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Abstract

Storage and transmission of the data produced by modern DNA sequencing instruments has become a major concern,
which prompted the Pistoia Alliance to pose the SequenceSqueeze contest for compression of FASTQ files. We present
several compression entries from the competition, Fastqz and Samcomp/Fqzcomp, including the winning entry. These are
compared against existing algorithms for both reference based compression (CRAM, Goby) and non-reference based
compression (DSRC, BAM) and other recently published competition entries (Quip, SCALCE). The tools are shown to be the
new Pareto frontier for FASTQ compression, offering state of the art ratios at affordable CPU costs. All programs are freely
available on SourceForge. Fastqz: https://sourceforge.net/projects/fastqz/, fqzcomp: https://sourceforge.net/projects/
fqzcomp/, and samcomp: https://sourceforge.net/projects/samcomp/.
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Introduction

Data volumes from next-generation sequencing instruments are

a major issue for storage and data transfer costs. Between 2008

and 2012 sequencing costs dropped 1000 fold (K. A. Wetterstrand,

http://www.genome.gov/sequencingcosts/ accessed on June 26,

2012) giving an approximate cost halving every 5 months. A long

term trend for storage shows a cost halving every 14 months (M.

Komorowski, http://www.mkomo.com/cost-per-gigabyte ac-

cessed on August 20, 2012). It is tempting to believe that data

compression will resolve these problems, but with exponential

growth rates it can do no more than delay the inevitable time

when organizations will need to consider whether they truly need

to retain everything. However, a good case can be made [1] that

some samples will always be worth storing in their raw DNA

sequence form. Improving sequence compression is an essential

part in reducing the dependency on storage and network

bandwidth.

In October 2011 the Pistoia Alliance formally announced a

competition to compress next-generation sequencing data. Entries

to the competition were run on a virtual machine in the Amazon

Cloud (http://aws.amazon.com/) against a private test set, with

results publicly displayed on a leader-board (at http://www.

sequencesqueeze.org) throughout the competition. The data to be

compressed was in FASTQ format [2], an industry standard

format supported by a wide variety of next generation sequencing

manufacturers including the data tested here, produced by Roche

454 [3], Life Technologies SOLiD [4] and Illumina GA/HiSeq

[5].

There has been considerable work on compression of sequenc-

ing data, with some researchers specializing only on sequence

compression [6,7] or quality value compression [8,9] with others

supporting full FASTQ file compression; G-SQZ [10], SlimGene

[11], SOLiDzipper [12], DSRC [13], Quip [14], SCALCE [15]

and KungFQ [16]. Related to this is work on SAM/BAM [17]

compression including Goby (F. Campagne, http://campagnelab.

org/software/goby/ accessed on July 19, 2012), CRAM [18],

SAMZIP [19] and NGC [20]. Overviews of compression within

bioinformatics can be found in [21] and [22].

We compare our work only against other full FASTQ and SAM

file compressors and against more general purpose compression

algorithms like gzip [23] and bzip2 (J. Seward, http://www.bzip.

org accessed on August 16, 2012). Both authors submitted multiple

entries to the SequenceSqueeze competition. J. Bonfield submitted

the Fqzcomp and Samcomp variants while M. Mahoney

submitted Fastqz variants. Fqzcomp and Fastqz both accept

FASTQ files as input, with the latter also taking an optional

genome sequence to perform reference based compression.

Samcomp also performs reference based compression but requires

previously aligned data in the SAM format instead.

Results

Overview
A brief summary of all successful entries to the SequenceS-

queeze competition can be seen in figure 1. We observe a wall

where entries were unable to improve on compression ratio

without an exponential increase in both CPU time and memory.

We believe this wall represents close proximity to the Kolmogorov
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complexity [24], beyond which further compression is only

achievable via lossy methods or use of additional knowledge such

as the target genome. More information on the contest results is

available in the supplementary material.

We further compare and analyze the programs presented here –

Fastqz, Fqzcomp and Samcomp – to the other top entrants of the

SequenceSqueeze contest (Daniel Jones’ Quip and the IEETA’s

SeqSqueeze1 programs), the previously published DSRC tool and

the general purpose gzip and bzip2 compression programs.

With most entrants to the competition submitting multiple

entries, and seeing the results live, there may have been accidental

over-fitting of the (unseen) test set. Hence we tested the programs

against a number of other public data sets. We chose a

representative subset of the same data used in the DSRC paper

along with SRR065390_1.

The data sets used for testing are presented in Table 1. Not all

programs tested supported all types of data. SRR003177 consisted

of variable length 454 data with some (erroneously) up to 4 Kb

long. Fastqz cannot deal with variable length data while

SeqSqueeze1 has a sequence length limit of 1 Kb which we

increased to allow this data to compress. SRR007215_1 contains

SOLiD colour-space data. This is not supported by Quip or

Fastqz, while Fqzcomp needed fixes to support a fastq format

variant used in this data set. SRR027520_1 is a low coverage 1000

Genomes project Illumina run [25]. SRR065390_1 is a 33 fold

coverage Caenorhabditis Elegans genome, chosen to demonstrate

compression ratios on smaller and deeper genomes. All programs

supported the Illumina data sets.

Table 2 shows the program names, versions and command line

arguments used for testing. These were the latest versions at the

time of manuscript preparation.

Non-reference Based
Figure 2 shows the non-reference based compression of the four

data sets. Some programs are presented more than once showing

the effect of adjusting the command line options. All tests were

performed on a machine with Intel Dual-Core E5300 CPU

(2.6 GHz) with 6 GB of memory, running the Ubuntu 10.04

Linux operating system.

Table 3 shows the same data in more detail including memory

consumption and decompression times. We see a clear trade-off

between time, memory and compression ratio. The fastest and

lowest memory programs tend to produce larger files. Largest of

all is Fastqz in fast mode. This only performs the preprocessing

steps to quickly pack multiple bases and confidence values together

without any subsequent encoding and compression. In isolation it

is not particularly small. It may be improved by applying a fast

general purpose compression program to the output files, but this

option was not explored. Next largest are the general purpose gzip

and bzip2 programs. With the exception of the very quick

decompression in gzip these tools look like a poor trade-off

between size and speed with several tools outperforming them in

all metrics, demonstrating that file format specific knowledge is

important for efficient compression.

The fast and medium compression speeds of Fqzcomp

demonstrate comparable or better speed than DSRC and

SCALCE while achieving significantly higher compression ratios.

Figure 1. SequenceSqueeze results: real time vs compression ratio. Each mark represents a different entry, coloured by author. Ibrahim
Numanagic’s entry had a minor decoding problem causing a minority of read-names to mismatch. All other entries plotted here were lossless. The
entries have been broken down into reference based (A) and non-reference based (B) solutions. A clear wall can be seen in the non-reference
methods requiring exponential growth in CPU time for minor linear improvements in compression ratio.
doi:10.1371/journal.pone.0059190.g001
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However note that DSRC provides random access to the

compressed files. DSRC was tested with and without the LZ

encoding step. On shallow data (where most genome bases are

covered 1–2 times only) it can be seen to have minimal impact on

compression ratios, while harming compression speed. However

LZ encoding demonstrably gives a substantial improvement on

small and/or deeply sequenced genomes.

For highest compression ratio there is no clear winner with

Fqzcomp, Fastqz and SeqSqueeze1 varying in rank by data set.

The context mixing used in the IEETA SeqSqueeze1 entry comes

at a large cost in CPU usage making it less useful. Fastqz also

utilizes context mixing but the use of multi-threaded code and

initial preprocessing to reduce the input data volumes offset the

CPU costs considerably. Fqzcomp is the fastest of the three and

comparable to the best compression ratios on all data sets except

the deep C. Elegans set, but requires high memory to achieve high

compression ratios.

To get a better understanding of the relative strengths and

weaknesses we chose SRR027520_1 and SRR065390_1 to study

the compression of individual identifier, sequence and quality

components. These data sets were chosen due to being supported

by all programs. We also tested these data sets using reference

based compression tools. Table 4 provides a break down by data

type in a variety of conditions, showing the average number of bits

per complete identifier, per individual base-call and confidence

value.

Fastqz outputs separate files per data type while Fqzcomp and

Quip report separate figures upon completion. For other tools we

either modified them to omit specific data types (Samcomp ) or

produced multiple data files with identifiers, sequences and/or

quality values absent and measured the difference to derive the

approximate size of each component.

With the fastq in the original order as downloaded from the

NCBI and without using a reference to align against, we see that

Table 1. Data sets used for program evaluation.

Run ID Platform Species No. Seqs Length File size Depth

SRR003177 454 GS FLX Titanium Human 1,504,571 564 1,754,042,560 0.28x

SRR007215_1 ABI SOLiD System 2.0 Human 4,711,141 25 689,319,444 0.04x

SRR027520_1 Illumina GA II Human 24,246,685 76 5,055,253,238 0.61x

SRR065390_1 Illumina GA II C.Elegans 33,808,546 100 8,819,496,191 33.8x

The data sets used to test the compression tools along with the sequencing platforms that produced them. Length is the average sequence length. Depth is the average
genome depth assuming 100% of sequences in the data set can be aligned.
doi:10.1371/journal.pone.0059190.t001

Table 2. Program names, versions and options.

Name Version Compression mode Options

SCALCE 2.3 fast -B 1G -T 2

slow -c bz -T 2

dsrc 1.01 fast

slow -l -lm2048

SeqSqueeze1 1.0(svn) slow -h 4 1/5 -hs 5 -b 1:3 -b 1:7 -b 1:11 -b 1:15 1/20 -bg 0.9 -N -s 1:1 -s 1:2 1/5 -s 1:3 1/10 -s 1:4 1/20 -ss 10
-sg 0.95

fastqz 1.5 fast e

slow c

fqzcomp 4.4 fast -n1 -q1 -s1

medium -n2 -q2 -s6

slow -n2 -q3 -s8+ -b

quip 1.1.1 fast

slow -a

sam_comp1 0.7 –

sam_comp2 0.3 –

cramtools 1.0 – –preserve-read-names -L m999

goby 2.01 – -x MessageChunkWriter:codec = hybrid-1–preserve-soft-clips –preserve-read-names –preserve-all-
mapped-qualities

samtools 0.1.18 –

gzip 1.3.12 –

bzip2 1.05 –

Program version names, numbers and common command line options. Additional options were sometimes required to specify the name of the reference used, but this
differed per data set.
doi:10.1371/journal.pone.0059190.t002
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Fqzcomp and Fastqz are largely comparable in size. Quip is also

comparable on shallow data, but is unable to exploit the high

sequence redundancy in the deep data set.

Keeping in the original name-sorted order but aligning against a

reference shows some disparity. As Fqzcomp has no support for

reference base compression and Samcomp1 requires genome

position sorted data we only compare Fastqz, Samcomp2 and

Quip. Note that Quip in the original form as submitted to the

competition did not support SAM format or reference based

compression. Samcomp2 and Fastqz, in this configuration of using

a reference against unsorted data, came top in the SequenceS-

queeze contest by compression ratio. The sequence name

encoding in Samcomp2 is weaker then Fastqz, but on shallow

data the sequence encoding is better, leading them to trade places

between the two data sets with no overall leader. Quip is in third

place on both data sets but is slightly faster. As expected in all three

cases it is clear that the improvement to base-call storage is

considerable, becoming the smallest component of total file size

(while being the most significant and useful component).

More interesting are the results of sorting the aligned data by

the position within the genome, but without utilization of the

genome sequence as a reference to encode differences against. It

may seem strange to not exploit this knowledge, but this use case

represents storage of de-novo sequence assemblies for which no

reference is known and is also the the usual form of encoding

within BAM files. BAM is considerably larger for all components,

particularly so with sequence identifiers. It should be noted again

that these sequence identifiers are long as they contain the NCBI

‘‘SRR[num]’’ identifier (now in a random order) as well as the

original machine produced identifier. Except for SAMtools all

programs in this test have roughly comparable identifier and

quality encoding metrics, with the significant differences coming in

sequence encoding. Samcomp1 significantly outperforms the other

tools, most notably so in the deep C.Elegans data set giving just

0.29 bits per base - close to the 0.23 best case when a reference is

specified. This is due to the use of per-position models.

Reference Based
Finally moving to reference based compression of position

sorted files allows a direct comparison to existing reference based

compression programs; CRAM, Goby and Quip. Fastqz operates

on a FASTQ file and includes its own fast alignment algorithm.

Some metrics on the performance of this can be seen in Table 5.

All the other tools listed operate on SAM or BAM files containing

previously generated alignments. The time taken to generate these

alignments has not been taken into consideration in the

compression rate figure.

Figure 2. File size ratios vs real time to compress. SRR007215 is SOLiD data, SRR003177 is 454 data, while SRR02750 and SRR065390 are
Illumina data at shallow and deep depths respectively. Not all programs support all types of data.
doi:10.1371/journal.pone.0059190.g002
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All programs perform well for base compression, although the

clear winner in this category is the per-position model used in

Samcomp1. As before, identifiers and quality strings are compa-

rable between Fastqz, Samcomp and Quip, but we can see CRAM

and Goby are considerably larger on quality values and, where

applicable, sequence identifiers. Note however that both CRAM

and Goby are random-access file formats unlike Fastqz, Samcomp

and Quip. This will account for some, but not all of the size

difference. Speed-wise recall that Fastqz is performing its own

alignment while the other tools are operating on already aligned

SAM/BAM files, making it hard to compare the overall

performance.

In the context of the SequenceSqueeze competition it is clear

that the long identifiers hampered file sorting. The inclusion of the

NCBI identifiers added an additional 25 bits of data per identifier

which could only be negated if the data was kept in the original

order. This ultimately lead to Samcomp2 being the competition

winner in terms of compression ratio, but it is arguably a weaker

tool than the original Samcomp implementation. Generally

sequencing data is either in an unsorted FASTQ file or an aligned

and hence sort-able alignment file (e.g. BAM). Therefore we would

not advise general use of Samcomp2. It is commendable that Quip

was capable of running in all four categories listed in Table 4 and

while never reaching top compression it was usually close (with

deep data being the notable exception) and with acceptable speed.

It is important to note the limitations of Samcomp. While it uses

SAM/BAM as input and output formats, it is not a full SAM/

BAM compressor. It was designed with the SequenceSqueeze

competition in mind and so primarily focuses on identifiers,

sequence and quality values. SAM flags and mapping scores are

Table 3. Compression rates and ratios.

SRR003177 (LS454) SRR007215_1 (SOLiD)

Program Mode Ratio C.R. D.R. Mem Ratio C.R. D.R. Mem

gzip 0.3295 8.2 91.6 1 0.2524 16.6 111.6 1

bzip2 0.2681 8.3 12.0 7 0.1987 4.9 23.1 7

SCALCE fast (a) (b)

slow (a) (b)

DSRC fast 0.2422 33.7 51.1 61 0.1605 19.1 55.3 11

slow 0.2372 18.2 47.1 1979 0.1605 19.5 51.7 11

quip fast 0.2275 16.9 15.0 398 (b)

slow 0.2275 2.9 2.8 766 (b)

fastqz fast (a) (b)

slow (a) (b)

fqzcomp fast 0.2236 28.3 34.1 40 0.1455 33.8 54.9 39

medium 0.2170 18.1 19.4 312 0.1422 27.2 38.2 310

slow 0.2132 6.5 6.5 4407 0.1419 13.8 16.8 4405

SeqSqueeze1 slow 0.2021 0.4 0.4 4587 0.1465 1.1 1.1 4888

SRR027520_1 (Illumina) SRR065390_1 (Illumina)

Program Mode Ratio C.R. D.R. Mem Ratio C.R. D.R. Mem

gzip 0.3535 12.2 45.4 1 0.2805 8.9 44.3 1

bzip2 0.2905 7.0 13.0 7 0.2250 8.2 14.1 7

SCALCE fast 0.2709 9.4 25.4 2212 0.1675 9.1 26.1 2181

slow 0.2572 7.8 13.1 5162 0.1635 7.3 15.8 5257

DSRC fast 0.2507 24.7 32.9 18 0.1912 26.4 33.2 20

slow 0.2477 13.5 32.2 1058 0.1524 15.0 33.9 1965

quip fast 0.2240 16.8 13.7 396 0.1622 17.7 14.5 391

slow 0.2219 8.3 10.9 777 0.1584 8.9 11.7 775

fastqz fast 0.3887 36.1 32.8 1 0.3456 37.1 30.6 1

slow 0.2195 4.6 3.8 1459 0.1340 4.7 3.8 1527

fqzcomp fast 0.2243 31.4 32.5 44 0.1733 32.7 29.4 40

medium 0.2196 22.0 21.7 312 0.1524 22.4 20.8 311

slow 0.2172 8.2 8.3 4407 0.1341 8.3 8.5 4406

SeqSqueeze1 slow 0.2187 0.6 0.6 4919 0.1239 0.5 0.5 4930

SRR003177 is 1.5 M human sequences of variable length (avg 564 bp); SRR07215_1 is 4.7 M human seqs of length 25 bp plus 1 primer base; SRR027520_1 is 24.2 M
human seqs of length 76 bp; SRR065390_1 is 33.8 M C.Elegans seqs of length 100 bp. Ratio is the compressed size divided by the uncompressed size. C.R. and D.R. are
compression and decompression rates in MB/s. (a) Program does not support variable length sequences. (b) Program does not support SOLiD data.
doi:10.1371/journal.pone.0059190.t003
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also stored, but the SAM header, auxiliary fields and the template

fields (columns 7–9) and not preserved. For a fair comparison with

other SAM compressors we removed auxiliary fields and set

columns 7–9 as ‘‘*’’, ‘‘0’’ and ‘‘0’’ respectively in all compression

tests.

The results in Table 4 clearly indicate that the DNA sequence

portion accounts for a minority of the disk space, yet is the primary

purpose for the file. An obvious corollary to this is to consider

whether we can lose or reduce the information content of the

identifiers and quality values. Sequence identifiers have some

initial use for detection of optical duplicates - the identifier

typically encodes an X,Y location too - but beyond this it is used

solely as a device for pairing sequences. The CRAM format solves

this by removing names and keeping only the pairing information.

Likewise the quality values may not need 40 separate levels for

each base. CRAM provides multiple lossy methods. Some work

has been done to evaluate the impact of using fewer quality levels

[8].

Both Fqzcomp and Fastqz contain basic methods to lossily

compress the quality strings, although Samcomp does not. The

programs behave in slightly different manners. Fastqz rounds all

quality above 1 to a multiple of Q where Q is the quantisation

factor. This reduces the number of quality values and correspond-

ingly increases the compression ratio. Fqzcomp has a similar

approach, but instead every value above Q is encoded within Q of

the original value, picking the value which happens to encode to

the fewest bits given the current context. For example a quality

value 37 with Q = 2 could be encoded as 35, 36, 37, 38 or 39. In

practise this amounts to the same binning system as Fastqz unless

the output is initially tuned on a few losslessly encoded quality

strings.

Table 4. Compression by data type.

SRR027520_1 SRR065390_1

Prog Ref Sort Ratio ID Base Qual C.R. Mem Ratio ID Base Qual C.R. Mem

Raw FASTQ N ID 1.0000 419.9 8 8 1.0000 454.9 8 8

Fastqz N ID 0.2195 11.7 1.71 2.96 3.8 1459 0.1340 15.6 1.11 1.53 3.8 1527

Fqzcomp(medium) N ID 0.2196 11.3 1.72 2.95 22.0 312 0.1524 14.8 1.52 1.52 22.4 311

Fqzcomp(slow) N ID 0.2172 11.3 1.68 2.94 8.2 4407 0.1341 14.8 1.16 1.49 8.3 4406

Quip N ID 0.2219 11.2 1.78 2.95 8.3 777 0.1584 14.7 1.64 1.51 9.0 776

Fastqz Y ID 0.1816 11.7 0.88 2.96 3.2 1365 0.1000 15.6 0.40 1.53 4.7 1352

Samcomp2 Y ID 0.1810 19.4 0.75 2.94 13.6 1079 0.1022 19.9 0.43 1.49 17.1 365

Quip Y ID 0.1885 22.2 0.90 2.95 16.4 1515 0.1088 21.3 0.54 1.52 19.1 807

Fastqz N pos 0.2414 52.1 1.66 2.95 3.2 1527 0.1397 64.1 0.74 1.54 4.0 1527

Samcomp1 N pos 0.2360 49.8 1.59 2.94 15.1 315 0.1147 58.7 0.29 1.50 21.8 288

Samcomp2 N pos 0.2628 49.8 2.18 2.94 13.5 341 0.1982 58.7 2.04 1.49 15.2 341

Quip N pos 0.2453 50.5 1.78 2.94 9.3 776 0.1890 58.6 1.83 1.53 11.2 775

SAMtools (BAM) N pos 0.4013 137.8 2.79 4.21 13.7 1 0.2344 150.9 0.94 2.47 16.7 1

Fastqz Y pos 0.2009 52.1 0.77 2.95 2.9 1406 0.1184 64.1 0.29 1.54 4.4 1352

Samcomp1 Y pos 0.1852 49.8 0.47 2.94 15.7 378 0.1116 58.7 0.23 1.50 21.9 296

Samcomp2 Y pos 0.1920 49.8 0.62 2.94 14.2 1079 0.1163 58.7 0.33 1.49 20.1 365

Quip Y pos 0.1926 49.2 0.64 2.94 16.6 1516 0.1165 58.6 0.32 1.53 19.6 808

Gobya Y pos 0.2706 99.5 0.62 4.01 4.8 1797 0.1587 110.6 0.28 1.93 6.8 1250

CRAM Y pos 0.2504 92.1 0.58 3.71 5.0 1514 0.1676 105.9 0.27 2.17 7.9 898

Showing the compressed file size break down by bits per sequence identifier, per base-call and per quality value. In some cases these sizes refer to cases where a
reference was previously used to map, but it has not been used during compression (e.g. BAM). The ID, Base and Qual columns are the number of bits required to store
the complete sequence identifier, a single base nucleotide and a single quality value respectively. The C.R. column is the compression rate in MB per second. Mem is the
amount of memory required during compression. References used were human hg19 and C.Elegans WS233. Non-reference based Quip used the ‘‘-a’’ assembly option
for high compression mode.
aGoby does not store unmapped data. The Goby figures have been estimated by adding 2 bits per absent base-call and scaling up the name and quality figures by the
percentage of unmapped reads.
doi:10.1371/journal.pone.0059190.t004

Table 5. Fastqz alignment benchmarks.

Data type Mode Unaligned size Aligned size

Identifier fast 251,697,610 251,697,610

Alignment fast n/a 183,313,663

Sequence fast 639,049,273 49,174,693

Quality fast 867,178,255 867,178,255

Total fast 1,757,925,138 1,351,364,221

Identifier slow 47,861,283 47,861,283

Alignment slow n/a 105,063,319

Sequence slow 503,239,070 30,852,888

Quality slow 574,112,937 574,112,937

Total slow 1,125,213,290 757,890,427

Size of data components in the public SequenceSqueeze test set SRR062634
(6,345,444,769 bytes uncompressed).
doi:10.1371/journal.pone.0059190.t005
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Methods

A FASTQ file consists of one or more sequences (typically

millions) with each sequence being represented by an identifier,

the DNA base calls, and the quality or confidence of each

individual base call. A truncated example from the competition

training set is shown below.

@SRR062634.2724179 HWI-EAS110_103327062:6:13:11133:

13696/1 TGGAATCAGATGGAATCATCGAATGGACTGG-

AATGGAATCATTGAATGGACTCGAAAGG+GGGFGGFDG-

GGGGGFGFGGGGGGGGGGGGGGEFGGGGFGEDGGGFG-

GGFEDFGCDFDG? @SRR062634.2724180 HWI-EAS110_

103327062:6:13:11133:11572/1 ATATAGTCCATTGTACTCC-

CTTGCTTAAATCTGGATCCCTGCAAATAAAAACATCTTC-

C+GGGGGGGGFGGGGEGGFGGGEGGFDGEAEGGEEEEBE-

EEEEEEEEEEEEEEEEEECCCC.

Each read is described in four lines of text. The first line,

beginning with ‘@’, is an arbitrary text identifier. The format is

machine specific, but it is typically a unique identifier constructed

by joining run/flow-cell name and location (lane, X and Y

coordinates) together. In this example, the NCBI ‘‘SRR’’

identifiers have also been prepended to the original sequence

identifier. The second line holds the base call sequence consisting

of A, C, G and T nucleotides with the occasional N. The third line

consists of the ‘+’ character optionally followed by a copy of the

sequence identifier (usually omitted). The fourth and final line

holds the quality scores in Phred +33 format [26], i.e. a character

with ASCII value 33z10 log10 1=p, where p is the probability of

error in the corresponding base and in the range 33 through 126

(‘!’through ‘,’). Other phred encodings exist, such as Phred score

+64, but are deprecated and not considered in this work.

Practically speaking it is rare for Phred scores greater than 40

(ASCII ‘I’) to be utilized. In the competition data (from an

Illumina instrument) all sequences are of the same length

throughout the file, but this is not a requirement of the FASTQ

format and some sequencing machines generate variable length

records.

In common with previous work, the Fqzcomp and Fastqz

programs both split FASTQ data into sequence identifiers, base-

calls and quality scores, compressing the streams independently

and in most cases in parallel. Each stream is passed through

context models and into an arithmetic coder [27].

We define an order{0 model to be one where probabilities are

derived from the frequency of symbols with no context. An

order{N model counts the frequency of symbols given N
previous symbols. For example an order-0 model may assign

P(u)~0:03 for the letter ‘u’ in English text, while an order-1

model may assign P(uDq)~0:97, where ‘q’ is the context indicating

that the letter ‘u’ is very frequent following the letter ‘q’.

The context models predict (assign probabilities to) consecutive

symbols given the previous context and statistics collected within

that context. If a symbol is assigned a probability p, then the

arithmetic coder chooses a code of amortized length log2 1=p bits

to represent it. This coding is provably optimal [28]. Thus,

compression ratio depends on the quality of the predictions, p, in

turn depending on the accuracy of the context model.

Fqzcomp
Fqzcomp uses a public domain byte-wise arithmetic coder from

E. Shelwien (http://ctxmodel.net accessed on February 22, 2012).

The context models are also derived from the same source, but

have been heavily tuned to the type of data.

Identifiers. Fqzcomp compresses identifiers by using the

previous identifier as a context to predict the current identifier.

The identifier is tokenised into { type, value} pairs with type being

one of alpha, numeric, leading zeros or punctuation (including

spaces). For example: @ SRR 0 62634. 3364 HWI - EAS11 0 _

103327062: 6 : 1: 1944 : 962/2.

The tokens are numbered 1 to N, producing N distinct models

for the purposes of accumulating token specific statistics. When a

token type is the same in the previous identifier the value is

compared. Identical tokens are stored as type match while

numerical values may be encoded as delta tokens when the current

value is between 0 and 255 higher than the previous numeric

value. Numeric values up to 232 are encoded using four 8-bit

models with larger numerical values being broken into 32-bit

quantities to avoid overflow. Alpha and punctuation tokens are

encoded a character at a time using a simple order-0 model; one

which assumes each character is chosen independently and so

requires no context.

In practise this does not work well for 454 data which mix a

combination of letters and numbers together in order to achieve a

base-64 encoding. This tends to produce a highly variable number

of tokens. With hindsight an alphanumeric token type (matching

[A-Za-z][A-Za-z0-9]* regular expression) would have worked

better. An earlier identifier encoding method using simple string

deltas is also available, performing better on 454 data.

Quality values. To encode quality values, let Q1,Q2,:::,QL

be the coded quality scores for a sequence of length L.

For any specific score Qi there is a strong correlation to the

immediate previous few quality values Qi{1, Qi{2 lessening the

further back we go. We observed that many sequences ended in a

run of score 2 (‘‘#’’), corresponding to a known issue with the

Illumina base-caller [29].

All qualities are forced into the range 0 to 62, with 0 being

exclusively required for bases called with ‘‘N’’. Score 63 is used to

represent a run of score 2 to the end of the sequence.

Most technologies have correlation between position and

quality values, with quality typically reducing along the length of

the sequence. It was also noted that sequences as a whole tend to

be good or bad, so a sequence containing a number of low quality

values is more likely to contain further low qualities even if the

immediately previous values are high.

These correlations are combined to form successive levels of

quality compression in Fqzcomp, selected by the user. Given Qi

being the quality for the ith base, the contexts used to predict Qi in

Fqzcomp are:

. Qi{1

. max (Qi{2,Qi{3)

. Qi{2~Qi{3½ � a single boolean bitð Þ

. min 7,t1
8

Pi
j~2 max (0,Qj{2{Qj{1)s

� �

. min (7,ti=8s)

Sequence encoding. Fqzcomp encodes with an order-k
model, using the previous k base calls to predict the next call. k
is a configurable parameter at run-time. Optionally the model can

be updated with the reverse complement of the previous k bases

too. This gives a small improvement in compression ratio, but at a

significant speed penalty. With high k the program may learn the

full genome, if sufficiently small. For example it is to be expected

that on a 100 Mbp genome an order-14 model will be sparsely

populated. Given sufficient depth the 14-mers in the model will

represent the genomic sequence, allowing for accurate prediction

of the next base so yielding high compression ratios. The same
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order-14 model on 3 Gbp genome however will have many

random hits for each k-mer, only giving high accuracy within

repeat regions and leading to poor compression. It is expected that

most compression on large genomes is coming through common

repeat sequences.

Fqzcomp also has the option to use an additional fixed size

order-7 model, which is better for spotting short motifs and

sequencing biases. There is no mixing step used here. Instead

Fqzcomp encodes using the model containing the strongest

probability bias (to any base type, not just the one being encoded).

This is not very robust and is weak compared to context mixing,

but achieves a small compression gain with a small CPU overhead.

The models used in Fqzcomp permit encoding of symbols 0, 1,

2 and 3 representing A, C, G and T). Each model uses 8-bit

counters, meaning the combined model takes k4 bytes. Base call N

is simply encoded as 0 and fixed during decoding by observing that

the associated quality value is 0 (this is enforced).

Fastqz
Like Fqzcomp, Fastqz breaks the fastq file into three separate

streams. However it contains an additional preprocessing step

before the context modelling to reduce the data volume. This step

is mainly a speed optimization and usually has a small cost in

compression ratio.

The public domain libzpaq compression library was used for

specifying the context models for the four streams in ZPAQ format

(M. Mahoney, http://mattmahoney.net/dc/zpaq.html accessed

on May 3, 2012). ZPAQ uses a context mixing algorithm based on

PAQ [30] in which the bit-wise predictions of multiple

independent context models are adaptively combined.

Identifiers. Differences between consecutive lines are encod-

ed as a numeric field increment in the range 0-255, a match

length, and trailing differences. For example, given the lines:

@SRR062634.2724180 HWI-EAS110_103327062:6:13:11133:

11572/1 @SRR062634.2724181 HWI-EAS110_103327062:6:13:

11133:5630/1.

The second line is encoded as (18)(1)(51) ’’ 5630/1’’ (0), which

means go to column 18, add 1 to the decimal string found there,

then after this adjustment, copy the first 51 bytes, append the

literal string, and terminate with a 0 byte (replacing the newline).

In rare cases where an increment of more than 255 is required,

then it is coded as a mismatch.

In fast mode, no further encoding is performed. In slow mode,

the encoded names are modelled using a mix of four context

models, each consisting of a hash of the column number, the

current byte in the previous line, the previous bits in the current

byte, and the last 1, 2, 3, or 4 bytes in the current line. The two

low order models (1 and 2) map the context to a bit prediction and

are updated by adjusting the prediction to reduce the error in

inverse proportion to the context count. The two high order

models are indirect context models. The context hash is mapped

to an 8 bit state representing the bit history. The history is then

mapped to an adaptively adjusted prediction. The outputs of the

four models are combined by weighted averaging in the logistic

domain, log (p(1)=p(0)). The weights are selected by an order 0

context that includes the column number, and adjusted on update

to favour the better models.

Quality values. It was observed that the initial Q values

tended to start with a common maximum value (38, ASCII ‘‘G’’)

and decline along the length of the sequence.

Scores are compressed by using byte codes to indicate runs of

score 38 up to length 55, or groups of three scores in the range 35–

38, or pairs of scores in the range 31–38, or single bytes for other

scores, and finally a marker to indicate that the rest of the scores

are 2 and are omitted. In fast mode, no further encoding is

performed. In slow mode, the resulting codes are modelled using a

mix of three direct context models as follows:

1. hash of Qi{1, t i
8
s

2. hash of Qi{2, tQi{3

32
s

3. hash of Qi{4, tQi{5

8
s

4. mixing weights: hash of tQi{1

8
s, min (i,3),t i

8
s

Sequence encoding. Fastqz starts by packing multiple base

calls together, assigning A = 1, T = 2, C = 3 and G = 4. The only

other code is N, which need not be coded because it always has a

quality score of 0 and can be inserted during decoding. We pack

either 3 or 4 bases together, whichever numerical packed value

does not exceed 255. The coding is such that any sequence starting

with G, CG, or CCG is coded in 3 bytes, but any other sequence is

4 bytes. The benefit of using 1234 over 0123 comes through self

synchronization, so that overlapping reads that start at different

locations will eventually be parsed into the same token sequence to

allow compression. For example:

TGGA ATCA GAT GGA ATCA TCGA ATGG ACTG GAA

TGGA ATCA

GGA ATCA GAT GGA ATCA TCGA ATGG ACTG GAA

TGGA ATCA

GAAT CAGA TGGA ATCA TCGA ATGG ACTG GAA

TGGA ATCA

AATC AGAT GGA ATCA TCGA ATGG ACTG GAA

TGGA ATCA

In fast mode, no further encoding is performed. In slow mode,

the encoded sequence is compressed using a mix of 6 models

ranging from order 0 through order 5 bytes, or effectively order 4

through about 23 in bases. The order 0, 1, and 2 models are direct

context models, using up to 225 contexts, requiring 4 bytes of

memory each. The order 3 model is an indirect context model,

requiring 228 histories at one byte each. The order 4 model uses an

indirect secondary symbol estimator. It adjusts the output of the

previous model by mixing with the constant 1 in the logistic

domain, where the pair of mixing weights is selected by the bit

history in one of 229 hashed contexts. The order 5 model uses a

match model. A bit prediction is made by searching for the

previous occurrence of the context in a 256 MB buffer and

predicting the next bit with probability 1–1/(match length in bits).

Contexts are looked up in a 256 MB hash table to find matches.

Total memory usage is about 1.4 GB.

In both Fqzcomp and Fastqz the compression ratio of deep

sequence data is strongly correlated with genome size, which can

be compensated for by using additional memory. This is a

problem which has partially been solved by [6].

Reference based encoding. The optimal compression of a

set of sequence fragments involves a full identification of the

relationships between all fragments; what their similarities are and

whether they fit together to form some higher level structure (the

source genome). This is largely the same problem solved by

sequence assembly tools. One competitor, Daniel Jones, imple-

mented his own sequence assembly algorithm (Quip) to permit

data compression, but was largely hampered in the test data by

low coverage and a relatively limited memory requirement.

If we have a known reference of the organism being sequenced

we can instead implement a Lempel Ziv style compression

algorithm [31]. This replaces portions of text with a coordinate

and length into previously observed data, in this case the reference

genome. In bioinformatics the equivalent are the sequence aligners

or mappers, such as Smalt (http://www.sanger.ac.uk/resources/
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software/smalt/ accessed on August 29, 2012), BWA [32] or

Bowtie [33].

Fastqz will optionally accept a reference genome of up to 4 GB

with which it performs its own reference based mapping. If

specified it must be present for both compression and decompres-

sion steps.

During compression, Fastqz will attempt to match sequences to

the reference and encode them as a 32 bit pointer, a direction bit,

and a list of up to four mismatched base positions. Matched bases

are deleted from the sequences before compression and inserted

after decompression.

To find matches, the reference is first packed 4 bases per byte

using the code A = 0, C = 1, G = 2, T = 3 (deleting any N’s) and

stored in up to 1 GB memory. The reference is divided into groups

of 32 bases and a 1 GB hash table index is constructed, consisting

of 256 M 27-bit pointers and 5 bit hash checksums as an

optimization to detect 97% of collisions early. It searches 8

consecutive locations for an empty slot, resulting in about 6% of

pointers being discarded when indexing a 2.9 Gb human genome

in a 724 MB array.

To align, a rolling hash of the 100 byte reads is computed in

both directions, swapping A with T and C with G in reverse.

Starting at position 32, the hash is looked up and matches are

ranked by the position of the fourth mismatch, breaking ties with

the third, second, and first. The best ranked match is coded and

the corresponding bases deleted from the read. If the fourth

mismatch is less than the read length, then any remaining bases

are coded as if not matching. If the fourth mismatch is less than

half the read length, then the entire read is coded as if no match

were found.

The list of alignments are coded in the format

(m1z128d,m2,m3,m4,p3,p2,p1,p0) where mi is the position of

the ith mismatch in ascending order, or the read length +1 with

less than i mismatches, d is 0 for a forward match and 1 for a

reverse match, and p3:::p0 is the 4 byte pointer. An unmatched

read is coded as a single 0 byte.

In fast mode, the encoded list of alignments is not compressed

further. In slow mode, the list is compressed using a direct context

model where the context is the parse state, the previous bits of the

current byte, and the high 6 bits of the previous byte except when

encoding the 2 low bytes of the pointer.

Samcomp1
The Samcomp program takes a slightly different approach to

Fastqz by offloading the issue of how to assemble or how to align

to a third-party program; we used Bowtie2 for the competition but

alternatives would work too.

The initial implementation (Samcomp v0.7) of this program

requires a SAM or BAM file sorted by chromosome and position

within the chromosome. Identifier and quality information is

encoded as per Fqzcomp. For sequences it uses the SAM flags,

position and CIGAR string to anchor each called base to a

reference coordinate and encodes the base according to a per-

coordinate model. As more and more data aligns to a specific

reference coordinate the model improves in accuracy and the data

compresses better. If a reference is known it is used to seed the

initial model probabilities, otherwise they are seeded based on a

low-order consensus context (for example simple GC content

observations). Insertions and soft-clipped data use their own

additional models.

This has some distinct advantages over simply encoding

differences to a reference. Not requiring a reference avoids the

necessity of storing the consensus sequence produced by a de-novo

assembler. Given assemblies are typically deep, the model tunes

well and the data compresses almost as well as supplying a

reference, typically only taking up an extra 2 bits per consensus

base. This is equivalent to shipping a compressed copy of the

reference with the file. Additionally mapping to a closely related

organism instead of the actual reference would generate many

more differences. The per-position model will rapidly switch away

from the claimed reference to the observed consensus instead,

improving compression ratios. A similar gain can be seen when

compressing data with systematic base-calling errors.

Samcomp2
For the competition data set it was found that requiring position

sorted data harmed compression of the sequence identifiers, so

much so that the benefits of using a model per position were non-

existent. Ideally the sequence identifiers would be omitted or

replaced with lower complexity strings, but the SequenceSqueeze

competition required a strictly lossless approach.

A second implementation of Samcomp (Samcomp2 v0.2) reads

SAM files in any order, permitting the original name-ordered file

to be used thus giving highly compressible sequence identifiers. To

achieve this in limited memory the per-position model was

removed and replaced by a simple reference difference model. The

difference model uses a bit history of whether previous bases have

been matching as context. Upon a mismatch the base-call itself is

encoded, using the reference base as the context. This entry

ultimately came top for lossless compression ratio on the

SequenceSqueeze test data. However we feel it is not generally

as useful as the original Samcomp program as Samcomp2

performs less well on positional sorted data and extremely badly

when not supplied a reference.

Discussion

We have demonstrated that there is a compression ratio vs

speed and memory trade-off. For practical purposes saving the

extra remaining few percent of compression is generally not worth

it if you can get close to optimal compression in a fraction of the

time. This is very apparent in the original SequenceSqueeze results

when graphed on compression ratio against time (see Figure S1 in

File S1).

The trade-off will depend on the use case. For long-distance

data transfer such as uploading to the cloud, bandwidth is the

limiting factor. Here we can compress, transfer and decompress in

parallel with the total throughput being governed by the slowest of

the three. The software presented here is ideally suitable for this

task as the program usage is transitory so long term support is not

an issue and additionally the requirement to immediately

uncompress means it is easy to perform checksums to validate

the transfer. The tools presented here have best-in-class tradeoffs

between time and compression ratio such that Fqzcomp performs

the best at low bandwidths and the fast mode of Fastqz performs

best at high bandwidths.

The opposite use case is long time archival. The programs used

need to be finalized and unchanging so the data can still be

accessed years from now. One solution is to archive the programs

along with the data, but more weight needs to be given to proven

robust technology.

A final use case is for work-in-progress scenarios, requiring

regular random access within a sequencing pipeline. Fqzcomp and

Fastqz are only suitable for streaming, although adding random

access is one obvious future improvement. However the bioinfor-

matics community does not need yet more file formats. Ideally the

existing and emerging formats (BAM, CRAM, cSRA) will
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incorporate ideas and methods presented here, while keeping their

random access strength.

The rate of exponential growth in sequencing compared to disk

technology and network bandwidth shows that any attempt to

compress data is simply an interim measure. Compression buys us

some time and it will always provide a cost saving, but ultimately

the sequencing community will need to start prioritising data sets

into those that are costly to produce and/or precious, and those

that are cheap to reproduce. We envisage that in time many data

sets will be viewed purely as a temporary transition between the

raw DNA sample and final analysis, with file formats like VCF

becoming a more mainstream end product and likely the topic of

future compression research.

Conclusion
We have shown methods for efficient compression of the three

major components of FASTQ files and explained how these can

be applied to reference based formats. While not the complete

picture of SAM file compression, it is hoped that the techniques

presented here may be used to improve existing SAM compres-

sors.

We strongly believe that the creation of a public leader-board in

the SequenceSqueeze competition had a direct and beneficial

impact on the quality of all submissions. It was not uncommon for

authors to leap-frog existing competitor’s entries, spurring them on

to future improvements.
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