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Abstract

Fermat’s principle of least time states that light rays passing through different media follow the fastest (and not the most
direct) path between two points, leading to refraction at medium borders. Humans intuitively employ this rule, e.g., when
a lifeguard has to infer the fastest way to traverse both beach and water to reach a swimmer in need. Here, we tested
whether foraging ants also follow Fermat’s principle when forced to travel on two surfaces that differentially affected the
ants’ walking speed. Workers of the little fire ant, Wasmannia auropunctata, established ‘‘refracted’’ pheromone trails to
a food source. These trails deviated from the most direct path, but were not different to paths predicted by Fermat’s
principle. Our results demonstrate a new aspect of decentralized optimization and underline the versatility of the simple yet
robust rules governing the self-organization of group-living animals.
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Introduction

The processes underlying biological decentralized organization

have become models for modern-age human applications. In

particular, the ability of ants to form efficient trails has been an

inspiration to scientists solving complex problems in robotics,

logistics and information technology [1–5]. In many ant species,

workers traveling between the nest and food will deposit a trail of

pheromones on the ground. Additional workers are recruited by

these pheromones and the trail is reinforced through positive

feedback [6], [7]. On homogeneous surfaces, trails will converge

towards the most direct path between nest and food source [8],

[9]. However, no study has examined how ants direct their trails

on heterogeneous surfaces on which trail optimization is more

complex. One way for ants to optimize their path across two

surfaces would be to follow Fermat’s principle of least time, which

posits that a ray of light traveling between two points follows the

fastest (and not necessarily the most direct) route. At the boundary

between two media in which light travels at different speeds, light

refracts accordingly, thus minimizing travel time as a function of

elementary physical properties. Unlike light, ants are under

evolutionary selection and path formation results from the

interaction of behavior, pheromone properties and the environ-

ment. Nevertheless, we used Fermat’s principle to predict the

optimum for ant foraging, assuming (and simplifying) that ants are

selected to minimize travel time. In particular, we tested whether

ants foraging across two surfaces deviate from the most direct path

but not from a time-optimized solution.

Materials and Methods

Experimental Set-up
We used colonies of the little fire ant Wasmannia auropunctata, one

of the world’s 100 most invasive species [10–12]. Three colonies

(each containing several thousand workers and multiple queens)

were collected near the sites Herzliyya, Newe Yaraq and Ma’barot

in Israel and kept in stacked plaster-floored petri dishes inside

a plastic box. Similarly to most introduced and native W.

auropunctata populations worldwide, the population in Israel is of

unicolonial structure with clonal reproduction [13]. The plastic

boxes were connected to one corner of a foraging arena by

a cardboard bridge and cockroaches were provided as food ad

libitum in the opposite corner. The surface of the foraging arena

was split in halves, each half covered with one of three materials

that differentially affected the ants’ walking speed (Fig. 1). We

chose two types of polyester felt, rough (Rayher Hobby GmbH,

Laupheim, Germany) and smooth (K.D.J. Brand GmbH&Co.KG,

Offenbach, Germany), in addition to polyethylene (LDPE) glass

(Caleppio/Charles Wolfsberger GmbH, Weil am Rhein, Ger-

many).

Given a (i.e., the angle defining the shortest path), the distances

a1 and a2 and the walking speeds n1 and n2, we predicted the angle

r at which ants would cross from one surface onto the second if

they (eventually) chose the fastest path (Fig. 1). Control trials on

a homogenous surface (glass – glass) demonstrated that, as

expected, the ants chose a path close to that defined by a in five

of six trials (see Fig. 2). We tested three surface combinations:
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Glass – smooth felt, glass – rough felt, smooth felt – rough felt. The

food was offered at two different locations, resulting in large and

small angles a (60u and 30u) for all combinations. Altogether, we

conducted 18 test trials: three colonies on three surface combina-

tions and two food positions each. (Henceforth, if not specified,

‘‘trials’’ refers to ‘‘test trials’’.).

Each surface/geometry combination was tested for one week in

parallel with each of the three colonies. After each trial, the bridges

to the arenas were removed and the ants were returned into their

nests. The next trial started after a two-day break, during which

the ants had neither access to the arena nor to food. Each trial

started without food, i.e. the foraging ants were allowed to explore

the arena for one day before food was added. We conducted the

trials in July 2010 (glass - smooth felt; glass - rough felt, both at

a= 30u and 60u, respectively) and in August 2011 (smooth felt -

rough felt; glass - glass, both at a= 30u and 60u, respectively). The
last two trials were the controls.

Between the two series of trials the colonies were kept inside

their nest boxes at room temperature and were fed ad libitum. The

long interval between the two series makes it unlikely that the

results of our experiments were affected by the previous experience

of foragers.

Approximately two weeks prior to the trials in 2010 and 2011

the colonies were transferred to another room, kept at constant

25uC and in complete darkness (except when being tended, filmed

or when experimental set-ups were changed) to prevent visual

orientation and location of the food source.

Geometry
The direction r9 of the realized foraging trail was assessed every

morning by taking a digital picture. Only data from the last three

days of each trial were analyzed, assuming that trails required a few

days to form a path close to the optimum. When a trail was diffuse,

i.e. the ants were scattered around a straight line, we measured the

two outermost edges and calculated the average. In two cases the

trails were overly diffuse and we could only reliably use data from

a single day, in both cases the last day. The angle a (denoting the

shortest path) deviated slightly from 30u and 60u both within and

among trials, because of minor variation in food position due to

handling. The angle measurement was also subject to small optical

distortions in the digital pictures. Thus, we daily measured the

colony-specific angle a from those pictures the same way we

measured r9 and calculated the mean angle of a over the course of

each trial (mean 6 SD for n= 9 trials: a30=28.79u 61.09;

a60=58.57u 60.71).

Speed
The speed at which the ants walk over the surfaces is a crucial

determinant of the predicted angle r. We assessed the walking

speed of randomly chosen individuals by filming the final

established trail of each colony in each trial. In each of 18 test

and six control trials, we traced 40 ants per substrate (one substrate

per control trial and two per test trial) and direction (food or nest),

yielding a total of 3360 measurements. Along with each individual

speed measurement, we estimated trail density by counting the

ants on the trail when we traced the walking individuals.

VirtualDub (virtualdub.org) was used to calculate the time from

start to stop frame (15/s) over a straight 4 cm distance on the ant

trail We did not measure the exact distance each ant traveled,

which presumably shows minor variation due to differences in

head-on encounters of foragers of opposing directions. Instead, we

were interested in the mean time a standard ant from each of the

three colonies takes to cross a given distance on a specific

substrate. We performed a generalized linear model (GLM) in R

on these speed data and explored which factors affected trial-

specific speed. It is not unlikely that the felt materials for each

replicate differed due to fabrication and handling (i.e. a few more

erect felt fibers in their path will certainly slow down these minute

ants, see Fig. 3) and that colonies furthermore varied due to

foraging intensity. Thus, we used speed as response variable and

colony, surface (glass, smooth and rough felt), direction of the trail,

trail density (number of workers) and angle a (30u and 60u) as
explanatory variables to test which of them affected speed. As most

explanatory variables had a significant impact on speed (see

‘‘Results’’), we used specific speed means of each particular trial

for the following calculus. Because we were interested in the

overall speed of the ants during foraging – which includes both

traveling to the food and food transport to the nest – we pooled,

per trial and substrate, all 40 inbound and 40 outbound

measurements and calculated the mean over those 80 values.

Calculation of Travel Time and r
Fermat’s principle predicts the fastest path with angle r for ants

to travel between the bridge and the food, located on different

surfaces (Fig. 1). For each trial we modeled the traveling time of

the ants using the walking speed vx for surface x (x=1, 2) and the

distance dx the ants hypothetically travel over each surface,

depending on the angle r.
Given are a, a1, and a2. Using trigonometry, the following

equations can be derived:

d2~
a2

cosr
ð1Þ

b~tan a: a1za2ð Þ ð2Þ

Figure 1. Schematic of the two-surface test illustrating the
geometric details for deriving the path prediction model. The
ants crossed two kinds of surfaces to gather food. The dotted yellow
line indicates the trail expected according to Fermat’s principle. With
decreasing walking speed ratio (v1/v2) point D (associated with the
predicted trail angle r) will move to the left. If v1, v2, r will be larger
than a (the crossing angle of the shortest line between food and nest).
doi:10.1371/journal.pone.0059739.g001
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Figure 2. When forced to move across different surfaces, colonies of the ant W. auropunctata formed trails with an angle r’ closer to
the optimum r (in 15 out of 18 trials) than to the angle a they would have followed if moving to the food source on a straight line.
Given for each surface combination are a, r and r’ of each of three colonies (bars =median, whiskers =minimum and maximum). r varied largely due
to colony differences in walking speed.
doi:10.1371/journal.pone.0059739.g002

Figure 3. Directions and estimated travel times of ant trails (r’) relative to the prediction (r, 0%) and the direct path (a, 100%). W.
auropunctata foragers realized time budgets closer to the optimum r than to the direct path a in 13 out of 18 trials. When moving across glass-felt,
travel times were closer to r than for other surface combinations, and the ants performed better at the larger a angle.
doi:10.1371/journal.pone.0059739.g003
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e~a2:tan r ð3Þ

Because the ratio a1/a2 is a crucial determinant of r and not the

actual single segment length, a1 is replaced by the following term:

a1~k:a2(i:e:, k~
a1

a2
) ð4Þ

Combining equations 2 to 4, that part of the predicted path

which lies in substrate 1 (d1) can be calculated as:

d1~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21z b{eð Þ2

q

~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2:a22z tan a:a2: 1zkð Þ{a2:tan rð Þ2

q

~a2:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z tan a: 1zkð Þ{tan rð Þ2

q
ð5Þ

Using Eq. 1 and 5 we set up a travel time function in

dependence from r:

t rð Þ~ d2

n2
z

d1

n1

~

a2
cos r

n2
z

a2:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z tan a: 1zkð Þ{tan rð Þ2

q

n1

~a2:
1

n2:cos r
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z tan a: 1zkð Þ{tan rð Þ2

q

n1

0
@

1
A

The r value belonging to the time minimum was approximated

to two decimals by calculating t(r) for 0u,r,a in 0.01u steps using
a custom-made Excel sheet (REFRANTZ 1.0, see supporting File

S1). The angle r depends on the differences in speed on the two

substrates, thus the larger this difference, the smaller r will be.

Importantly, because the colonies varied in their individual speeds

the predicted angle r varied accordingly among colonies.

Statistical Analysis of Angle Measurements
We tested two hypotheses: (H1) The ants establish paths

following Fermat’s principle, i.e., r9= r; (H2) the ants follow the

direct path, i.e., r9= a. Each hypothesis was treated as null

hypothesis in a two-tailed sign test [14]; input values were the signs

(+/2) of angle differences (paired by trial, i.e., n = 18; H1: r9 – r;
H2: a – r9).

Results

We found that colonies varied in their speeds (df = 2, F=38.44,

p,0.001), that the materials affected speed differently (df=2,

F=2297.81, p,0.001) (mean 6 SD over all colonies in mm/s;

polyethylene glass: 4.8960.51; smooth felt: 2.9760.91; rough felt:

1.7360.73), that the ants walked faster from the food to the nest

than outbound (df=1, F=47.46, p,0.001) and that trail density

was negatively correlated with speed (df=1, F=968.41, p,0.001).

As expected, the angle at which the food was positioned did not

affect speed (df=1, F=1.94, p=0.164).

Our test trials showed that W. auropunctata ants indeed

established trails that significantly deviated from the most direct

path (sign test: n+=17, n- = 1, p=0.0001). In contrast, the

realized paths were overall not different from the predicted angle r
(sign test: n+=12, n- = 6, p=0.2379; Fig. 2, Fig. 4). In the controls

the trails followed an almost straight line, with the exception of one

colony that formed very diffuse trails and for which only one angle

could be measured.

Taken together, the experiment affected angle stronger than

travel time. The ants realized trails with an angle r9 that differed
from the most direct path but did not differ from the fastest path

with a predicted r.

Discussion

Our study documents that Fermat’s least-time principle,

a general rule well known from optics, also applies in biological

path-optimization processes. Rather than laying a trail that

directly connects nest and food, Wasmannia ants reacted to

differences in the roughness of the ground and consequently to

their running speed by using ‘‘refracted’’ trails that facilitated

reduction of travel time. We only detected few cases where the ants

perfectly reached the optimum, suggesting that constraints other

than the need to optimize time also influence trail formation.

Although ‘‘food position’’ was not significantly correlated with

the chosen path a closer inspection revealed that there was a trend

that at the larger a value (60u) the realized angles deviated more

from the optimum than their corresponding realized travel times

(Fig. 3). This indicates that with regard to travel time the realized

trails were even efficient when angles with deviations from the

optimum were established. At the smaller a value (i.e. shorter

distance) both time and angle showed more variance than at the

large a value (Fig. 3), suggesting that distance (and constraints of

volatile trail pheromones, see below) also play a role in trail

formation.

The effect was stronger on angle than on travel time, i.e. drastic

deviations from r do not necessarily result in similar drastic

changes in travel time (Fig. 3). This may be a result of the small

differences in substrate-specific travel times and the inaccuracy of

predicting trail formation from a comparably small subset of

foraging ants. Overall however, our simple experiment shows that

in central-place foraging species it is not simply the distance, but

more precisely the time and thus energy spent that shapes travel

routes, even when the benefits are presumably low.

Mass-recruiting ants have long been known to choose the

shortest of several routes to a food source (all other things,

including surface properties, being equal), and recent studies show

that they do so even in complex mazes [9]. In addition, several

observations suggest that rather than minimizing travel distance

they may optimize travel time or net energy gain. For example,

Pogonomyrmex harvester ants preferentially utilize low vegetation

cover pathways [15], and foragers of the wood ant Formica rufa

prefer horizontal over vertical bridges of equal length [16].

Furthermore, repulsive interactions cause Lasius niger ants to

choose the less crowded of two paths and to consequently also

minimize travel time [17], [18].

Alternatively one might argue, when looking at the r9 angles
measured in our experiment, that the foragers had an intrinsic

Foraging Ants Follow Fermat’s Principle
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tendency to establish angles around 10–35u. However, with the

substrates available we could for heterogeneous surface combina-

tions only reasonably set up predictions of 10–40u. For predictions
below 10u, substrates even more coarse would be needed.

Similarly, for larger predicted angles one would need substrates

more similar to each other, with the angle of the direct path (a) set
large enough to be distinguished properly from the optimal path.

The last control trial at 60u shows that the ants readily crossed

borders between grounds of equal roughness at a much higher

angle even after a long trial period with the exception of one

colony. This colony decreased in worker number following one

year in the lab, several pre-trials and final trials and simply may

have lacked the necessary number of workers to maintain

a functional trail.

Wasmannia workers thus resemble pedestrians, who apparently

also follow Fermat’s principle when forced to cross surfaces with

different qualities (e.g., [19], [20]). And exactly like humans [21],

they appear to tolerate suboptimal detours if they do not grossly

inflate travel time. In most of our trials (except the controls), the

ants formed trails that over some distance followed the border

between the two substrates on the nest-bound half of the arena,

suggesting that they prefer to move along edges. Landmarks

facilitate orientation [22], a typical ant behavior that can be

observed for example on the edges of sidewalks worldwide. This in

turn may positively affect the efficiency of pheromone deposition

in that lower amounts are needed when pheromone trails are

combined with physical cues. Even though ants under natural

conditions will forage on a variety of grounds with different

resistance [23], foraging, recruitment and trail formation in the

field appear to be affected by so many additional factors, such as

predation risk or competition [24], [25], that ‘‘refraction’’ as in our

experiment will presumably be detected only under specific

conditions.

Like archerfish [26], humans are capable of learning to apply

the principle of refraction. While these are examples for individual

learning and experience, the formation of a collectively estab-

lished, ‘‘refracted’’ path in ant foraging is based on the properties

of volatile pheromones that evaporate over time [27], [28].

Though we did not study the early dynamics of path-finding, we

suggest that the foraging trail will initially be determined by

chance and subsequently converge towards the optimum. Quicker

variants of the trail will be reinforced preferentially, analogously to

ant behavior in classic short-cut experiments [8]. The process of

trail optimization thus resembles Manfred Eigen’s concept of self-

organization and evolution [29], in that information mutates and

becomes subject to selection. Our study shows that this procedure

allows ants to efficiently optimize time consumption on foraging

trails under artificial conditions. But this study also suggests that

there are limits to pheromone orientation. When the distance was

shorter the ants performed less well maybe as a result of higher

pheromone amounts per area unit. Data on the specific

pheromones involved and their evaporation rates on different

substrates are needed to fully explore trail formation in the little

fire ant.

Supporting Information

File S1 RERANTZ V1.0. [refrantz1-0.xls], Excel file for
the approximation of the fastest trail r.
(ZIP)
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