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Abstract

Background: Concerns about the safety of paralytics such as succinylcholine to facilitate endotracheal intubation limit their
use in prehospital and emergency department settings. The ability to rapidly reverse paralysis and restore respiratory drive
would increase the safety margin of an agent, thus permitting the pursuit of alternative intubation strategies. In particular,
patients who carry genetic or acquired deficiency of butyrylcholinesterase, the serum enzyme responsible for
succinylcholine hydrolysis, are susceptible to succinylcholine-induced apnea, which manifests as paralysis, lasting hours
beyond the normally brief half-life of succinylcholine. We hypothesized that intravenous administration of plant-derived
recombinant BChE, which also prevents mortality in nerve agent poisoning, would rapidly reverse the effects of
succinylcholine.

Methods: Recombinant butyrylcholinesterase was produced in transgenic plants and purified. Further analysis involved
murine and guinea pig models of succinylcholine toxicity. Animals were treated with lethal and sublethal doses of
succinylcholine followed by administration of butyrylcholinesterase or vehicle. In both animal models vital signs and overall
survival at specified intervals post succinylcholine administration were assessed.

Results: Purified plant-derived recombinant human butyrylcholinesterase can hydrolyze succinylcholine in vitro. Challenge
of mice with an LD100 of succinylcholine followed by BChE administration resulted in complete prevention of respiratory
inhibition and concomitant mortality. Furthermore, experiments in symptomatic guinea pigs demonstrated extremely rapid
succinylcholine detoxification with complete amelioration of symptoms and no apparent complications.

Conclusions: Recombinant plant-derived butyrylcholinesterase was capable of counteracting and reversing apnea in two
complementary models of lethal succinylcholine toxicity, completely preventing mortality. This study of a protein antidote
validates the feasibility of protection and treatment of overdose from succinylcholine as well as other biologically active
butyrylcholinesterase substrates.
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Introduction

Rapid sequence intubation (RSI) combines a sedative and a

neuromuscular blocking agent (NMBA) to prepare a critically ill

patient for emergent intubation [1,2]. RSI is considered a safe

procedure in the well-controlled environment of the emergency

department where a large, diverse and highly trained team is

available to provide emergent intubation, and where increased

safety is bolstered by the availability of a large variety of rescue

devices [3]. In the pre-hospital arena, the role of RSI remains,

however, controversial [4,5,6,7]. While some studies have

demonstrated benefit, particularly in specific groups such as head

injury patients, other authorities stress the complexity of this

procedure, the risks associated with inadequately qualified, trained

and equipped personnel and the overall lack of large-scale risk-

benefit validation [5,6,7,8,9]. The controversy is well-reflected in

the official policy statement of the American College of
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Emergency Physicians (ACEP), which declares that it ‘‘is not an

advocacy statement for or against the use of’’ RSI [8].

Furthermore, disagreement exists over the ideal NMBA, but

frequently centers on the non-depolarizing NMBA rocuronium

and the depolarizing NMBA succinylcholine (SC, suxamethoni-

um)[10,11]. Of the two, consensus generally leans towards

succinylcholine due to increased control afforded by the much

shorter half-life, unless a contraindication exists [12,13,14].

Obvious contraindications include hyperkalemia, allergy, history

of malignant hyperthermia, denervation syndromes or recent burn

or crush injury. A more occult contraindication is delayed

metabolism through the genetic absence of the SC hydrolyzing

enzyme butyrylcholinesterase (BChE, plasma cholinesterase,

pseudocholinesterase)[15].

This condition, succinylcholine apnea, is believed to exist in 1 in

1800 administrations of SC[16]. Of these, approximately 65% are

caused by decreased SC hydrolysis by BChE variants with

decreased hydrolytic function or decreased protein stability

leading to lower effective serum levels[17]. Individuals who are

homozygous in respect to the ‘‘atypical’’ (A) variant of the BChE

gene (D70G, residual serum BChE activity is ,30% of

normal)[18,19] experience periods of apnea of approximately 2

hours upon receiving an i.v. dose of SC that would otherwise result

in only 3–5 minute-long paralysis in people with the common or

‘‘usual’’ (U) allele [17,20]. Homozygocity toward several (,48)

other mutations in the BCHE locus lead to an even more drastic

phenotype. These ‘‘silent’’ (S) variants of BChE and the affected

patients are apneic for a much longer duration of 3–4 hours or

even longer [17,21]. While patients homozygous in respect to

either the A or S variants are rare among the general population

(,0.03% and ,0.01% respectively), heterozygotes are much more

common (4% of the general population carry at least one A allele)

and exhibit varying degrees of post-SA apnea depending on their

specific combination of alleles and in direct correlation with their

serum BChE activities [17].

The remaining cases of BChE deficiency are acquired through

conditions decreasing circulating hepatoproteins such as cirrhosis

[22], burns [23,24], HELLP (hemolysis, elevated liver enzymes

and low platelet count) syndrome [25], hepatic carcinoma [26]

and malnutrition [27]. Furthermore, functional BChE deficiency

can be acquired through the use of commonly prescribed drugs

affecting production or function of BChE such as oral contracep-

tives [28], sertraline[29], cyclophosphamide[30,31,32], tac-

rine[33], phenelzine[34], bambuterol[35], metoclopramide[36],

and ecothiophate[37,38]. Beyond the rare case of genetic or

acquired SC apnea, the ability to rapidly reverse the effects of SC

could provide a significantly increased safety margin for the agent

by allowing the return of spontaneous respirations and the pursuit

of other management strategies including alternative medications

and airway devices. This is particularly true in cases of upper

airway obstruction where neuromuscular blockade carries the risk

of airway collapse [39].

Current management approaches for post-SC apnea, a typically

self-limiting condition, are supportive and highly resource

intensive[40], mainly because of the lack of effective reversal

agents. Anticholinesterases such as edrophonium and neostigmine,

presumably intended to overcome cholinergic blockade by raising

synaptic levels of acetylcholine, have been tested with under-

whelming results [41]. The missing or nonfunctional serum BChE

can be replaced by the active U-variant of the enzyme present in

blood products like stabilized serum [42], fresh frozen plasma [43]

or the purified enzyme (previously available for human use in

Europe, but currently discontinued) [44] but the treatment carries

the usual risks of blood-borne pathogens and prions, as well as the

more common transfusion associated complications, including

transfusion-related acute lung injury (TRALI)[45].

To take advantage of recent advances in biotechnology, we and

others have hypothesized that purified recombinant human BChE

would serve as an ideal antidote for SC apnea by avoiding risk of

infection, TRALI and supply limitations [46,47,48]. Our group

has previously demonstrated, in both mice and guinea pigs, the

efficacy of recombinant BChE and acetylcholinesterase prophy-

laxis to prevent morbidity and mortality in organophosphate

poisoning [49,50]. These two animal species offer the prediction

power expected of an animal model with small body sizes that

limit the quantities of test materials required and ease of

physiological measurements. Here we report SC hydrolysis and

reversal of apnea and cardiovascular collapse with treatment of

affected mice and guinea pigs by catalytic quantities of BChE.

Materials and Methods

Preparation of recombinant butyrylcholinesterase
Transgenic plants expressing a plant-optimized synthetic gene

encoding full-length wild-type human BChE were created as

previously described [51]. Briefly, stable Nicotiana benthamiana lines

expressing a codon-optimized human butyrylcholinesterase were

created and screened for maximal expression. The lines with

highest accumulation were expanded from homozygous seed

stocks and propagated under greenhouse conditions. Plant-derived

BChE (pBChE) was prepared from mature 8–11 week old plants

that were juiced in the presence of 150 mM sodium metabisulfite,

and the juice was strained and clarified by centrifugation. The

30%–70% ammonium sulfate fraction (pH 4.0) was resuspended

and subjected to two affinity chromatography steps, first through

Concanavalin A-Sepharose 4B and then procainamide-agarose gel

custom resin. Eluate was dialyzed against 0.1256 phosphate-

buffered saline (PBS), pH 7.4, then concentrated and stored with

0.02% azide at 4uC for up to 6 months. Prior to use, the

preparation was dialyzed again against.1256 PBS to remove

azide. As previously described, our preparations of plant-derived

BChE contain mostly tetramers (about a half) and monomers

(about a third) [50].

Biochemical analysis
Assay of butyrylthiocholine hydrolysis followed the method of

Ellman as described in [51]. Succinylcholine hydrolase activity was

monitored by the method of George and co-workers [52] with

modifications to fit a 96-well plate format. Briefly, our standard

succinylcholine-hydrolysis buffer contained 100 mM NaH2PO4/

Na2HPO4 buffer pH 7.5, 0.77 mM phenol, 0.15 mM 4-aminoan-

tipyrine, 1 U/mL choline oxidase, and 1.2 U/mL horse radish

peroxidase type I. Appropriate volumes of 106 stock solutions (in

100 mM NaH2PO4/Na2HPO4 buffer pH 7.5) were pre-mixed

and dispensed at 160 mL aliquots onto 96-well plates followed by

addition of the substrate succinylcholine chloride (20 ml, final

concentrations as indicated). Reactions were started by addition of

pBChE (4.74 nM) to yield a final well volume of 200 ml.

Hydrolysis was monitored by recording absorbance changes at

500 nm. Self hydrolysis rates were measured on samples that

contained no enzyme and were subtracted from the enzymatically

catalyzed reaction rates. A choline standard curve was similarly

created by using the same assay except that choline chloride

replaced succinylcholine (final concentration range of 10–

100 mM).

Kinetic analysis was done according to Radić et al. [53] as

follows. Initial enzyme velocity, V0, was plotted as a function of
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substrate concentration and the results were fitted by nonlinear

regression using GraphPad Prism to the following equation:

where [SC] is the concentration of SC, Vmax is maximal

velocity, KM is the Michaelis-Menten constant, KSS is the

dissociation constant of substrate from the enzyme’s peripheral

binding site, and b is a factor that reflects the efficiency of

hydrolysis of the substrate in the presence of another substrate

molecule bound at the peripheral site (with substrate activation

when b.1).

In vivo experiments
All animal experiments were conducted in accordance to

specific protocols approved by the Institutional Care and Use

Committee of Arizona State University (approval number 07-

911R).

Mouse experiments were conducted as follows. Male FVB/N

mice (Mus musculus, 8–12 weeks old) were anesthetized by injection

of ketamine/xylazine/acepromazide cocktail at the dose of

0.05 mL per 25 g of total body weight (concentrations were,

respectively 21 mg/mL, 2.4 mg/mL, and 0.3 mg/mL). Anesthe-

tized mice were assessed for respiratory rate by counting

respirations for 30 seconds using a Littman model 3000 electronic

stethoscope placed on the mouse left mid axillary line and

extrapolating the per minute rate. Mice were then injected

intravenously (tail vein) with 1 mg/kg succinylcholine (time

0 min). At time +3 min mice were injected with pBChE

(0.6 mg/kg, ,11 U per animal, n = 3) in 0.9% saline (or 0.9%

saline vehicle control, n = 3) and respiratory rate was obtained as

above at the indicated time points. At time +15 minutes all

surviving mice were euthanized by CO2 asphyxiation and

subsequent cervical dislocation. At no time during the experiment

did the mice receive any other therapy including, but not limited

to, airway protection/management, artificial ventilations, com-

pressions, or any pharmacological assistance.

Guinea pig experiments were conducted as follows. Male

Hartley guinea pigs (Cavia porcellus, 8 weeks old) were anesthetized

with 90 mg/kg ketamine and 10 mg/kg xylazine. Once anesthe-

tized, baseline heart rate (beats per minute) and SpO2 (%) were

obtained using a Surgivet Plus Veterinary Anesthesia and

Monitoring Module, model #V3404. Guinea pigs (3 per group)

were then intravenously (leg vein) injected at t = 0 with SC at

either low dose (0.167 mg/kg, experiment I) or a high dose

(0.334 mg/kg, experiment II). Heart rate and SpO2 were obtained

every minute throughout the course of the experiment. At time

+1 min, groups of three apneic guinea pigs were injected with

either pBChE in 0.9% saline at a low dose (0.09 mg/kg, ,24 U

per animal, experiment I), high dose (0.19 mg/kg, ,48 U per

animal, experiment II), or 0.9% saline vehicle control (experiment

I and II). At t = +15 minutes, all surviving guinea pigs were

euthanized by CO2 asphyxiation and subsequent cervical disloca-

tion. As above, guinea pigs received no additional care or therapy

during experimentation.

Statistical analyses
Statistical analyses were carried out using the GraphPad Prism

software. Log-rank (Mantel-Cox) test was used to determine

significance of the difference between survival curves. Compari-

sons between mean values of heart rate and Sp02 were tested using

1-way analysis of variance (ANOVA) followed by Bonferroni’s

Multiple Comparison Test. Results were also analyzed by 2-way

ANOVA (testing simultaneous effects of time and BChE

treatment) and simple t-tests, and the inferences based on these

analyses were very similar to those obtained by the 1-way ANOVA

analysis described above.

Results

Initial characterization of plant-derived, recombinant human

butyrylcholinesterase (pBChE) was previously published and was

found to be indistinguishable from that of the human plasma-

derived enzyme in its ability to interact with its acetylcholine and

butyrylcholine substrates and various inhibitors [50,51,54]. These

studies included detailed in-vitro and in-vivo demonstration of the

ability of the plant-derived enzyme to scavenge organophosphate

pesticides and nerve-agents (‘‘nerve gasses’’). Here we extend these

studies in order to investigate the potential of pBChE to reverse

SC-induced apnea and therefore determined its SC hydrolytic

capacity. Succinylcholine hydrolysis by pBChE proceeded in a

linear time-dependent manner with BChE (data not shown)

allowing us to calculate the initial enzyme velocity (V0).

Conducting the experiment at increasing SC concentrations and

plotting the V0 values as a function of the SC concentration (Fig. 1)

allowed us to obtain the Michaelis constant (KM = 5767 mM) and

the turnover number (kcat = 516633 min21, Fig. 1). The catalytic

efficiency (kcat/KM) was calculated to be 96106 M21min21. These

values were consistent with previously published results for human

BChE (KM = 35 mM and kcat = 600 min21)[55]. Differences might

be attributed to the difference in the assay used in the published

research that employed an SA thioester analog. As is the case with

many other substrates of BChE, hydrolysis of SC by the enzyme

was shown to exhibit substrate activation, presumably due to

allosteric interactions involving the peripheral substrate binding

site.

To test our study’s hypothesis that pBChE could reverse

succinylcholine-induced apnea, we turned to animal-models in two

species. Initial studies were conducted with mice that were

administered intravenous SC, 1 mg/kg, a dose which constituted

about .36LD50 (0.28 mg/kg) [56] and in our hands proved to be

lethal to 100% of tested animals. Mice were then randomized to

receive either 15 U BChE or vehicle control (0.9% saline) at 3 min

following SC injection. Respiratory rate was monitored every five

Figure 1. Plant-derived BChE undergoes substrate activation by
its succinylcholine substrate. Blue line represents data fitted by

nonlinear regression to fit the equation:
V0~

1zb½SC�=KSS

1z½SC�=KSS

x

Vmax

1zKM=½SC�with the following parameters (6SEM): Vmax =

2.4560.16 mM/min, KM = 5767 mM, Kss = 2.060.3 mM, and b = 2.960.1.

kcat = Vmax/[BChE]T was calculated to be 516633 min21 based on the

above Vmax value and [BChE] = 4.74 nM.
doi:10.1371/journal.pone.0059159.g001
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minutes following SC injection. While all three mice receiving SC

+0.9% saline succumbed to the SC-induced respiratory depression

and subsequently died, all three mice receiving SC+15 U BChE

survived (Fig. 2).

To further understand the effect and kinetics of BChE-mediated

SC detoxification using continuous vital sign monitoring, we

moved to a larger rodent model of SC toxicity. Utilizing guinea

pigs, we intravenously injected groups of three animals with either

0.167 mg/kg (,LD50, Fig. 3) or a larger dose that leads to 100%

mortality (0.334 mg/kg, Fig. 4). Complete apnea and resultant

decreases in oxygen saturation were seen in both groups at 1 min

following SC injection, at which time study animals received either

24 U (Fig. 3), 48 U BChE () or vehicle control (0.9% saline, Fig. 3

and Fig. 4). Animals in all four groups went on to demonstrate an

absence of measurable pulse and oxygen saturation within 2 to

3 min following SC injection (Fig. 3 and 4). Within 2 minutes,

guinea pigs receiving BChE recovered spontaneous respirations,

their venous oxygenation level had risen to about 50% and their

heart rate was at baseline. In fact, median time to recovery was

0.8 min for animals treated with the low dose of SC and 1.7 min

for the high dose of SC. We witnessed a fairly consistent response

of post-anoxic tachycardia in recovering guinea pigs at 5 min post

SC injection, however by 7 min post SC injection all vital signs

had returned to baseline in all animals treated by BChE. In

striking contrast, only two of the three saline-treated control

animals survived with a median time to recovery of 4.8 min. Thus,

control animals experienced slower recovery (median ratio saline/

BChE = 6.0, 95% confidence interval of 5.8 to 6.2) following a

low-dose SC exposure. In this case the hazard ratio of BChE-

treated and controls was 15.34 (95% confidence interval of 1.418

to 166.0). Moreover, all animals exposed to high dose of SC

without BChE treatment died without any recovery of viable signs.

At no point following loss of measurable pulse and venous oxygen

saturation did these signs return in animals receiving the high dose

of SC without the treatment +0.9% saline.

Figure 2. Plant-derived BChE protects mice from SC-induced
apnea. A Respiration rate of mice treated with SC followed by
administration of pBChE or saline was monitored. Symbols represent
individual animal subjects (n = 3 for each group). B The Kaplan–Meier
estimates of survival reflecting survival of all pBChE-treated mice as
opposed to 100% mortality among control, saline-treated subjects.
Comparison by the Log-rank (Mantel-Cox) test was significant
(P,0.025).
doi:10.1371/journal.pone.0059159.g002

Figure 3. Plant-derived BChE facilitate recovery of guinea pigs
treated with sublethal dose of SC. Guinea pigs were injected with
SC (0.167 mg/kg) followed by injection with BChE (n = 3, red) or saline
(n = 3, blue) while monitoring oxygen saturation (A) and heart rate (B).
Reported data points represent means6SEM. Means at each time point
were compared by 2-way repeated ANOVA and P values are denoted on
the graphs. Statistical analyses by t-test or 1-way ANOVA yielded very
similar results. C Time to return to normal heart rate. Comparison by the
Log-rank (Mantel-Cox) test was significant (P,0.025).
doi:10.1371/journal.pone.0059159.g003
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Discussion

This study demonstrates the capability of plant-derived recom-

binant human BChE to completely reverse the effects of SC

paralysis and respiratory compromise in two small animal models

where no additional supportive care was provided. Our work

provides a natural extension to previous work that demonstrated

the proof of principle for enzyme replacement therapy to

counteract the effects of profound neuromuscular SC blockade

in patients with BChE deficiencies [42,43,44]. All of these previous

reports centered around the human plasma enzyme, as present in

various blood products or purified from the latter. Plasma-derived

BChE is expensive, exists in greatly limited supply, and is,

consequently, of limited utility. Our work demonstrates, for the

first time, the application of recombinant BChE produced in a

sustainable fashion in plants as an antidote to SC-induced

neuromuscular blockade. Plant-based production platforms as a

source for protein pharmaceuticals are only now beginning to be

tapped into with a recent approval of carrot-cell derived

glucocerebrosidase for the treatment of Gaucher disease [57,58].

Our results provide, in two small animal models, the proof of

principle that SC-induced apnea can be reversed by administra-

tion of plant-produced recombinant human BChE. While our

studies were conducted in small number of animals, they provide

evidence that is statistically significant, for full protection afforded

by the plant-produced enzyme. Additional future tests will aim to

look at more subtle biological outcomes (e.g. immune responses to

the plant-derived biologics), to determine the safety and efficacy

and are likely to require larger number of subjects per group to

yield the necessary power.

The ability to rapidly reverse the effects of SC may have

profound clinical implications in cases ranging from genetic or

acquired SC apnea to SC overdose and particularly traditional

RSI utilizing SC as the paralytic. Failed airways are a relatively

common event in both the emergency department and the

prehospital arena and the decision to adopt an alternate strategy

may be hampered by lingering paralysis and the absence of

spontaneous respirations. While RSI in emergency medical service

is common in some areas, many other agencies have removed

paralytics from the drug box of first responders over concerns of

apnea, prolonged hypoxia and cardiovascular collapse. In addition

to simulation, increased training intervals and close oversight,

pharmacological reversal of SC paralysis may increase the safety

margin associated with RSI in prehospital medicine.

In broad terms, the search for antidotes must balance efficacy

with practicality. While recombinant proteins offer the potential

for rational design and mutation of naturally occurring molecules,

the increased cost and relatively decreased shelf life encourages

exploration of alternate uses for these technologies so they can be

applied toward multiple indications. Treatment of SC-induced

apnea offers an alternative use for recombinant BChE, beyond

scavenging of organophosphate nerve agents in a chemical

warfare/terrorism scenario [47,50,51], that may provide increased

patient safety in the use of RSI in both hospital and pre-hospital

care. Moreover, SC is used in clinical contexts beyond RSI, for

example in conjunction with electroconvulsive therapy, where

BChE variants may have a negative impact as was recently shown

by Mollerup and Gätke [59]. Further potential use of BChE

includes rapid cocaine detoxification in overdose as well as

pharmacological protection of cocaine ‘‘packers’’ during GI

clearance [60,61,62].

Determination of the appropriate agent and venue for RSI must

balance safety and efficacy with continuous measurement of

patient outcomes. The availability of plant-derived BChE to

rapidly clear SC and reverse apnea should add a new facet to the

debate over the ideal paralytic and potentially prevent some of the

more common outcomes of prolonged hypoxia during the

management of difficult airways using SC [10,11,12,13,14].

Beyond the rare case of genetic or acquired SC apnea, the ability

to rapidly reverse the effects of SC could provide a significantly

increased safety margin for the agent by allowing the return of

spontaneous respirations and the pursuit of other management

Figure 4. Plant-derived BChE fully protects guinea pigs from
high-dose SC-induced apnea. Guinea pigs were injected with SC
(0.334 mg/kg) followed by injection with BChE (n = 3, red) or saline
(n = 3, blue) while monitoring oxygen saturation (A) and heart rate (B).
Reported data points represent means6SEM. Means at each time point
were compared by 2-way repeated ANOVA and P values are denoted on
the graphs. Statistical analyses by t-test or 1-way ANOVA yielded very
similar results. C Time to return to normal heart rate. Comparison by the
Log-rank (Mantel-Cox) test was significant (P,0.025).
doi:10.1371/journal.pone.0059159.g004
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strategies including alternative drugs and airway devices. While we

acknowledge that a reversal drug to remove excess SC leading to

neuromuscular blockade is only one aspect of a much more

complicated clinical scenario, we hope that the preclinical work

presented would revive interest in testing plant-derived BChE as a

tool to counteract SC-induced paralysis in a clinical setting. Such a

clinical trial will have to take place following Phase I trials to

demonstrate safety of this protein drug. Work at our lab continues

toward this goal.

Conclusions

In two complementary small animal models of succinylcholine-

induced apnea, recombinant butyrylcholinesterase reversed apnea,

desaturation and loss of pulse and prevented mortality. Use of

BChE may provide an additional tool to increase the safety of

succinylcholine in emergent intubation.
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