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Abstract

To facilitate analysis and understanding of biological systems, large-scale data are often integrated into models using
a variety of mathematical and computational approaches. Such models describe the dynamics of the biological system and
can be used to study the changes in the state of the system over time. For many model classes, such as discrete or
continuous dynamical systems, there exist appropriate frameworks and tools for analyzing system dynamics. However, the
heterogeneous information that encodes and bridges molecular and cellular dynamics, inherent to fine-grained molecular
simulation models, presents significant challenges to the study of system dynamics. In this paper, we present an algorithmic
information theory based approach for the analysis and interpretation of the dynamics of such executable models of
biological systems. We apply a normalized compression distance (NCD) analysis to the state representations of a model that
simulates the immune decision making and immune cell behavior. We show that this analysis successfully captures the
essential information in the dynamics of the system, which results from a variety of events including proliferation,
differentiation, or perturbations such as gene knock-outs. We demonstrate that this approach can be used for the analysis of
executable models, regardless of the modeling framework, and for making experimentally quantifiable predictions.
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Introduction

Biological systems are remarkable examples of complex

dynamical systems. The dynamics of these systems involve extreme

concurrency and interactions across multiple scales of biological

organization. For example, the states of individual cells are

determined by internal molecular processes governed by molec-

ular interaction systems. These cellular states influence cell-cell

interactions, which collectively give rise to macroscopic behavior,

but the ensuing macroscopic state of the system, such as

establishment of cellular structures (e.g., blood vessels) or non-

homogeneous distributions of diffusible molecules, also feeds back

on the ‘‘lower’’ intracellular molecular systems and their states.

The complexity of biological systems is further compounded by

the fact that they are open and react to time-varying input

received from their environment. A reactive system must respond

to each stimulus as it occurs, often needing to respond to many

stimuli concurrently [1,2]. The structure of the system is also

typically dynamic, with its components being repeatedly created

and destroyed during the system’s lifespan, adding yet another

level of complexity.

Over the last decade, systems biology research has yielded

a plethora of data pertaining to biological systems. To facilitate

further analysis and systems-level understanding, this information

is often integrated into large scale models using a variety of

mathematical and computational approaches. A general class of

models are so-called executable models [3]. Such a model defines

how, given certain events, the system transitions from one state to

another. State-based formalisms can be used to construct

computational models that describe the complex dynamics of

reactive systems, including biological systems. Such models are

typically highly nonlinear and nondeterministic, and can simulate

very large systems [3]. There are a variety of model classes and

approaches that can serve as the basis of executable models of

biological systems, among which are Boolean networks, Petri nets,

statecharts and process calculi [4–24].

Any given model class, be it a Boolean network or a system of

stochastic differential equations, comes furnished with the

appropriate framework and tools for analyzing system dynamics.

For instance, to assess the sensitivity of a continuous dynamical

system to small perturbations, we may compute the Lyapunov

exponent based on Euclidean distance as a measure of state

similarity [25]; but for a Boolean network, an appropriate distance

metric may be the Hamming distance [26]. Even for a more

esoteric model class, say a multilevel discrete dynamical system (of

which a Boolean network would be a special case, with every
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element in the system restricted to being binary-valued), it is

possible to come up with a reasonable distance metric that would

quantify state similarity. Although each modeling formalism

provides avenues for simulation and analysis of system dynamics,

general ‘‘model independent’’ approaches for analysis of dynam-

ical behavior are lacking.

The problem becomes greatly compounded once we start

moving away from abstract models that entail significant

assumptions and reductions of scale; for instance, a system of

ordinary differential equations that models a genetic network

assumes a well-mixed homogeneous system of cells (all assumed to

be in the same state) to allow for molecular concentrations to be

used in the model, since on a single cell level, such a model is not

appropriate due to low molecular counts. Fine-grained models that

incorporate and bridge molecular (both intracellular and diffusible

extracellular) and cellular information present a significant chal-

lenge to the study of system dynamics. Although a state

(‘‘snapshot’’) of the system can be defined, encompassing in-

formation such as spatially varying molecular concentrations, cell

types and positions of cells, or activation status and other

functional states of individual cells, it is far less clear how to study

the dynamics of the system that incorporates all this information.

Loosely speaking, if we consider the collective information

embodied in a state of the system, then system dynamics amounts

to information flow; the information in a given state is related to

the information in a predecessor state.

Classical Shannon information theory is based on modeling the

distribution of symbols that need to be fixed in advance [27].

Algorithmic information theory, on the other hand, allows the

quantification of the information content of any object that can be

represented on a computer, without prior assumptions of the

symbols or their distributions [28]. Instead, the relevant sub-

sequences and their relationships within the objects are de-

termined on the fly by the data compression model. This makes

algorithmic information theory a powerful foundation for model

independent analysis of dynamics. The main practical benefit of

this concept is that it can easily be applied to real life data using

a computable approximation of the theoretical information

distance called the normalized compression distance (NCD) [29].

We have previously applied the NCD to study the dynamical

behavior of discrete network models [30–32]. The NCD based

analysis corroborated and generalized results obtained with

model-specific tools. Here, we show that the NCD based analysis

of system dynamics can also be applied to general executable

models.

As a proof of principle, we apply the NCD based analysis on

a statecharts based executable model of immune decision making

and immune cell behavior [33,34] (Figure 1a). The model

describes in a simplified fashion the capacity of regulatory T cells

(Tregs) to suppress inflammatory T cell effector functions and the

dependence of this suppression on Cytotoxic T-Lymphocyte

Antigen 4 (CTLA-4), Interleukin-10 (IL-10) and interferon-gamma

(IFN-c) levels (Figure 1a) [33,34]. The model was generated using

GemCell, a statecharts based generic modeling tool that facilitates

detailed simulations of dynamics of multi-cellular biological

systems [35]. Execution of models built using GemCell produce

result files containing a detailed description of the state of the

system at any given time point (Figure 1b). The modeling

framework enabled us to run the model not only under so called

‘‘normal’’, or wild type initial conditions, but also allowed us to

generate predicted dynamics of the system under various

experimental initial conditions, such as knock-outs and changes

in the ratios of the different cell populations.

We present a proof-of-concept methodology for analyzing the

dynamics of complex biological models by building on and

generalizing a previously published methodology demonstrated on

Boolean network models and gene expression data [30,31]. We

show that this extended approach can be successfully applied to

complex models containing multiple types of interactions and

dynamics. To demonstrate this approach, we apply it to

a simplified example of a fine-grained molecular simulation

model, in which there is a low-level representation of the

molecular processes in addition to complex cellular level

simulation. This approach can be easily applied as-is to more

detailed and highly complex multiscale models and is, therefore,

independent of the modeling framework.

Methods

The Simulation Framework
To show the feasibility of our methodology, we applied it on the

output of an executable model that simulates the effect of heat

shock protein (HSP60) on the interactions between two popula-

tions of T cells - Tregs and nTh cells, and the results of these

interactions [33,34]. This model was created using GemCell, an

agent-based generic modeling platform [35]. GemCell has three

components that continually interact during model execution: 1) A

computational module created in statecharts [36,37] that describes

the generic rules of cellular behavior; 2) database of biological

specifics (DBS) - a MySQL database that contains the biological

data pertaining to the specific system being modeled, and 3) output

in the form of animation and result files [35].

The database that contains the data for the model holds several

types of information - the number and types of cells and molecules

in the system, numerical discrete parameters, such as concentra-

tions and affinity levels, and general rules such as which cells

express which receptors, which molecules can potentially bind and

interact, and the emergent cellular behavior of these interactions.

The database is constructed in a way that the data in it can be

easily changed, and the user can create different sets of initial

parameters for the execution of the model, or different sets of

interaction rules [35].

The spatial conformation of the model is a 20620 2D grid.

There are no limits on the number of cells that can be present on

each grid location at any given time point, and there can also be

several types of molecules with different concentrations on the

same grid location. We started each execution with a total of 100

cells dispersed randomly across the grid.

The model is synchronous and simulates the changes in the

dynamics of the system over 30 hours with time resolution of one

hour. Thus, in our analysis t [ 0,1,:::,30f g. Model execution

produces a set of detailed result files that contain information

about the state of the system at each time point. An overview of

the format of the result files and the information they contain is

shown in Figure 1b. The state of the system is defined by these text

files that include the number, type and state of cells and the

number, type and concentration of molecules at each time point.

The dynamical behavior of the model refers to changes over time

of the entire state of the system.

We executed the model under several different initial condi-

tions: wild type, knock-outs of three major molecular components -

IL-10, IFN-c and CTLA-4, and different ratios of cell quantities of

the two initial cell populations. We also generated a random

model, in which the numerical parameters we used were random,

but the interaction rules remained the same as in the wild type

model. For each initial condition we generated 50 runs

ri,i [ 1,2,:::,50f g of the model to allow for statistical analysis.

System Dynamics Analysis of a Biological Model
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More details of the model structure are available in the supporting

information (File S1).

Analysis Tools
We used algorithmic information theory [28] to measure the

distance between two states of the system. The normalized

information distance (NID) [38] measures the amount of shared

information between two objects. The normalized compression

distance (NCD) approximates the NID between two objects, as the

NID is not computable. A detailed development of the NCD as

a valid approximation of the NID is provided in [29]. In our case,

the two objects are text files that contain the information about the

Figure 1. Representation of the simulated biological system. A) A cartoon diagram of the simplified biological system underlying the
modeling. HSP60 and aCD3 serve as activators of the Treg and nTh populations by binding TLR2 and CD3 respectively. The activated Tregs feature
two effector molecules that communicate inhibitory signals to other effector T cells, thereby suppressing proliferation and inflammatory cytokine
secretion (IFN-c and TNF-a). CTLA-4 is a membrane bound inhibitory signal that binds B7 molecules on effector T cells, thus requiring direct cell
contact between Tregs and effector T cells. IL-10 is a secreted molecule that binds IL-10 receptor on effector T cells and thus has spatial influence on
the population. IFN-c acts as an activator of the effector T cells [42–47]. TNF-a secretion was measured, but its pro-inflammatory activity was not
simulated in this simplified model. B) Structure of the state files. The files are tab delimited text files. There is a separate file for each time point of the
model execution period. Each line in a file corresponds to a specific grid location, and contains the information of all the cells and molecules that are
present on that grid location at the time point represented by that file. The first segment of information in the line shows the cells (see green
segment in the figure). For each cell on that grid location there are its specific details: its index in the database, its name and remaining life span, and
its behavioral state. In addition, for each cell there is a list of the receptors it expresses (purple segment). For each receptor, there are its specific
details: its name and its expression level. The last information segment in the line is the diffused molecules information (blue segment). For each
molecule there are its name and concentration on that specific grid location.
doi:10.1371/journal.pone.0059303.g001
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state of the system at two time points. The NCD is defined as:

NCD(x,y)~ Cxy{min (Cx,Cy)
max (Cx,Cy)

, where Cx is the compressed size of

the first object, Cy is the compressed size of the second object, and

Cxy is the compressed size of the concatenation of the two objects

(states). We used the LZMA2 compressor to compress the files that

encode the state of the system. We refer the reader to File S1 for

more details.

We used non-metric multidimensional scaling (MDS) to

visualize the state trajectories in a low dimensional space. The

non-metric MDS algorithm was initialized with the solution of the

classical multidimensional scaling algorithm. We used Kruskal’s

stress criterion as an objective function.

For MDS, we created a global NCD distance matrix between all

the states from each of the ‘‘setups’’, the wild type, and the IL-10,

IFN-c and CTLA-4 knock-outs. For any two setups, the NCD

distance matrix has a size of (50631, 50631) = (1550,1550). For all

the four setups, the NCD distance matrix has a size of (461550,

461550) = (620066200). The overall computational cost of

building the NCD distance matrix is high, but can be mitigated

by the fact that the computation can be done in parallel (see File

S1).

To quantify the information flow within the system, we defined

the convergence or divergence of states based on whether the

distance between them increases or decreases over time. We

measured the distance between two states with the NCD. First, we

computed the NCD between two states (ri(t1),rj(t2)),
ri [ 1,2,:::,50f g, rj [ 1,2,:::,50f g t1 [ 0,1,:::,29f g,

t2 [ 0,1,:::,29f g,: NCD(ri(t1),rj(t2)). The NCD values were zero

when i = j and t1 = t2. These values were eliminated from the

analysis. Next, we computed the NCD between the consecutive

states: NCD(ri(t1z1),rj(t2z1)). This was repeated for all possible

pairs (ri(t1),rj(t2)). Due to computational constraints, we random-

ly selected twenty simulation runs and as a result, we obtained

a map of convergence and divergence of distances over time. For

this map, we computed the probability density function (pdf) of the

NCD points using two dimensional Gaussian kernel density

estimation with automatic bandwidth selection [39]. The grid size

for the kernel density estimation was 256|256.

For visualization, we chose contour levels for the estimated

density such that we had high resolution in the regions of small

probability values and low resolution in the regions of large

probability values (see File S1).

Results

The behavior of the simulated system under wild type

conditions, in terms of the different cells and molecules present

in the system, is shown in Figure 2a–b. These can be used to

quantify what is happening in the simulation over time. A more

detailed description of the model can be found in the supporting

information (File S1) and in [33,34]. The execution of the model

under wild type conditions begins with two populations of cells –

ten T regulatory cells (Tregs) and 90 naı̈ve T cells (nTh) [40]. In

addition, there are two secreted agents diffused in the environment

(medium) – HSP60 and aCD3, which serve as activators of the two

cell populations (Figure 1a). There is no additional secretion of

these two agents, so, as execution time progresses, these molecules

gradually disperse in the environment and interact with the cells,

and, thus, progressively disappear from the system (Figure 2b). By

time point 2, they both almost completely vanish from the model.

The activation of the Treg population by HSP60 and aCD3 causes

it to differentiate to a new population of cells – activated Tregs,

and the activation of the nTh population by aCD3 leads to its

differentiation to another new population of cells – Th1 Cells

(Figure 1a). These two differentiation events occur around

simulation time points 10–11 (Figure 2a). At around time point

12–13, the new populations of cells start secreting molecules that

were not previously present in the environment– IL-10, IFN-c and

TNF-a (Figure 1a, Figure 2b). The interaction between the

activated Tregs and the Th1 cells causes parts of the latter to go

through another differentiation event at around time point 15,

producing another new cell population – suppressed Th1 cells

(Figure 1a, Figure 2a). This new population switches from

secreting IFN-c and TNF-a to secreting IL-10 (Figure 1a). At

around time point 18–19, the Th1 population goes through

a proliferation event towards a new cell population, activated Th1

cells (Figure 2a), which in turn secretes higher levels of IFN-c and

TNF-a (Figure 1a). The activated Th1 cells are also regulated by

the activated Tregs, and go through a differentiation event that

produces more suppressed Th1 cells at around time point 22

(Figure 2a).

To see if the NCD is able to detect these events from the state

data, we first compared two consecutive states (Figure 2c). There is

a major change in the NCD at three time instants. The first event

t= 1 corresponds to the depletion of HSP60 and aCD3 molecules

as discussed above. Consecutively, events at t= 11 and t= 17

correspond to two differentiation events. This indicates that

relevant information about the system’s behavior can in fact be

extracted with the NCD. The comparison of distances between

two trajectories over time indicates a general diverging trend in the

dynamical behavior, due to the random movement of the

molecules in the system (Figure 2d). We present a more detailed

analysis of the states of the system in Figure S1, where we analyze

the cell populations and the secreted molecules separately. The

results are consistent with what we have presented in Figure 2c–d.

To study the behavior of the system in more detail, we

computed a distance matrix to measure the similarity of all the

pairs of states (see Methods). We applied the non-metric

multidimensional scaling algorithm to this distance matrix to

project the distances into three-dimensional space. We studied the

similarity of the trajectories given by different perturbations of the

system, by connecting the resulting data points in temporal order.

While a metric, the dynamic range of NCD is not linear. Thus, the

transformation to a more general rank based space allows the

objective comparison of distances in a scale independent manner.

Figure 3 shows the trajectories for the wild type as well as for IL-

10, IFN-c and CTLA-4 knock-out systems. It is clear that there is

a diverging trend of the trajectories. To quantify this divergence,

we computed the pair-wise Euclidean distance between each of the

trajectories of the perturbations and the wild type trajectory

(within the multidimensional scaling solution). Here we can see

that the effect of CTLA-4 knock-out is smallest as the trajectory is

most similar to that of the wild type. IL-10 and IFN-c knock-outs

clearly cause more dramatic effects on the system’s dynamics in

Figure 2. Dynamics of the wild type (WT) simulation. a) Changes in the number of cells in each cell population over time, averaged over 50
simulations and b) changes in the concentration levels of the secreted molecules over time, also averaged over 50 simulations. In c) NCD over time
between two consecutive states of one simulation and d) changes over time in the NCD between the same state taken from two distinct simulations.
The average of 50 simulations is shown with the 5th percentile confidence interval. The major changes in NCD in (c) co-occur with the events in a)
and b). There is a clear trend of divergence in d) as the distances between trajectories from different runs increase over time.
doi:10.1371/journal.pone.0059303.g002
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comparison to the wild type. We can also observe that the

trajectories of IL-10 and CTLA-4 are similar to each other, while

that of the IFN-c is different. This corresponds to the similarities in

the inhibitory effects of IL-10 and CTLA-4 on the cell populations,

in contrast to the pro-inflammatory effect of IFN-c. We present

a similar analysis in Figure S2, where instead of knock-outs, we

alter the ratios of the cell populations of Tregs and nTh at the

beginning of the simulation.

While the MDS analysis provides a clear insight into the

system’s dynamics, it is based on a projection into a low

dimensional Euclidean space. This representation contains only

the most relevant information in terms of the minimized stress

criteria. To obtain an alternative, more quantitative view into the

dynamics, we study the information flow in the system over time

(see Methods). The resulting maps of convergence or divergence of

state trajectories are shown in Figure 4. Visually, it is clear that

each experimental condition exhibits a high peak of the

probability density function approximately in the same region of

the NCD values, where most of the points lie. The differences

between the systems arise in isolated areas (islands) of pair-wise

distances between states. These events are much less frequent than

the events at the highest peak of the density, but are still clearly

established and consistent between different simulations.

In addition to the wild type and knock-out conditions, we also

analyzed the behavior of a random model (see Methods), to see the

effect of the constraints of the structure of the model on its

dynamical behavior (Figure 4a). This random model shows very

concentrated dynamical behavior as the distance between the

initial and consecutive states remains approximately the same

(most points lie on the diagonal). In addition, the shape of the

distribution is quite similar to the main peak seen in the other

simulations. In comparison, the wild type simulation shows a wider

range of dynamical behavior, including islands where the in-

formation flow is constrained (Figure 4b). The conclusions

provided by this analysis are consistent with those drawn from

the multidimensional scaling study. Here as well, the CTLA-4

dynamical behavior (Figure 4e) is more similar to wild type than

the other two perturbations, and CTLA-4 and IL-10 are more

similar to each other than to IFN-c. In terms of similarity to the

wild type, CTLA-4 is followed by IL-10 and IFN-c (Figures 4c–d).

To assess the degree to which such global information-theoretic

analysis can reflect experimentally quantifiable phenomena, we

performed an additional simulation. So far, we have considered

perfect knock-outs of secreted molecules. In real biological systems

the knock-out is hardly ever perfect, but only lowers the expression

level of the target molecule to a certain degree. Such a partial

knock-out can be quantified by measuring the expression of the

molecule before and after the knock-out. Analogously, the effect of

the knock-out could be observed from the representation of

Figure 2b. However, this simple readout says nothing about the

effect on the dynamical behavior. Our analysis can be used to

understand the effect of knock-out efficiency on system dynamics.

To prove the concept, we simulated a knock-out of IL-10 at 25,

50, 75, and 100% efficiency (Figure 5). Here we clearly see that

25% knock-out has very little effect on the dynamics when

compared to the wild type. We, therefore, argue that higher

efficiency is needed to have a biological effect. The 50% and 75%

knock-outs clearly have a stronger effect on the dynamics, but they

are still far from the perfect knock-out. Thus, the observed

biological response would also be very different depending on the

knock-out efficiency. The convergence-divergence maps for the

partial knock-out experiments show that the dynamics become

increasingly different with the knock-out efficiency (Figure S3).

However, major effects between knock-outs cannot be visually

observed from this analysis and thus the result presented in

Figure 5 is more informative as a visualization for analyzing partial

knock-outs.

Discussion

Common practice in complex systems analysis is to analyze

dynamical systems with model class specific tools. These are highly

informative and effective in revealing the specific properties of the

systems. However, as these methods are specially designed for each

model class, the comparison and generalization of results between

classes is challenging. In our previous work, we have successfully

applied algorithmic information theory to Boolean and ternary

network models [30,31]. In this study, we are extending our

previous approach to more fine-grained molecular models. This is

the first approach that has been developed and successfully applied

to the analysis of statecharts based systems. An algorithmic

information theory based approach was able to extract relevant

information from the highly complex state representation of the

model, which incorporated both molecular and cellular informa-

tion. The approach demonstrated here can be successfully applied

to the output description of the state of the system of any

executable model, independent of the modeling framework used.

A comparable analysis with a Shannon information based

approach would be difficult to apply in practice. In order to use

a distribution based distance measure, the files would need to be

encoded so that the alignment of the symbols is preserved. In

addition, the state structure can also change, e.g. when the number

of cells in the model increases due to cell division. In such cases,

devising a classical information measure to compare the states

before and after cell division requires an intimate knowledge of the

significance of the different parts in the state description. Our

NCD based approach was able to solve these problems

automatically by using sequence complexity instead of symbol

probabilities.

We used different data representation techniques that allowed

us to observe the informational dynamics of a model of immune

decision making and immune cell behavior. Multidimensional

scaling based analysis allowed the representation of state

trajectories in low dimensional space. Such representation will

allow, for instance to study the relationships and transitions

between attractors or steady states of the underlying system. With

partial knock-outs we presented an example of how this approach

can be used to produce experimentally quantifiable biological

predictions in addition to general theoretical insights on the basis

of system-level information dynamics.

We also studied the information flow in the systems. For this

type of systems the sampling of the whole state space is not feasible

and thus, we cannot build a complete map of the dynamical

behavior. However, using a randomized model as a background

and analyzing the range of observed dynamics in different knock-

outs we were able to establish clear differences in dynamical

behavior. We observed multiple domains where the information

flow was constrained in comparison to random or wild type

models. While we have shown that these observations can be

informative about system dynamics, further development of

Figure 3. Non-metric multidimensional scaling of state trajectories. a) 3D state trajectories of wild type (WT), IL-10, IFN- c and CTLA-4 knock-
outs (KO); b) the Euclidean distance between the trajectories in relation to wild type, denoted as (d(:,WT)). Average of 50 simulations is shown.
doi:10.1371/journal.pone.0059303.g003
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Figure 4. Quantification of the information flow in the random model, the wild type and perturbations. Information flow in a) random
model, b) wild type (WT), c) IL-10, d) IFN-c and e) CTLA-4 knock-outs (KO). While the information flow in the random model is focused in a narrow
area, the wild type and knock-out simulations are more diverse, with each system exhibiting characteristic dynamical behaviors.
doi:10.1371/journal.pone.0059303.g004
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systems theory is needed before the characteristics of such a limited

sampling of state space can be tied to global dynamics of the

system. Any computational model is a significant simplification of

the real system. In this study, our model describes in a simplified

fashion the capacity of regulatory T cells (Tregs) to suppress

inflammatory T cell effector functions and it characterizes the

dependence of this suppression on Cytotoxic T-Lymphocyte

Antigen 4 (CTLA-4), Interleukin-10 (IL-10) and interferon-gamma

(IFN- c) levels. The goal of the model is to capture the interplay

between these molecules, which subsequently leads to the control

of cell proliferation and differentiation, analogously to the events

in real biological systems. Our analysis is able to identify

proliferation and differentiation events from the time series of

output files that contain the state of the entire system. The timing

of these events in the NCD analysis is consistent with what we

expect from the simulation of the model. The further analysis

where we compare the trajectories of the system in response to

different knock-outs provides more in-depth knowledge on how

the global behavior of the system is altered. Such system level

properties cannot be quantified directly from the model output or

from observing the biological system by any single experiment.

Predictions derived from the system level analysis can directly be

tested, such as the expression level needed to have an effective

knock-out of the molecules.

In recent years there has been a growth in the demand and the

corresponding development of multiscale models of biological

systems. These models capture multiple abstraction levels such as

genes, proteins, cells, tissues, organs and even whole organisms.

The dynamics of the biological systems captured by these models

are inherently highly complex. Studying the global dynamics of

biological systems has the potential to generate insights regarding

the general state of the system. For example, some aspect of the

global dynamics of a certain system may correspond to a shift that

system goes through from a healthy state towards a disease state.

Predictive models could be used to explore possible parameters

that cause the simulated system to shift towards such a dynamical

state of disease. These parameters could then potentially be

experimentally measured or even manipulated in the lab.

Similarly, parameter changes could be identified to trigger the

system to return to its normal healthy state. Even though the

model we used as a case study in this paper is a somewhat

simplistic example of a fine-grained simulation model, the

information theoretic approach we present offers a method of

understanding system dynamics and using it for optimization or

control.

In conclusion, we have shown that algorithmic information

theory provides a suitable framework for the analysis of fine

grained-molecular simulation models and arbitrary model classes,

making model comparison more straightforward. The methodol-

ogy based on this framework is applied to a state description of the

system, which is an output of a simulation of the model, and this is

model framework independent and can be successfully applied to

models at various abstraction levels. The analysis of the dynamics

of an immune system model also demonstrated the potential of this

approach to make experimentally quantifiable predictions. This

approach can be easily applied as-is to more detailed and highly

complex multiscale models. We believe that the proposed

methodology is a step forward in understanding the dynamics of

complex multiscale biological models that represent the behavior

of the whole cell or even organism [41].

Supporting Information

Figure S1 Dynamics of the wild type (WT) simulation in
terms of molecular and cellular features. NCD over time

between two consecutive states of one simulation using only a), b)

molecular features and c), d) cellular features. In a),c) NCD over

time between two consecutive states of one simulation and b),d)

changes over time in the NCD between the same state taken from

two distinct simulations. While molecular features are more

consistent with the overall dynamics, both analyses, the one

presented in figure 2 of the main paper and the present one, give

consistent results. Average over 50 simulations and the 5 percentile

confidence interval are shown.

(TIFF)

Figure S2 Non-metric multidimensional scaling of state
trajectories. a) 3D state trajectories for simulations with different

ratios of initial cell types: 10–90 (wild type (WT)), 30_70 ratio,

50_50 ratio, 70_30 ratio, and 90_10 ratio; b) the Euclidean

distance between the trajectories in relation to wild type, denoted

as d(:,WT). Average of 50 simulations is shown. Each ratio system

leads to distinct state trajectories and thus the results are analogous

to different knock-out simulations.

(TIFF)

Figure S3 Quantification of the information flow in the
partial knock-outs (KO) of the IL-10 perturbation.
Information flow in the a) wild type IL-10 (WT), b) IL-10 KO

at 25% efficiency, c) IL-10 KO at 50% efficiency, d) IL-10 KO at

75% efficiency e) IL-10 KO at 100% efficiency. The partial knock-

out experiments show that the dynamics become increasingly

different with the knock-out efficiency.

(TIFF)

File S1 Supporting information. Additional information

regarding analysis methodologies and model description.

(DOC)

File S2 Knockout simulations. Data files used for knockout

simulation analysis.

(ZIP)

File S3 Cell population ratio simulations. Data files used

for cell population ratio analysis.

(ZIP)

File S4 Random model. Data files used to generate a random

model.

(ZIP)

File S5 Partial knockout simulations. Data files used for

partial knockout simulation analysis.

(ZIP)

File S6 Cellular features. Data files used to analyze only the

cellular features.

(ZIP)

Figure 5. State trajectories for the IL-10 partial knock-outs (KO). Wild type IL-10 (WT) is compared with knock-outs at 25%, 50%, 75% and
100% efficiency. a) 3D representation of state trajectories. b) The Euclidean distance between wild type and knock-out trajectories is denoted as
d(:,WT)). While the knock-outs are performed in linear steps, the effect on the dynamical behavior is nonlinear. 25% knock-out has only a small effect
on dynamics while 50% and 75% show approximately equal effect, which is not as strong as with 100%. Data is shown as an average across 50
simulations.
doi:10.1371/journal.pone.0059303.g005
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File S7 Molecular features. Data files used to analyze only

the molecular features.

(ZIP)

File S8 Cellular and molecular data from the model.
Data files with information from the model used to generate

Figure 2.

(ZIP)
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