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Abstract

The ability to switch between tasks is critical for animals to behave according to context. Although the association between
the prefrontal cortex and task switching has been well documented, the ultimate modulation of sensory–motor associations
has yet to be determined. Here, we modeled the results of a previous study showing that task switching can be
accomplished by communication from distinct populations of sensory neurons. We proposed a leaky-integrator model
where relevant and irrelevant information were stored separately in two integrators and task switching was achieved by
leaking information from the irrelevant integrator. The model successfully explained both the behavioral and neuronal data.
Additionally, the leaky-integrator model showed better performance than an alternative model, where irrelevant
information was discarded by decreasing the weight on irrelevant information, when animals initially failed to commit to a
task. Overall, we propose that flexible switching is, in part, achieved by actively controlling the amount of leak of relevant
and irrelevant information.
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Introduction

A crucial aspect of human cognitive flexibility is our ability to

respond differently to identical sensory inputs depending on the

task. The process of encoding task information is well studied;

recent physiological studies have shown that neurons encode

abstract rules and have demonstrated task-related neuronal

modulation in the prefrontal cortex and other regions [1–4].

Meanwhile, task-dependent modulation of sensory–motor associ-

ations determines how task information ultimately controls our

behavior. Despite its being an essential part of our flexibility, this

process is still poorly understood.

To address this issue, Sasaki and Uka applied task switching to a

perceptual decision-making task [5]. Based on extensive docu-

mentation that middle temporal (MT) neurons contribute to both

direction [6–8] and depth [9–11] discrimination, MT neuron

responses were measured while monkeys switched between the two

tasks. Sasaki and Uka found that although sensitivities of MT

neurons were task independent, some of the neurons whose

preferred direction and preferred depth were related to opposite

choices in the two tasks (incongruent neurons) showed covariation

with behavioral choices in either of the two tasks [5]. They

suggested that sensory neurons are divided into distinct popula-

tions for each task and that task switching is accomplished by

attending to information from task-relevant neurons and discard-

ing information from task-irrelevant neurons.

We examined two possible mechanisms of this selective readout.

In both mechanisms, we considered evidence-accumulation

models where reliable decisions are generated by integrating

responses of sensory neurons [12]. We did not explicitly

implement biologically realistic networks of the integrators to

build a thorough mechanistic model, but here we aimed at

establishing a phenomenological model for better understanding of

computational mechanisms of the readout. One mechanism for

discarding the task-irrelevant information, which one would

simply imagine, is to decrease its weight. The other one, which

seems like a rather indirect way, is to increase the leakage of the

integrator. We call the former mechanism a gated-integrator

model and the later one a leaky-integrator model.

We compared these models by simulations based on the

recorded activities of MT neurons [5]. In the gated-integrator

model, the weight on the task-irrelevant information needed to be

small at first and then gradually increase in order to explain the

time course of the covariation between behavior choices and

neural data. The leaky-integrator model equally explained the

time course as the gated-integrator model under the assumption

that task-relevant information was stored in a perfect integrator

and that task-irrelevant information was stored in a leaky
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integrator. These models were equivalent under fixed evidence

accumulation duration. When the duration was shortened, the

performance of the leaky-integrator model deteriorated as one can

naturally expect [13], but the performance of the gated-integrator

model counterintuitively improved. In addition, when task

commitment was delayed, the performance of the leaky-integrator

model did not deteriorate as rapidly as the gated-integrator model

because stored task-irrelevant information could be discarded later

through leakage. From these results, we propose the leaky-

integrator model as a potential mechanism for flexible task

switching.

Materials and Methods

General
The psychophysical and electrophysiological data were acquired

from a previous study [5]. Because detailed experimental

procedures were described previously, here we explain the outline

of the experiment and focus on data analysis and simulations. Two

Japanese monkeys (Macaca fuscata) were used in this study. Animal

care and experimental procedures were approved by the Juntendo

University Animal Care and Use Committee and were in

accordance with NIH guidelines.

Experimental Procedures
The monkeys were seated in a monkey chair in front of a color

CRT with the head in a fixed position. The positions of both eyes

were monitored and stored at 200 Hz using the eye-coil technique

[14,15]. Stereoscopic images were displayed by presenting the left

and right half images alternately at 100 Hz (50 Hz for each eye).

The monkeys viewed the display through a pair of ferroelectric

shutters synchronized to the video refresh.

Monkeys were trained to switch between a direction-discrim-

ination task and a depth-discrimination task while isolated neurons

were recorded from the MT area (Fig. 1A). For each trial, the

color of the fixation point (magenta or cyan) indicated whether the

monkeys should discriminate direction or depth, respectively. The

tasks were randomly interleaved from trial to trial. After the

monkeys fixated for 300 ms, a random-dot stereogram (RDS)

moving in one of two directions at one of two binocular disparities

appeared in the receptive field of the recorded neuron for 500 ms.

In the direction-discrimination task, the monkeys indicated

whether the coherently moving dots moved up or down; in the

depth-discrimination task, the monkeys indicated whether the

correlated dots were farther or nearer than the plane of fixation by

making a saccade to one of two targets appearing above and below

the fixation point immediately after the offset of the RDS. The

fixation point and the RDS were turned off when the two saccade

targets appeared, and the monkeys were required to make a

saccade within 1 s after the appearance of the two saccade targets.

Correct responses were rewarded with a drop of water or juice.

Task difficulty was titrated by changing the percentage of

coherently moving dots (motion coherence) or binocularly

correlated dots (binocular correlation) in the RDS. Motion

coherence and binocular correlation were varied independently

from trial to trial.

Single-unit recordings were made in the MT area using

tungsten microelectrodes (impedance, 0.2–2 MV at 1 kHz) that

were advanced into the cortex through a transdural guide tube.

Spike times and behavioral event markers were stored to disk with

1-ms resolution.

Data Analysis and Simulation
All statistical analyses and simulation were performed using

MATLAB software (MathWorks, Natick, MA, USA).

Behavioral analysis. We analyzed the behavioral choice

data following Sasaki and Uka [5] with logistic regression; the

probability of an upward saccade (pup) was given by the following

equations:

pup~
1

1ze{Q
,

Q~b0
dirzb1

dirCdirzb2
dirCdepzb3

dirCdir Cdep

�� ��
Direction-discrimination taskð Þ,

Q~b0
depzb1

depCdirzb2
depCdepzb3

dep Cdirj jCdep

Depth-discrimination taskð Þ

Cdir denote motion coherence and and Cdep denote binocular

correlation. Positive values of Cdir and Cdep indicate coherence/

correlation with upward motion or far depth, whereas negative

values indicate coherence/correlation with downward motion or

near depth. b0 accounts for offset, and b1 and b2 account for

sensitivity to motion coherence and binocular correlation. We

included the interaction term, b3, assuming that a strong irrelevant

stimulus may degrade sensitivity.

To determine whether monkeys performed the wrong task

stochastically, we also tested a nine-parameter model assuming

that the monkeys performed the wrong task with a probability of

perr:

pup~pdir
1

1ze{Qdir
zpdep

1

1ze
{Qdep

,

Qdir~b0
dirzb1

dirCdirzb2
dirCdepzb3

dirCdir Cdep

�� ��,

Qdep~b0
depzb1

depCdirzb2
depCdepzb3

dep Cdirj jCdep,

pdir~1{perr,pdep~perr Direction-discrimination taskð Þ,

pdir~perr,pdep~1{perr Depth-discrimination taskð Þ

This nine-parameter model was compared with the previous

eight-parameter model by calculating Akaike’s Information

Criteria (AIC) and estimating perr.

To quantify how well the monkeys switched between direction

discrimination and depth discrimination, we used the average

switch ratio (SR) calculated from the sensitivities of direction or

depth in the relevant and irrelevant tasks:
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SRdir~1{
b1

dep

b1
dir

,

SRdep~1{
b2

dir

b2
dep

,

SR~
1

2
(SRdirzSRdep):

Choice probability. We calculated choice probability (CP)

to elucidate the relationship between MT activity and behavioral

choice [8]. To quantify the difference between the two spike-count

distributions associated with the neuron’s preferred and null

choices, we used receiver-operating-characteristic (ROC) analysis

and measured the area under the ROC curve, which is termed

CP. To calculate the CP time course, the responses during each

trial were divided into eight 100-ms bins (starting 2100 ms, 0 ms,

100 ms, 200 ms, 300 ms, 400 ms, 500 ms and 600 ms after

stimulus onset). The responses in each bin were z-scored for each

motion coherence/binocular correlation condition and sorted by

choice (preferred vs. null). Z-scored responses were then combined

separately across neurons that preferred direction and depth

related to the same choice (congruent neurons) and neurons that

preferred direction and depth related to opposite choices

(incongruent neurons); the CPs were calculated from these

distributions. Confidence intervals were approximated using the

2.5th percentile and 97.5th percentile of the distribution of 10000

bootstraps calculated by independent resampling with replace-

ment from the z-scored distributions [16]. Conditions under which

monkeys made upward choices fewer than 1/4 or more than 3/4

of the trials were excluded.

Gated-integrator and leaky-integrator models. We ex-

amined a gated-integrator model, a time-varying-gate model and

two leaky-integrator models to investigate the mechanism of task

switching. All models consisted of three steps: 1) sensory

representation by MT neurons; 2) temporal integration of MT

responses; and 3) decision making based on the integrated

variables.

Simulated MT responses for each stimulus condition were

generated based on the average responses of the whole population

of recorded MT neurons [5]. First, each recorded neuron’s spike

rate for each stimulus condition was estimated using the kernel-

density estimate [17]. The recorded spike trains were convolved

with a Gaussian kernel with a standard deviation of 20 ms, defined

from 260 ms to 60 ms. The bandwidth of 20 ms was selected

using kernel bandwidth optimization [17] to create a smooth

spike-rate function without blunting the rising point. Spike rates

were calculated numerically with a step size of 1 ms. The spike

rates were then averaged across all neurons (N = 117) for each

motion coherence/binocular correlation condition separately for

the two tasks to generate ‘‘typical responses’’ of MT neurons.

Averaged spike rates (��r�r) were calculated with the following

equation:

r(t; cdir,cdep)~
1

N

XN

n~1

rn(t; cdir,cdep),

where rn is the estimated spike rate of a neuron n ( = 1, 2,…, 117) at

time t after stimulus onset with motion coherence cdir and

binocular correlation cdep. Here, positive values of cdir and cdep

indicate coherence/correlation at the neuron’s preferred direction

or depth, whereas negative values indicate coherence/correlation

at the neuron’s null direction or depth.

Both the gated-integrator model and the leaky-integrator model

consisted of eight simulated MT neurons (Table 1). Simulated

trials were numbered by t for each coherence (Cdir)/correlation

(Cdep) combination. Positive values of Cdir indicate coherence for

upward stimuli and Cdep indicate correlation for far stimuli. The

responses of the simulated neurons to a particular stimulus on a

given trial, sn(t; Cdir, Cdep, t) (n = 1, 2,…, 8), were generated as a

function of time, t, for each 1-ms bin by Poisson spike generators.

The averaged spike rates for the eight simulated neurons complied

to (cdir, cdep), where (cdir, cdep) = (Cdir, Cdep), (2Cdir, Cdep), (Cdir, 2Cdep),

(2Cdir, 2Cdep) depending on the preference of the neuron shown in

Table 1. Hereafter, the variable t and the parameters Cdir, Cdep and

t will be omitted when obvious. sn was 1 spike/ms in a bin with a

spike and 0 spike/ms in a bin without a spike. Simulated

instantaneous differential responses for direction (up/down: idir)

and depth (far/near: idep) were calculated using the following

equations:

Here, responses to upward motion and far depth were described

using positive values.

Next, simulated instantaneous differential responses were

integrated. Here, idir and idep were assigned to be either relevant

or irrelevant depending on the task. For example, irrelevant = idir and

iirrelevant = idep in the direction-discrimination task and vice versa in

the depth-discrimination task. The four models, the gated-

integrator model (Fig. 2C), the time-varying-gate model, the

single-leaky-integrator model (Fig. 2D), and the double-leaky-

integrator model (Fig. 2E) can be regarded as variations of a more

general model. In this general model, the integrated value I at time

T was given by the following equations:

I(T)~Irelevant(T)zIirrelevant(T)

Irelevant(T)~

ðT

t~t0

(irelevant(t){krelevantIrelevant(t))dt

Iirrelevant(T)~

ðT

t~t0

(w(t)iirrelevant(t){kirrelevantIirrelevant(t))dt,

where t0 is 100 ms after stimulus onset, the time when stimulus-

induced responses arise in MT neurons and t1 is 100 ms after

stimulus offset; krelevant and kirrelevant determines the rate of leakage,

and w(t) is the weight on the irrelevant information. When krelevant

and kirrelevant are identical, the equations can be reduced to one

integration by assuming k = krelevant = kirrelevant (the gated-integrator

Figure 1. Task and animal performance. Adapted from [5]. (A) Sequence of events. After the monkeys fixated, the stimulus was presented on the
screen for 500 ms. Two choice targets then appeared above and below the fixation point. During each trial, the color of the fixation point (magenta
or cyan) indicated whether the monkey was to discriminate direction (UP or DOWN) or depth (FAR or NEAR) using saccadic eye movements (upward
or downward, respectively). RF, receptive field. (B) An example psychometric function from a single session.
doi:10.1371/journal.pone.0059670.g001
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model, the time-varying-gate model and the single-leaky-integra-

tor model);

I(T)~

ðT

t~t0

(irelevant(t)zw(t)iirrelevant(t){kI(t))dt:

The gated-integrator model was defined by setting krelevant =

kirrelevant = 0 and w(t) = w (constant). The time-varying-gate model

was defined by setting krelevant = kirrelevant = 0 and w(t) = exp(k(t2t1)).

We assumed an exponentially increasing weight to compare with

the leaky-integrator model below. The single-leaky-integrator

model was defined by setting krelevant = kirrelevant = k and w(t) =

w (constant). The double-leaky-integrator model was defined by

setting krelevant = 0, kirrelevant = k and w(t) = 1.

The integration was calculated in 1-ms steps. After 500 ms of

integration, the integrated value was evaluated. If the value was

positive, an upward saccade was selected, and if the value was

negative, a downward saccade was selected. This calculation was

conducted at each coherence/correlation combination for 1000

trials for all simulations.

To match the sensitivities between behavioral and model, we

selected a population of neurons with roughly equal sensitivity for

direction and depth on average. Neuronal sensitivity was

quantified by neurometric thresholds which were computed using

a receiver operating characteristic analysis as previously described

[5]. Neurons were sorted by the ratio between direction and depth

thresholds, and 40 neurons were selected so that the sensitivity for

direction and depth were equal on average.

Results

Description of Previous Results
In this section, we briefly describe the results obtained by Sasaki

and Uka [5]. Sasaki and Uka applied task switching to a

perceptual decision paradigm to study how task switching

modulates sensory–motor associations. Two monkeys were trained

to discriminate either the direction or depth of RDS. During the

direction-discrimination task, stimuli with an upward-motion

component were associated with upward saccades, and those with

a downward-motion component were associated with downward

saccades. During the depth-discrimination task, stimuli having far

disparity were associated with upward saccades, and those having

near disparity were associated with downward saccades (Fig. 1A).

Examples of psychometric functions from one recording session

are shown in Figure 1B. The left panel shows the proportion of

upward saccades in a direction-discrimination task as a function of

motion coherence for each binocular correlation. Although the

monkey correctly discriminated between the two opposite motion

directions, the choices were biased so that the sigmoid psycho-

metric functions were shifted horizontally depending on the

strength of the binocular correlation. The right panel confirms the

same points for the depth-discrimination task. To quantify how

well the monkeys switched between direction discrimination and

depth discrimination, SR was calculated from the sensitivities to

direction or depth in the relevant and irrelevant tasks (see

Materials and Methods). If the monkeys could switch perfectly, SR

would be 1; if the monkeys were completely oblivious to the task

demands, SR would be 0. The average SR for all the recorded

sessions was 0.70, indicating that the monkeys correctly switched

between the tasks, although not perfectly (see Fig. 4C in [5]).

Decisions were based on both the relevant and irrelevant features

of the stimulus, but the influence of the irrelevant feature was

smaller than that of the relevant feature.

The choice bias was not mainly caused by task misapplication.

To determine the amount of task misapplication, we analyzed the

data shown in Fig. 1B with a model assuming that the monkeys

performed the wrong task with a probability of perr (see Materials

and Methods). Considering the nonlinearity of the logistic

function, perr was not a redundant parameter. However, the fit of

the model was comparable with or without perr: the estimated perr

was 0.047, and AIC was 425.4 with perr compared to 427.7 without

perr. Therefore, although the monkeys may have occasionally

applied the wrong task, the choice bias was mainly caused by

interference, not by task misapplication. This result supports using

SR to measure the amount of interference.

MT neuron responses did not show task dependency (see Fig. 3

in [5]). Therefore, task switching is not implemented before MT,

and task may modulate readout from the MT. To assess the

functional coupling between MT responses and perceptual

decision, CP, the trial-to-trial covariation in MT responses and

behavioral choices, were computed (see Materials and Methods).

CP is 0.5 when the responses do not covary with behavioral

choices. CP is 1 when the responses completely covary with

behavioral choices. MT neurons were classified into congruent

neurons and incongruent neurons according to their preferred

direction and depth. Congruent neurons preferred up/far or

down/near stimuli, which were associated with the same

behavioral responses in the two tasks. Incongruent neurons

preferred up/near or down/far stimuli, which were associated

with different behavioral responses in the two tasks. CPs of

Table 1. Properties of eight simulated neurons.

Neuron Preferred Direction Preferred Depth Congruent/Incongruent Contribution to Task

1 Up Far Congruent Both

2 Up Far Congruent Both

3 Down Far Incongruent Depth

4 Down Far Incongruent Direction

5 Up Near Incongruent Depth

6 Up Near Incongruent Direction

7 Down Near Congruent Both

8 Down Near Congruent Both

doi:10.1371/journal.pone.0059670.t001
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congruent neurons were similarly larger than 0.5 for both tasks. In

contrast, when the CP of an incongruent neuron was larger than

0.5 for one task, the CP for the other task was close to 0.5 (see Fig.

7A in [5]). From these results, Sasaki and Uka [5] concluded that

task switching may be accomplished by reading out different

populations of incongruent neurons.

A Gated-integrator Model can Explain the Behavioral Bias
Observed during Task Switching

Using the responses of MT neurons described in Sasaki and

Uka [5], we modeled these results in a quantitative manner. Our

goal was to establish a simple phenomenological model of

computation that explains both the behavioral and neuronal data.

Although the model only contains a limited number of neurons,

we do not imply that the brain only uses small numbers of

neurons. Moreover, the connections in the models do not imply

specific circuitry in the brain (See discussion). Rather, the neurons

in the model can be thought of as representing a collective activity

of a neuron group. We first investigated how dynamic readout of

MT neurons may result in behavioral task switching. For

simplicity, MT neurons were classified into four types depending

on their preferences, up/far, down/far, up/near, and down/near,

because most MT neurons have tuning to both direction and

depth [18]. Information from one neuron is insufficient to

determine the direction or depth of the stimulus. Rather,

information from a population of neurons must be combined.

For example, an average response of up/far and down/far

neurons can indicate how far the stimulus is without being

influenced by stimulus direction. In contrast, an average response

of up/near and down/near neurons represents how near the

stimulus is. In a popular model of decision making, these responses

are accumulated and compete with one another to achieve a

decision (race model; [19]). Alternatively, the diffusion model is

based on the difference in these responses [20,21]. The diffusion

model has two integrators for two choices, and because of mutual

inhibition, the differential responses are accumulated in effect.

Several studies have implemented the diffusion model with

parameters optimized to performance [22–24]. Additionally, the

activities of ‘buildup’ neurons in the superior colliculus during two-

choice decision tasks were better predicted by the diffusion model

[25]. Therefore, here we employed the diffusion model and

assumed that the difference between far and near responses

underlies representation of stimulus binocular disparity by MT

neurons. In the same way, the motion direction of the stimulus is

represented by the difference between an average response of up/

far and up/near neurons and an average response of down/far

and down/near neurons (Fig. 2A).

A simple model of task switching is to switch the sign of the

weight of incongruent neurons depending on the task while

keeping the weight of congruent neurons constant. In this case,

both congruent and incongruent neurons should have a CP.0.5

for both tasks. However, Sasaki and Uka [5] argued that

incongruent neurons have a CP.0.5 in one of the two tasks,

and that the CP of the other task is close to 0.5. Thus, they

concluded that half the incongruent neurons were selectively read

out in either task. Following this hypothesis, we represented each

of the four groups of MT neurons with two simulated neurons, and

each incongruent neuron contributed to one of the two tasks

(Table 1, Fig. 2B). Congruent neurons were connected to both the

direction and depth integrators. These connections do not

necessarily indicate that there are direct physical connections

between these neurons, but rather represent either direct or

indirect contributions of these neurons to behavioral choices

through representations of either direction or depth. Instantaneous

direction and depth responses were represented as the difference

in firing between a group of two congruent and one incongruent

neurons and another group of two congruent and one incongruent

neurons (see Materials and Methods). The responses of congruent

neurons were halved to ensure balance with responses of

incongruent neurons.

Simulations were composed of three steps, 1) sensory represen-

tation of the visual stimulus by MT neurons, 2) temporal

integration of MT responses, and 3) decision making based on

the integrated values. Responses of the eight simulated MT

neurons (Table 1) were generated by a Poisson spike generator

with the average spike rates of all recorded neurons (N = 117). The

responses of these neurons were accumulated in an integrator.

Integration started 100 ms after stimulus onset, when the stimulus-

induced responses arose in the MT. The integration continued for

500 ms, the same length as the stimulus presentation. When the

integration was over, a decision was made based on the sign of the

sum of the integrators.

In theory, if the weights of the task-irrelevant inputs to the

integrator decreased depending on task, this may explain

incomplete task switching, observed in the monkeys’ behavior.

The relevant feature-related responses mainly account for

behavioral choice and the irrelevant feature-related responses

are partially discounted. This gated-integrator model had one

parameter to be determined; the weight of the gated irrelevant

inputs. This parameter determined how well the model switched

between the two tasks. We used SR to quantify switching

performance. We determined the weight that matched the average

behavioral SR of 0.70 (see Fig. 4C in [5]). Figure 3A (left) shows

the SR of the model plotted as a function of weight. The weight

varied from 0 to 1 in steps of 0.02, and the weight was determined

to be 0.30. With this parameter, the gated-integrator model

succeeded in explaining incomplete switching by the monkeys

(Fig. 3B, left). However, the simulated sensitivities of the two tasks

were different, even though there was little difference in the

behavioral sensitivities (see Fig. 4B in [5]). This is because most

MT neurons, and therefore the simulated neurons, were more

sensitive to the motion than to the depth of the stimulus.

To roughly match thresholds between behavior and model, we

hypothesized that neurons can be selectively read out. A

population of neurons was selected so that this group of neurons

had similar sensitivity for depth and direction on average. Based

on the average firing rates of these neurons, we simulated the

model and confirmed that the thresholds of the model matched the

behavioral thresholds of the two monkeys (Fig. 3C). Behavioral

thresholds of one monkey were 11.5% in the direction-discrim-

ination task and 12.1% in the depth-discrimination task: for the

other monkey, they were 14.0% and 12.7%. Thresholds were

10.7% and 9.8% for the model based on the average firing rates of

the selected group of neurons. Thus, behavioral and model

Figure 2. Schematic illustration of the models. (A) Readout of direction or depth from the responses of middle temporal (MT) neurons. The
difference between an average response of up/far and up/near neurons and an average response of down/far and down/near neurons represented
motion direction signals. The difference between an average response of up/far and down/far neurons and an average response of up/near and
down/near neurons represented binocular disparity signals. (B) A schematic diagram of how MT neurons were connected to the integrators in the
model. (C) Gated-integrator model, (D) single-leaky-integrator model and (E) double-gated-integrator model
doi:10.1371/journal.pone.0059670.g002
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sensitivity can be matched. There are also other ways that

behavioral and model sensitivity can be matched (see Discussion).

In the following analysis, however, we used the original model

where all recorded neurons were averaged since this is the simplest

assumption, and it is not the central focus of this study to match

behavioral and model sensitivity.

The Gated-integrator Model did not Explain the Time
Course of Choice Probability

To further investigate the mechanisms of task switching, we

examined the time course of the trial-to-trial covariation in MT

responses and behavioral choice (i.e. CP). In our model,

incongruent MT neurons provided inputs as either task-relevant

or task-irrelevant information. Thus, the CP time course of

incongruent neurons in the irrelevant task may illustrate the

process of switching off the task-irrelevant inputs.

Sasaki and Uka [5] showed that the CP of incongruent MT

neurons initially remained at approximately 0.5 and then

gradually dropped below 0.5 near the end of visual stimulation

during the irrelevant task (see Fig. 7D in [5]). Here, we

recalculated the time course of CP using larger time bins and

confirmed that the time course of CP of incongruent MT neurons

produced a negative trough near the end of visual stimulation

(Fig. 4A). We next computed the time course of CP of the model to

test whether the model explained the negative CP trough. The CP

of the gated-integrator model dropped below 0.5 from the

beginning of visual stimulation and reached a plateau, without

showing a negative trough (Fig. 4B left). Therefore, although the

gated-integrator model succeeded in explaining the psychophysical

data, alternative models were necessary to explain the CP time

course.

A Time-varying-gate Model Explains CP Time Course
As a model to explain the CP time course, we first examined a

time-varying-gate model. In the previous section, we showed that

the predicted CP of the gated-integrator model did not change

over time because the weight was fixed. If the weight is a function

of time, CP can also change over time and thus show a negative

trough. For example, it seems likely that the weight on the task-

irrelevant information gradually decreases because it may take

time to shut the gate. However, this predicts a negative trough of

CP at the beginning of stimulus presentation, and not near the

end. Thus, the weight on the task-irrelevant information needs to

gradually increase during task presentation. One seemingly

unnatural thing about this model is that it predicts less interference

from the irrelevant feature with shorter decision time, which is

inconsistent with current views of task switching [13]. Moreover,

as will be shown later, the performance of this model improved

with shorter decision time (see next section). Putting aside the

feasibility of the model, we first show that this model explains the

time course of CP.

To compare the time-varying-gate model with the leaky-

integrator model explained below, we assumed that the weight

increased exponentially to 1 at the end of stimulus presentation. In

this case, the only parameter was the time constant of the

exponential function and this was determined to match the

average behavioral SR of 0.70 (see Fig. 4C in [5]). Figure 3A

shows the SR of the time-varying-gate models plotted as a function

of the time constant. With a time constant of 110 ms, the SR of the

time-varying-gate model matched the behavioral SR of 0.70.

Additionally, the CP time course of the task-irrelevant incongruent

neurons gradually decreased during stimulus presentation and

reached its minimum near the end (Fig. 4B, right). Therefore, this

time-varying-gate model explains the negative trough near the end

of stimulus presentation. We only examined an exponentially

opening gate, but the decreasing trend of CP was not dependent

on the exact shape of the weight function. Other gradually

increasing weight, e.g. exponential functions with different time

constants, also gave similar results (Fig. 4C).

A Leaky-integrator Model also Explains CP Time Course
Another possibility that can explain the negative trough near the

end is leakiness of integrators, as accumulation of information is

subject to leakage or decay [23]. If the integrator is leaky,

information accumulated early is subject to leakage and does not

influence choices. On the other hand, information accumulated

near the end does not have enough time for leakage and thus

influences choices. Therefore, this model is equivalent to the time-

varying-gate model in terms of how information is used when a

decision is made, and might explain the negative CP trough near

the end of stimulus presentation.

Single-leaky-integrator model. First we examined a single-

leaky-integrator model, which assumed that the integrator was

leaky. The leaky time constant was determined to be the same as

the time-varying-gate model because we have already shown this

to be sufficient to delay the negative CP trough. As the weight on

task-irrelevant information, we used the same value as the gated-

integrator model. With these values, this model succeeded in

explaining the observed behavioral bias (Fig. 5A left), but could

not explain the CP time course (Fig. 5B left). The negative CP

trough in the irrelevant task was delayed as observed in the time-

varying-gate model, but the positive CP peak in the relevant task

was also delayed in the same manner. Thus, the effect of leakage

was not specific to task-irrelevant information. To explain the

negative trough of CP of incongruent neurons, the single-leaky-

integrator model is insufficient because it leaks both task-relevant

and irrelevant information at the same rate.

Double-leaky-integrator model. Next, we assumed that

task-relevant and task-irrelevant information were stored sepa-

rately in two independent integrators. The task-switching process

may actively increase leakage from the task-irrelevant integrator

while keeping the leakage from the task-relevant integrator

negligible. The leaky time constant of the task-irrelevant integrator

was determined to be the same as that of the time-varying-gate

model. With this parameter assumption, the model predicted

exactly the same choices as the time-varying-gate model from the

same simulated spike trains, and thus the model SR matched the

average behavioral SR. In this leaky-integrator model, task-

irrelevant information was subject to leakage and only partially

influenced the choice, which explained the behavioral bias (Fig. 5A

right). In addition, such leakage affected the task-irrelevant

information accumulated early so that CP became close to 0.5

near the beginning of stimulus presentation, but did not affect task-

irrelevant information accumulated late so that CP was lower than

Figure 3. Neurometric function of the gated-integrator model and the time-varying-gate model. (A) Switch ratio (SR) decreased when
the weight of the gated integrator increased or when the time constant of the time-varying gate lengthened. The parameters were determined to
match the average behavioral SR of the two tasks. (B) Neurometric functions of the models using the parameters determined to match behavioral SR.
(C) Neurometric function of the gated-integrator model based on the average firing rate of a selected group of neurons. Thresholds are 10.7% and
9.8%.
doi:10.1371/journal.pone.0059670.g003
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Figure 4. Time course of choice probability (CP). (A) Time course of average CP for middle temporal (MT) neurons. (Left) CP was calculated from
58 congruent neurons separately for the direction- and depth-discrimination tasks. (Right) CP was calculated from 35 incongruent neurons separately
for the relevant and irrelevant tasks. Each point indicates CP plotted at the center of a 100-ms time bin. Error bars indicate 95% confidence intervals.
Asterisks indicate CPs that were significantly different from 0.5 (bootstrap, p,0.05). (B) CP time course for simulated neurons in the gated-integrator
model and the time-varying-gate model. (C) CP time course with different time constants.
doi:10.1371/journal.pone.0059670.g004
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0.5 near the end of stimulus presentation (Fig. 5B, right). Thus, this

model succeeded in explaining the behavioral bias and the

negative trough of choice probability.

The Leaky-integrator Model was Less Sensitive to Task
Commitment Time than Other Models

In the previous section, we introduced the gated-integrator

model to explain the behavioral choices and further extended it to

the time-varying gate model and the double-leaky-integrator

model to explain the negative CP trough near the end of stimulus

presentation. Among these models, a characteristic of the leaky-

integrator model is that information once stored can be discarded

by making the integrator leaky. This might be advantageous when

there is little time to prepare for task-switching. As shown in Fig. 2

of Sasaki and Uka [5], the monkeys showed more interference

when the tasks were randomly interleaved from trial to trial than

when the task was fixed in a block of trials. As a mechanism of

increased interference, we inferred that it took time to determine

the task during the interleaved trials. If this took longer than the

preparation time (300 ms) in some trials, the monkeys may start

integration without committing to a task. In such cases, both

integrators should initially be either open or closed, and the task-

irrelevant integrator becomes either leaky or gated after the task is

correctly perceived during stimulus presentation.

Figure 6 shows the SR (Fig. 6A), threshold (Fig. 6B), and overall

percentage of correct responses (Fig. 6C) of the three models as a

function of when task commitment was completed. The threshold

(75%) shows the sensitivity to the relevant stimulus. In these

simulations, model parameters were identical to those used in the

previous sections. Therefore, when commitment to a task was

completed before integration, the SRs of the models matched the

behavioral SR, 0.70.

Figure 5. Single-leaky-integrator model (left) and double-leaky-integrator model (right). (A) Neurometric functions. (B) Choice
probability time course.
doi:10.1371/journal.pone.0059670.g005
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In the time-varying-gate model with integrators initially open,

the overall percentage of correct responses first increased as task

commitment was delayed, but quickly decreased with delayed task

commitment (green soled line). In the time-varying-gate model

with integration starting after task commitment, the effect of the

irrelevant information became smaller and SR increased with

delayed task commitment because the weight became small soon

after integration started (green dashed lines in Fig. 6A). This

compensated for the larger threshold (green dashed lines in Fig. 6B)

and thus this model showed better overall performance (green

dashed lines in Fig. 6C) compared to other models (red and blue

dashed lines in Fig. 6C). This means that, under this model,

animals could perform better if they just ignored the initial portion

of the stimulus and started integration later. If the animals learned

to perform the task in this way, the CP of all neurons should be

close to 0.5 during the initial part of stimulus presentation.

However, Fig. 4A shows that for congruent neurons, CP was

significantly different from 0.5 starting 100 ms after the stimulus

onset, when stimulus-induced responses arose in MT neurons,

which is inconsistent with the time-varying-gate model.

To maximize task-relevant information and minimize the

influence of task-irrelevant information, it is best to initially keep

Figure 6. Simulated behavioral performance during late task commitment. Switch ratio (A), 75% thresholds (B), and percent correct
responses (C) of the double-leaky-integrator model (red line), the gated-integrator model (blue line) and the time-varying-gate model (green line)
with both integrators initially open (solid lines) or with both integrators initially closed (dashed line) were plotted against time when task
commitment was completed.
doi:10.1371/journal.pone.0059670.g006
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both integrators open and then discard stored information from

the task-irrelevant integrator (leaky-integrator model: red solid

lines in Fig. 6). Leaking stored information from the task-irrelevant

integrator after task commitment is beneficial for reducing

interference from the task-irrelevant stimuli. In the gated-

integrator model, if integrators are initially open (blue solid lines

in Fig. 6), stored information in the task-irrelevant integrator is

retained until the end, and behavioral choices are easily biased

depending on the irrelevant feature of the stimuli, leading to a

decrease in SR. To avoid reduction in SR, inputs to both

integrators can initially be shut off before task commitment.

However, if the integrators are initially closed (blue dashed lines in

Fig. 6), sensitivity to the task-relevant feature deteriorates because

time for evidence accumulation decreases. Overall, the gated-

integrator models soon became inaccurate as it took longer to

commit to a task, whereas the accuracy of the leaky-integrator

model remained comparable for the first few hundred miliseconds

(red solid lines in Fig. 6C). Thus, the performance of the leaky-

integrator model did not deteriorate as much as that of the gated-

integrator models in cases where the monkeys initially started

without task commitment.

Discussion

In this study, we compared a gated-integrator model, a time-

varying-gate model, and a double-leaky-integrator model of task

switching by simulation based on the responses of MT neurons.

The simulation showed that all models could explain the

psychometric functions of the monkeys’ behavior. However, the

negative CP trough near the end of stimulus presentation was not

explained by the gated-integrator model. The CP time course

could be reconciled using the time-varying-gate model, assuming

that the input weight gradually increased during stimulus

presentation. However, if this gate-opening proceeded simply

with time, it predicted less interference from the irrelevant feature

with shorter decision time, inconsistent with current views of task

switching [13]. We further tested the effect of leakage: without a

time-varying gate, the CP time course was reproduced only when

the leaky time constants were different between the task-relevant

and task-irrelevant integrators (double-leaky-integrator model).

Finally, we showed that the leaky-integrator model had better

performance than the time-varying-gate model when task-switch-

ing took time and animals started integration without committing

to a task. Assuming that animals employed optimal computational

mechanisms, these results support the leaky-integrator model.

Model Validity
The models did not fit the monkeys’ data in a variety of

situations. First, the simulated sensitivities were different between

the two tasks, although behavioral sensitivities were similar (see

Fig. 1B in [5]). Additionally, the discrepancy between simulated

and psychophysical thresholds appears to deviate from previous

studies, which reported similar psychophysical and neuronal

thresholds during direction-discrimination [6] and depth-discrim-

ination [10] tasks. Neuronal thresholds of these studies were

calculated assuming two neurons: the recorded neuron and a

hypothetical antineuron with opposite preference. In our model,

six simulated neurons were connected to the task-relevant

integrator. The larger number of neurons may explain the higher

sensitivity of the model during the direction-discrimination task. In

contrast, the simulated sensitivities were lower than the psycho-

physical sensitivities during the depth-discrimination task. In our

task, depth stimuli were not always presented in the preferred

directions of the recorded neurons, crucially different from

previous studies [10]. Thus, in our simulation, responses of

simulated neurons with opposite direction tunings were averaged.

Because most MT neurons have stronger tuning to direction than

to depth [26] and do not respond well at the null direction, this

may have affected simulated sensitivities particularly during the

depth-discrimination task. We were able to match behavioral and

model thresholds by assuming that neurons with strong depth

tuning are preferentially selected for further readout. Specifically,

by estimating average firing rates based on a group of neurons

with similar tuning strength in both dimensions, the threshold

predicted from the model matched behavioral thresholds (Fig. 3C).

Although we performed this analysis using the gated-integrator

model, the same results were accomplished using the leaky

integrator model. Alternatively, combining more inputs for depth

discrimination can also decrease threshold. This can be achieved

by assuming that more incongruent neurons in the model are

connected to the depth integrator. Lastly, noise correlation

between neurons is also important to read out information from

a neural population [27]. Because our model neuron represents an

independent signal from a group of neurons, decreasing noise

correlation is equivalent to increasing the number of model

neurons. A combination of any of these mechanisms may reconcile

the discrepancy between neuronal and behavioral thresholds.

Choice Probability
CP represents covariation between neural responses and

behavioral choices. A high CP does not necessarily indicate a

causal relationship between neural responses and behavior,

particularly when decisions are based on a large population of

neurons [27]. Rather, correlation of noise among neurons in a

sensory pool is the deciding factor that governs CP magnitude

[27,28]. In our model, each of the eight model neurons represents

a collective activity of a neuron group, and we assumed no noise

correlation among model neurons for simplicity. Thus, the weight

of inputs to the integrators had a more direct effect on CP

magnitude. Because we used Poisson spike generators, we

implicitly assumed no temporal correlation for the firing rates.

This was critical in our analysis of the CP time course.

Implementation of a temporal correlation would greatly affect

our results. Future investigations of the temporal firing correlations

in MT neurons are of particular importance to validate our model.

Until now, we assumed that CP reflected a feed-forward

relationship between neural activity and behavioral choice.

However, CP in a later period may have arisen from feedback

signals depending on behavioral choice; feedback signals could

affect neural responses more prominently later in a trial [29].

More specifically, Nienborg and Cumming argued that the

negative CP trough in Sasaki and Uka [5] is exactly what is

expected from a negative feedback signal [28]. Indeed, a big feed-

forward CP component may mask a feedback component during

the relevant task, resulting in a peak CP at the middle of stimulus

presentation. In contrast, a CP feedback component may become

prominent later during stimulus presentation in the absence of

feed-forward components for incongruent neurons during the

irrelevant task. In this case, the simple gated-integrator model does

not contradict with the observed CP time course.

Leaky Integrator as a Mechanism for Flexible and Fast
Decisions

Sensory input is integrated over time when decisions are based

on weak stimuli [12]. Usher and McClelland stated that such

integration is subject to leak [23]. We further extended this

hypothesis and proposed the novel idea that the amount of leakage

may be actively modulated to accomplish task switching. Here we
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discuss possible mechanisms to modulate leakage assuming that

the integrators are implemented by independent recurrent circuits.

Here we consider two ways to alter leakage of an integrator

based on the model proposed by Usher and McClelland [23].

These mechanisms may also be applied to a more biologically

realistic model proposed by Wang based on spiking neurons [24],

which is known to approximate the Usher and McClelland model

[23] for certain parameters [30]. The integrators in the above

models are composed of neural networks with recurrent excitation

[23,24,31], and information is stored as the difference between two

integrators which are mutually inhibited (lateral inhibition).

Because excitatory neurons do not directly inhibit neurons, lateral

inhibition is mediated by an inhibitory neuron pool [24]. In spite

of the large intrinsic leakage of each integrator, determined by the

properties of single neurons, the activity of an integrator is

sustained by recurrent excitation, and the difference between the

integrators is amplified by lateral inhibition [23]. If the strength of

recurrent excitation and lateral inhibition are balanced with the

intrinsic leakage of the integrators, information can be stored

without leak, simplifying the model to the diffusion model [21].

Taking into account that a trial-by-trial control of the intrinsic

leakage and/or synaptic weight is unrealistic, we consider two

ways to modulate the effective leakage of the diffusion process.

The first is to vary the strength of lateral inhibition. This can be

realized by exciting or inhibiting the inhibitory neuron pool. The

second is to modulate the strength of recurrent excitation. This

can be achieved by varying background input because neurons’

responsiveness to excitatory input is influenced by noisy back-

ground input [32,33]. Our hypothesized mechanisms do not rely

on changing single neuron properties such as the time constant of

NMDA receptors and/or synaptic weight, but on changing the

properties of recurrent networks by activation or inactivation of a

subset of neurons according to task. Although further quantitative

examinations are necessary, these comprise potential implemen-

tations of the leaky-integrator model for flexible and fast decisions.

Our leaky integrator model is implemented in a purely

feedforward architecture and requires one integrator for each

task. In the case where monkeys are required to perform more

than two tasks, the required number of neurons to perform each

task should grow linearly. It is possible that different architectures,

such as a network where sensory neurons are recurrently

connected [34], require less number of neurons. It is of further

interest to build and test a recurrent network model that involves

both task switching and integration of sensory information relevant

to multiple tasks. Parameter modulation to realize leakage may

also be easier to address in this type of architecture.

Recently, many studies have shown that activity in the lateral

intraparietal area (LIP) represents sensory-input integration in the

direction discrimination task [22,35–37]. Our model suggests that

separate integrators for direction and depth exist and that the way

in which integration commences is modulated by the task.

Specifically, a strict implementation of the leaky-integrator model

predicts that the irrelevant integrator initially integrates but fails to

continue integrating because of the leak, leading to a plateau in

responses. Future studies concerning the LIP neuron responses

during our task should elucidate whether these predictions can be

verified.
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