middle temporal gyrus 51 260 9 111 3.52

5 Right inferior temporal gyrus 45 245 215 54 23.26

6 Right inferior parietal lobule 57 227 51 324 24.07

7 Left inferior parietal lobule 236 239 36 135 23.63

(p,0.05, AlphaSim-corrected, extent threshold = 54 voxel)
Note: T.0 indicated IGA.controls in functional connectivity in PCC
T,0 indicated IGA,controls in functional connectivity in PCC
IGA = internet gaming addiction
doi:10.1371/journal.pone.0059902.t002

Figure 2. Brain regions in which functional connectivity with the PCC correlated with CIAS scores significantly in the subjects with
IGA. (p,0.05, AlphaSim-corrected).
doi:10.1371/journal.pone.0059902.g002
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induced by a cocaine cue [55]. Paradiso and Takeuchi contended

that cerebellar activation may be related to emotional processes

and attention during cue-induction [56,57]. In research regarding

alterations in regional homogeneity (Reho) of resting-state brain

activity in subjects with IGA[58], there was increased Reho in the

left posterior cerebellum. This suggests that the cerebellum plays

an important role in craving induced by IGA, especially during

preparation, execution, working memory[59], and fine-motor

processes modulated by extrapyramidal systems. We found

increased FC in the bilateral posterior cerebellum, but a negative

correlation in the right cerebellum anterior lobe with CIAS scores.

Although the locations were different, in terms of functions of the

cerebellum, there was a more important distinction along the

medial-to-lateral dimension. As such, this contention cannot be

confirmed in this present study and needs to be investigated by a

follow-up study.

The bilateral middle temporal gyrus showed increased FC in

the subjects with IGA, but the right inferior temporal gyrus

showed decreased FC. The inferior temporal gyrus is one of the

higher levels of the ventral stream of audio and visual processing,

and is associated with the representation of complex object

features[60]. Dong et al. found decreased Reho in the inferior

temporal gyrus, and they wrote that decreased ReHo in visual-

and auditory-related brain regions may suggest that the decreased

synchronization in subjects with IGA may be the result of a long

duration of game playing [58]. Our results are partially consistent

with this hypothesis, which should be investigated in future studies.

We found decreased FC in the bilateral inferior parietal lobule,

and the FC of the left superior parietal lobule including the PCC

was negatively correlated with CIAS scores. Various studies have

found that the parietal lobe has a concerted involvement in

visuospatial tasks. Position changes of the watched object can lead

to strong bilateral activation of the superior parietal cortex[61].

Olson et al.,[62]discovered that the parietal lobe played a

dominant role in short-term memory. Furthermore, some

researchers have hypothesized that the parietal cortex may play

a role in regulating attention or withholding motor responses

during response inhibition tasks[63,64].

Connectivity with the PCC was positively correlated with CIAS

scores in the right precuneus, posterior cingulate gyrus, thalamus,

caudate, nucleus accumbens, SMA, and lingual gyrus. Most of

these regions are part of the reward system[65]. The precuneus is

associated with visual imagery, attention, and memory retrieval. It

participates in the visual process and integrates related memories.

Research suggests that the precuneus is activated by gaming cues,

integrates retrieved memories, and contributes to cue-induced

craving for online gaming[66]. As a central component of the

proposed DMN, the PCC is implicated in attentional processes.

Previous studies have demonstrated that PCC neurons respond to

reward receipt, magnitude, and visual-spatial orientation [67,68].

Previous studies have found that the thalamus plays an important

role in reward processing [69] and goal-directed behaviors, along

with many other cognitive and motor functions [70]. Dong et

al.,[71] found abnormal thalamo-cortical circuitry in subjects with

IGA, suggesting implications for reward sensitivity. Activation of

the striatum has been reported during reward prediction, tracking

reward prediction errors, and in more complex gambling

paradigms [72,73] Recently, it has been proposed that the

striatum is involved in coding stimulus saliency rather than having

an exclusive role in reward processing per se[74]. Action

preparation for reward could modulate activity in brain regions

such as the dorsal striatum.[75–77]. Studies of response inhibition

using fMRI have consistently found that the pre-SMA is critical for

the selection of appropriate behaviors, including executing

appropriate and inhibiting inappropriate responses [78].

The lingual gyrus is a visual area. We previously found

differences in grey matter density in the lingual gyrus in healthy

subjects as compared to those with IAD [79,80]. This visual

associative area has been implicated in schizophrenia[80–83]. One

study[83] demonstrated increased gyrification and reduced

cortical thickness of the lingual gyrus, which extended previous

findings of aberrant morphology of the lingual region in

schizophrenia[84]. The right parahippocampus and lingual gyrus

has been shown to be involved in right hemispheric dominated

networks mediating emotional functions [85]. In addition, Seiferth

et al. [86] showed that the right lingual gyrus was hyperactivated

during emotion discrimination in high-risk subjects.

Abnormalities in the FC of the PCC with the mPFC and ACC

were not found in the present study. This may be partly

attributable to the limited sample size and the mild severity of

IAD in the participants as compared to subjects we examined

previously [25,48,57].

Limitations of the study
There are several limitations that should be mentioned in this

study. First, the diagnosis of IAD was mainly based on results of

self-reported questionnaires, which could cause some error

classification. Second, the sample size was relatively small, which

could reduce the power of the statistical analyses and hamper

generalization of the findings. Owing to this limitation, the

reported results should be considered preliminary, and they should

be replicated in future studies with larger sample sizes. Third, as a

Table 3. Brain regions in which functional connectivity with the PCC correlated with CIAS scores in the subjects with IGA.

Peak MNI coordinate region Peak MNI coordinates Number of cluster voxels

x y z

1 Right cerebellum anterior lobe 27 251 233 98

2 Right lingual gyrus 9 293 230 99

3 Right precuneus/posterior cingulate 30 257 12 219

4 Right thalamus/caudate/nucleus accumbens 9 0 0 95

5 Right supplementary motor area(SMA) 3 21 57 80

6 Left superior parietal lobule 230 254 63 95

(p,0.05, AlphaSim-corrected)
Note: PCC = posterior cingulate cortex; IGA = internet gaming addiction; CIAS = Chen Internet Addiction Scale
doi:10.1371/journal.pone.0059902.t003
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cross-sectional study, our results do not clearly demonstrate

whether the psychological features preceded the development of

IAD or were a consequence of the overuse of the Internet.

Therefore, future prospective studies should clarify the causal

relations between IAD and psychological measures. Last, to

elucidate the shared neurobiology of substance addiction and

behavioral addictions such as IGA, further research investigating

patients from both clinical populations should be conducted.

Conclusions

This paper describes a preliminary study of FC in adolescents

with IGA. Our results suggested adolescents with IGA exhibited

different resting-state patterns of neuronal activity. The alterations

were partially consistent with those that have been reported in

patients with substance addiction. Therefore, these results support

the hypothesis that IGA as a behavioral addiction may share

similar neurobiological abnormalities with other addictive disor-

ders.
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