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Abstract

Correctly identifying associations of genes with diseases has long been a goal in biology. With the emergence of large-scale
gene-phenotype association datasets in biology, we can leverage statistical and machine learning methods to help us
achieve this goal. In this paper, we present two methods for predicting gene-disease associations based on functional gene
associations and gene-phenotype associations in model organisms. The first method, the Katz measure, is motivated from
its success in social network link prediction, and is very closely related to some of the recent methods proposed for gene-
disease association inference. The second method, called CATAPULT (Combining dATa Across species using Positive-Unlabeled
Learning Techniques), is a supervised machine learning method that uses a biased support vector machine where the
features are derived from walks in a heterogeneous gene-trait network. We study the performance of the proposed methods
and related state-of-the-art methods using two different evaluation strategies, on two distinct data sets, namely OMIM
phenotypes and drug-target interactions. Finally, by measuring the performance of the methods using two different
evaluation strategies, we show that even though both methods perform very well, the Katz measure is better at identifying
associations between traits and poorly studied genes, whereas CATAPULT is better suited to correctly identifying gene-trait
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Introduction

Correctly predicting new gene-disease associations has long

been an important goal in computational biology. One very

successful strategy has been the so-called guilt-by-association

(GBA) approach, in which new candidate genes are found through

their association with genes already known to be involved in the

condition studied. This association can in practice be derived from

many different types of data. Goh et al.[1] construct a network

where genes are connected if they are associated with the same

disease, whereas Tian et al.[2] combine protein interactions,

genetic interactions, and gene expression correlation, and Ulitsky

and Shamir[3] combine interactions from published networks and

yeast two-hybrid experiments.

One of the most commonly used kinds of association is derived

from direct protein-protein interactions, such as the ones curated

by the Human Reference Protein Database (HPRD) [4]. The last

few years have seen a number of methods, such as CIPHER [5],

GeneWalker [6], Prince [7] and RWRH [8], that have extended

the association from just direct protein interactions to more distant

connections in various ways. One kind of network that has proven

to be particularly useful for predicting biological function is the

functional interaction network, where a pair of genes is connected

based on the integrated evidence from a wide array of information

sources, as seen by Lee at al.[9]. These have been used to associate

genes with phenotypes in model organisms [10,11] and in humans

[12,13]. A recently published network, HumanNet, has been used

to refine predictions from genome-wide association studies [14].

Since functional gene interaction networks aggregate many

different types of information, they can achieve much greater

coverage than pure protein-protein interaction networks.

Alternatively, we can think of the gene-disease association

problem as a supervised learning problem, where each gene-disease pair

is represented by a number of derived features (explicitly or

implicitly using a kernel function) and then a classifier is learned to

distinguish ‘‘positive’’ (or known) associations from ‘‘negative’’ ones,

using previously studied gene-disease associations, and unknown

gene-disease pairs as training data. Such an approach is taken by
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the recent ProDiGe method [15], which integrates a wide variety

of heterogeneous data sets and uses support vector machines

(SVMs) to identify potential gene-disease associations.

In the past decades, the growth of gene-phenotype associations

in model species has been explosive, which suggests an alternative

way to find candidate genes for human diseases. McGary et al.[16]

used this treasure trove of information to find surprising

connections between model species phenotypes and human

diseases by looking for pairs of human diseases and model

phenotypes that share a higher than expected number of

orthologous genes. In this way, a number of new, and often

surprising, model systems were found for human diseases. For

instance, the human neural crest related developmental disorder

Waardenburg syndrome shares gene modules with gravitropism

(the ability to detect up and down) in plants, and mammalian

angiogenesis has been found to involve the same pathways as

lovastatin sensitivity in yeast. This model species information

represents yet another form of functional connection that can be

used for gene-phenotype association.

In this paper, we first propose two distinct but related GBA

methods. One is based on the Katz method [17] that has been

successfully applied for link prediction in social networks. The

method is based on integrating functional gene interaction

networks with model species phenotype data and computing a

measure of similarity based on walks of different lengths between

gene and phenotype node pairs. The second method, which we

call CATAPULT (Combining dATa Across species using Positive-

Unlabeled Learning Techniques) is a supervised learning method,

wherein we represent gene-phenotype pairs in a feature space

derived from hybrid walks through the heterogeneous network used

by Katz. The supervised learning method falls under a class of

learning methods called Positive-Unlabeled learning methods (Pro-

DiGe [15] also belongs in this class) since the learning task has only

positive and unlabeled examples (and no negative examples). The

method naturally generalizes the computation of Katz on a

heterogeneous network by learning appropriate feature weights.

To determine if a computational method truly associates genes

with diseases, biological validation of the predicted associations –

often by knockout studies in model systems, or through sequencing

of patients – is needed. Since these can be expensive and hard to

do in a high throughput way, it is common to measure the

performance of GBA methods through cross-validation. Recent

work has shown that a large fraction of the performance of GBA

methods can be attributed to the multifunctionality of genes [18].

A priori, it is not clear exactly how the construction of the training

and the test data sets affects the measured performance of a

method. We show that Katz and CATAPULT outperform the state-

of-the-art, as measured by standard cross-validation. Furthermore,

we show that standard cross-validation is not always an

appropriate yardstick for comparing the performance of methods,

and that when an alternative method for cross-validation is used

— measuring how well the methods do in predicting genes that

have no previous disease (or drug) associations, simpler walk-based

methods often achieve better performance than supervised

learning counterparts. We also observe that the qualitative

performance of the methods correlates better with the latter

evaluation strategy. We evaluate the two proposed methods, and

compare to state-of-the-art network-based gene-disease prediction

approaches on two completely distinct sources of data, namely

OMIM phenotypes and gene-drug interactions.

Results and Discussion

Conceptually, gene-disease association data can be thought of as

a bipartite graph, where each gene and each disease is a node, and

there is an edge between a gene node and a disease node if there is

a known association between the gene and the disease. Similarly,

we can form bipartite graphs from gene-phenotype association

data of different species. By connecting a phenotype with a human

gene if any ortholog of the human gene is associated with the

phenotype, we obtain a bipartite network between human genes

and phenotypes of different species. We can also obtain a

phenotype-phenotype network for a given species, where a

(weighted) edge (i,j) indicates that phenotype i is ‘‘similar’’ to

phenotype j. Adding a gene-gene interaction network completes a

heterogeneous network of human genes and phenotypes in a wide

variety of species. It is straightforward to define analogous

heterogeneous network for gene-drug interactions, by replacing

gene-disease associations data of humans with gene-drug associ-

ations. More limited heterogeneous networks have been consid-

ered previously in the context of gene-disease predictions, like the

network of protein-protein interactions and human diseases [8],

and in the context of gene-drug predictions [19]. Through a

holistic view of the networks, otherwise unobserved ways of

interactions between genes are revealed (via shared phenotypes),

and independent information hidden in the model organism data

can be leveraged for discovering novel associations between genes

and human diseases or drugs. By integrating functional informa-

tion from orthologs in multiple species, we also implicitly encode

the functional relationships between homologous genes in the

humans, which also contributes to our predictive performance. A

visualization of the heterogeneous network consisting of gene-gene

network and gene-phenotype networks of a few model species is

presented in Figure 1.

In this setting, it is natural to view the problem of predicting

gene-phenotype associations as a problem of finding similarities

between nodes in a heterogeneous graph. Posing the problem in

this way comes with the significant advantage that we can leverage

a large body of work in machine learning and network analysis

that deals with the problem of finding similar nodes in a graph

[20,21]. In particular, we adapt the Katz method [20] to the

heterogeneous setting. As an extension of this work, we also

introduce a supervised learning framework, CATAPULT. CATAPULT

learns the importance of features associated with node pairs, where

the features are derived from walk-based similarity measures

between nodes.

Katz on the heterogeneous network
The Katz measure is a graph-based method for finding nodes

similar to a given node in a network[17]. It has been shown to be

successful for predicting friends in social networks [20]. In this

paper, we show the effectiveness of the method for the task of

recommending genes for a given phenotype or drug. Suppose we

are given an undirected, unweighted graph with a (symmetric)

adjacency matrix A, where Aij~1 if node i and node j are

connected, and Aij~0 otherwise. One way to find the similarity

between two (not necessarily connected) nodes i and j is to count

the number of walks of different lengths that connect i and j. This

has a natural connection to matrix powers since (Al)ij is exactly

the number of walks of length l that connect i to j. Hence (Al)ij

gives a measure of similarity between the nodes i and j. We want

to obtain a single similarity measure that summarizes the

similarities suggested by different walk lengths. For example, we

could choose any sequence bl of non-negative coefficients and

define the similarity

Gene-Disease Links Using Social Network Methods
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Sij~
Pk
l~1

bl(A
l)ij ,

where b is a constant that dampens contributions from longer

walks. In matrix notation, the similarity matrix S (that captures

similarities between all pairs i and j) may be written as:

S~
Xk

l~1

blA
l : ð1Þ

As observed by a recent survey article [21], we can regard S as a

matrix function F (A) where F is defined through the series

expansion in (1). Note that we may allow k??, as long as bl?0
as l??. Specific choices for bl yield a variety of concrete

similarity measures. A choice of bl~bl leads to the well-known

Katz measure [17]:

Skatz~
X
l§1

blAl~ I{bAð Þ{1
{I , ð2Þ

where b is chosen such that bv
1

EAE2
. In the case where the

connections in the graph are weighted such that Aij is the strength

of the connection between nodes i and j, we can generalize the

idea of walks using this matrix framework, by simply using the

weighted adjacency matrix instead of the binary matrix. Different

ways of constructing the matrix A together with the appropriate

normalizations of the matrix lead to methods of the type used by

PRINCE [7], RWRH [8], GeneMANIA [11], and by the famous

PageRank algorithm used for web page ranking [22]. However,

we do not necessarily have to consider sum over infinitely many

path lengths. Paths of shorter lengths often convey more

information about similarity between a given pair of nodes, and

contributions from longer paths become insignificant. This

suggests that we can consider a finite sum over path lengths,

and typically small values of k (k~3 or k~4) are known to yield

competitive performance in the task of recommending similar

nodes [23].

Let G denote the gene-gene network, let P denote the bipartite

network between genes and phenotypes, and let Q denote the

phenotype-phenotype network. In particular, P~½PHs PS� is a

composite of the gene-disease network of humans, written PHs,

and the gene-phenotype networks of other species, written PS .

Similarly,

Q~
QHs 0

0 QS

� �
,

where QHs is the similarity matrix of human diseases, and QS is

that of phenotypes of other species. In our experiments, we set

QS~0, since we do not have information about similarity between

phenotypes of other (non-human) species. The construction of the

matrices G,P and QHs will be discussed in detail in the Methods

section. We form a heterogeneous network over the gene and

phenotype nodes, similar to RWRH (which we will review briefly

in the Methods section). The adjacency matrix of the heteroge-

neous network may be written as:

C~
G P

PT Q

� �
, ð3Þ

Recall the general formula for the truncated Katz similarity

measure when specialized to the combined matrix C:

Figure 1. The combined network in the neighborhood of a human disease. The local network around the human disease diabetes insipidus
and two genes highly ranked by CATAPULT, AQP1 (top ranked candidate) and MYBL2 (ranked as number 40). AQP1 is ranked higher than MYBL2 because
there are more paths from diabetes insipidus to AQP1 than to MYBL2, both through model organism phenotypes and through the gene--gene
network. Only genes and phenotypes that are associated to both diabetes insipidus and the predicted genes AQP1 and MYBL2 are shown.
doi:10.1371/journal.pone.0058977.g001
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SKatz(C)ij~
Xk

l~1

bl(Cl)ij : ð4Þ

From here on, we will drop the ‘‘truncated’’ and refer to this

simply as the Katz measure. Note that for smaller values of b,

higher order paths contribute much less. It has been shown that

restricting the sum to a small k, i.e. a few higher order paths, works

well in practice, in network link prediction and recommender

systems[23]. Letting k~3, the block of the Katz score matrix

SKatz(C) corresponding to similarities between gene nodes and

human disease nodes, written SKatz
Hs (C), can be expressed as:

SKatz
Hs (C)~bPHszb2(GPHszPHsQHs)

zb3(PPT PHszG2PHszGPHsQHszPHsQ
2
Hs)

ð5Þ

where PHs and QHs denote the gene-phenotype and phenotype-

phenotype networks of humans respectively. We use equation (5)

to compute scores for the Katz method in our experiments.

In case of the drugs data set, we use the gene-drug network D,

instead of PHs in equation (5). We do not have similarity

information for drugs, and so we set Q~0 for experiments on the

drug data set. Nonetheless, we use phenotype information from

multiple species, in the composite matrix P~½D PS�, in order to

infer similarities between gene and drug nodes, where the matrix

D represents the known associations between genes and drugs

(replacing PHs above in the gene-disease example).

CATAPULT: A supervised approach to predicting
associations

The fixed choice of parameters involved in the Katz and

random walk based approaches, as in equation (4), provides a

reasonable initial approach. However, to improve performance we

would like to learn the weights based on the heterogeneous network

itself. That is, instead of using the exponential damping weights bl ,

we can try to learn the relative importance of paths of different

lengths. To this end, we frame the problem of predicting potential

gene-phenotype associations as a supervised learning problem, in

which we want to learn a classifier (or ranking) function whose

input space consists of gene-phenotype pairs and output is a score

for each gene-phenotype pair. In particular, by appropriately

defining the feature space for gene-phenotype pairs, we will see

that learning a classifier in the constructed feature space is

tantamount to learning coefficients for Katz on the heterogeneous

network computed as in equation (5).

For any given phenotype, it is very hard to verify that a gene is

not associated in some way with the phenotype. Our learning

strategy is therefore guided by the fact that absence of evidence is not

evidence of absence. While a biological experiment can give clear

evidence for the existence of a certain gene–phenotype association,

a lack of evidence for a connection does not imply that such a

connection does not exist. Biologists therefore tend to report

positive associations between genes and phenotypes. However, the

reported list of gene–phenotype associations is not exhaustive.

Because negative associations rarely get reported, we treat all

gene–phenotype pairs for which no positive association has been

reported as unlabeled, with the prior assumption that most of them

are in fact negative associations. Our data set therefore has the

following two key characteristics:

1..For each phenotype, we only have a partial list of the associated

genes. That is, we only know of positive associations; we do not

have negative associations available to us.

2..There is a large number of unlabeled gene-phenotype pairs

with the prior knowledge that most of them are, in fact,

negative associations.

Classical supervised learning methods require both positive and

negative examples, and therefore fall short in our case. Positive-

Unlabeled learning (PU learning for short) methods are natural for

this setting. The general idea of PU learning methods is to identify

a set of negatives from the unlabeled examples and train a

supervised classifier using the positives and the identified negatives.

Liu et al.[24] study different ways of choosing negatives from

unlabeled examples. Biologists believe that only a few of the large

number of unobserved associations are likely to be positive. A

random sample is likely to consist mostly of negatives, which

suggests that we could randomly choose a set of examples and use

the random sample as ‘‘negative’’ examples to train a supervised

classifier. As the examples are not known to be negative, it may be

helpful to allow the classifier to not heavily penalize the mistakes

on ‘‘negatives’’ in the training phase. We therefore learn a biased

support vector machine classifier using the positive associations

and a random sample of unlabeled associations. Recently, Mordelet

et al.[25] proposed ProDiGe that also uses a random sample of

unlabeled examples as a negative sample to train a biased support

vector machine against a set of known positives. The support

vector machine is biased in the sense that false negatives (known

positives classified as negatives) are penalized more heavily than

the false positives (‘‘negatives’’ classified as positives). The bias

makes sense because the positive examples are known to be

positive, while the negatives are arbitrary and hence false positives

are not to be penalized too heavily. Note that, in principle, we

could use any PU learning method (for instance, the weighted

logistic regression model proposed in [26]) to obtain a classifier for

gene-phenotype pairs.

Figure 2 demonstrates simple walk-based features derived from

the heterogeneous network. Gene-phenotype pairs are represented

using the walk-based features, and classified using a biased support

vector machine in our CATAPULT algorithm.

Functional data outperforms protein-protein interactions
To see how the Katz and CATAPULT methods compare to the

state-of-the-art, we measured their recovery of genes using a cross-

validation strategy similar to the one used by Mordelet and Vert

[15], on two different data sets — gene-disease associations from

the Online Mendelian Inheritance in Man (OMIM, [27]), and a

recent drug-gene interaction data set [19]. These data sets can

both be thought of as large collections of gene-trait pairs, either as

gene-disease pairs for the OMIM data, or target-drug pairs for the

drug data set.

We compared Katz and CATAPULT to four recent methods:

1..The recently proposed ProDiGe method [15], which is a

support vector machine based method that calculates similarity

scores for gene pairs using a wide variety of information sources

including 21 different gene-gene functional interaction net-

works and phenotype similarities.

2..RWRH [8], which, like Katz uses walks on a heterogeneous

gene-disease graph to prioritize genes. It differs from the Katz

method chiefly in how the heterogeneous network is normal-

ized. We discuss the relationship in more detail in Text S1.

3..We include PRINCE [7] for completeness, since it is the state-

of-the-art to which both RWRH and ProDiGe were compared.

Gene-Disease Links Using Social Network Methods
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4..Finally, some recent work [18] has shown that simply by

ranking based on the degree centrality of a gene (how often it

interacts with other genes, or is involved in diseases) can be a

very competitive ranking strategy. We therefore predict genes

for diseases (or drugs) using a simple degree-based list, where all

genes are ranked by how many diseases (drugs) they are known

to be connected to, regardless of which disease (drug) the

predictions are made for.

For cross-validation, we use the same testing framework as the

one used by Mordelet and Vert [15]: split the known gene-trait

pairs into three equally sized groups. We hide the associations in

one group and run our methods on the remaining associations,

repeating three times to ensure that each group is hidden exactly

once. A clarification on the correctness of the cross-validation

procedure while using heterogeneous information sources is in

order: We do not create any gene-phenotype associations beyond

those that are directly experimentally observed. We incorporate

data from other species by orthology, but link it directly to the

corresponding human gene, and do not create gene nodes for the

orthologous species. Moreover, the only phenotype-phenotype

linkages we include are across human disease pairs and are derived

solely from MimMiner text mining of OMIM records [28] —there

is no incorporation of gene sequence information whatsoever, only

a measure of similarity of the clinical features of the diseases. Thus,

there is no circularity created by homology in the data during

cross-validation. For each trait in our data set, we order all the

genes by how strongly the method predicts them to be associated

with the trait. Finally, for every gene-trait pair (g,t) in the hidden

group we record the rank of the gene g in the list associated with

trait t. We use the cumulative distribution of the ranks as a

measure for comparing the performances of different methods, i.e.

the probability that the rank (at which hidden gene-trait pair is

retrieved) is less than a threshold k. The motivation of using this

performance measure is that a method that has a higher

probability of recovering a true association in the top-k predictions

for a given disease is desired. Recent methods including

ProDiGe[15] have adopted this performance measure for com-

parison.

The results are presented in Figure 3. Note that the vertical axis

in the plots give the probability that a true gene association is

Figure 2. Katz features are derived by constructing walks of
different kinds on the graph. In the figure above, the disease node
d1 is connected to the gene node g6 by one walk of length 2 (solid red
line) and three walks of length 3 (dotted, dashed and dashdotted red
lines). This can be quickly calculated from the adjacency matrix C of the
graph: If Cij~1 when there is a link between nodes i and j, and 0
otherwise, the number of paths of length n between genes i and j is
Cnð Þij . In the example above, C2

� �
16

~1 and C3
� �

16
~3.

doi:10.1371/journal.pone.0058977.g002

Figure 3. Empirical cumulative distribution function for the rank of the withheld gene under cross-validation. Left panel corresponds
to evaluation of OMIM phenotypes, and the right corresponds to drug data. The vertical axis shows the probability that a true gene association is
retrieved in the top-k predictions for a disease. Katz and CATAPULT methods use all species information, and the HumanNet gene network. PRINCE
and RWRH methods are implemented as proposed in [7] and [8] respectively, using the HPRD gene network. ProDiGe method is implemented as
discussed in Methods section. CATAPULT (solid red) does much better across the data sets under this evaluation scheme. In general, the methods get
high precision rates in case of the drug data. PRINCE method that does not allow walks through species phenotypes, and OMIM phenotypes in
particular, performs much worse than other random-walk based methods. ProDiGe allows sharing of information between phenotypes using the
similarities between OMIM phenotypes and performs reasonably well, whereas there is no such sharing possible in case of the drug data due to the
absence of drug similarities. The simple degree-based method performs poorly in general. ProDiGe and PRINCE essentially use only the gene network
information in case of the drug data.
doi:10.1371/journal.pone.0058977.g003

Gene-Disease Links Using Social Network Methods
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recovered in the top-k predictions for various k values in the

horizontal axis. For example, we observe that the Katz method has

over 15% probability of recovering a true gene in the top-100

predictions for a disease, whereas PRINCE is only 5% likely to

retrieve a true association in the top-100 predictions. Under this

evaluation method, both Katz and CATAPULT, which make use of

much more extensive data sets than the other methods, are quite

likely to recover the hidden gene among the top 100 genes. As can

be seen from Figure 3, Katz and CATAPULT perform better than any

of the previously studied state-of-the-art gene-disease association

methods for the OMIM data set. CATAPULT also performs well on

the drug data set, ranking the hidden gene 14th or lower a

remarkable 50% of the time. RWRH, which like Katz and

CATAPULT is a walk based method that allows paths through the

gene-disease (or, for the drug data set, gene-drug) network, also

does quite well.

ProDiGe allows sharing of information between phenotypes

using the similarities between OMIM phenotypes, and also

integrates a wide variety of functional information in a supervised

machine learning framework and performs reasonably well on the

OMIM phenotypes. The PRINCE method, which allows some

sharing of information between OMIM diseases that are

phenotypically similar, performs worse than the other random-

walk based methods. Since we have no similarity information

available for the drug data, ProDiGe and PRINCE essentially use

only the gene similarity information in the drug data case. Notice

that the simple degree-based method does the worst of all methods

in case of OMIM phenotypes, which suggests that recommenda-

tions given by walk-based methods are more relevant and differ

significantly from simple ranking by number of known associa-

tions.

To see if the improvement in performance of Katz and

CATAPULT stems from the more extensive network used, or, in

CATAPULT’s case, the increased sophistication of the machine

learning method, we evaluated network based RWRH and

PRINCE methods using the more extensive HumanNet network

instead of the HPRD network originally used. As can be seen in

Figure 4, CATAPULT still does better than the previous state-of-the-

art using this cross-validation framework, consistently in both the

OMIM and drug data sets.
Precision-Recall measure. We also evaluate and compare

the different methods using the more familiar precision and recall

measures. Precision measures the fraction of true positives (genes)

recovered in the top-k predictions for a trait. Recall is the ratio of

true positives recovered in the top-k predictions for a trait to the

total number of true positives in the hidden set. The plot of

precision vs recall rates for different values of thresholds k ranging

1ƒkƒ200 is presented in Figure 5. Note that we are more

interested in small values of k, similar to the results corresponding

to the rank cdf measure presented in Figures 3, 4 and 6. Our

experimental setup is identical to that in Figure 4, i.e. using

HumanNet for all the relevant methods. The comparisons on both

OMIM and drug data sets observed from Figure 5 are identical to

Figure 4. In particular, CATAPULT performs much better in case of

the drug data, and is competitive to Katz and RWRH methods at

very small values of k (in the range 1ƒkƒ20) and performs much

better outside the regime, in case of the OMIM data. Note that we

observe identical behavior for CATAPULT in the left panel of

Figure 4. The performance of the other methods are similarly

consistent across the two performance measures.
Focusing on the gene linkage neighborhood. The results

so far are on measuring how well a candidate gene can be

predicted genome wide. Another common scenario is where a linkage

interval is known for a disease, but the causal disease linked gene

has not been identified. To simulate this setting, we use an

approach similar to the one taken in [7]. For each known gene-

disease pair (g,t), we construct a simulated linkage interval by

taking all genes within 10 million basepairs from either end of the

gene g (containing a median of 84 genes), and record the rank at

which gene g is predicted for trait t when g is masked. As can be

seen in Figure 7, CATAPULT again performs the best.

Figure 4. Comparison only using HumanNet. Empirical cumulative distribution function for the rank of the withheld gene under cross-
validation. Left panel corresponds to evaluation of OMIM phenotypes, and the right corresponds to drug data. The vertical axis shows the probability
that a true gene association is retrieved in the top-k predictions for a disease. Katz and CATAPULT methods use all species information, and all the
methods use the HumanNet gene network. PRINCE and RWRH methods are implemented as proposed in [7] and [8] respectively, but using
HumanNet. ProDiGe method is implemented as discussed in Methods section. Again, as in Figure 3, CATAPULT (solid red) does the best. An important
observation to be made from the plots is that PRINCE and RWRH methods perform relatively much better than in Figure 3, where HPRD network was
used. (Note that there is no change to the ProDiGe, Katz and CATAPULT methods; they have identical settings as in Figure 3).
doi:10.1371/journal.pone.0058977.g004
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When do CATAPULT and GBA methods fail? It is important

to know if there is a set of phenotypes for which CATAPULT, and

other network-based GBA methods, do not perform well. To

understand the same, we looked at the phenotypes for which

CATAPULT attained the poorest (average) recall rate. In particular,

we ordered the phenotypes by the (mean) recall rate for the hidden

genes (in three-fold validation). We find that the bottom-most

phenotypes in the ordering are precisely the ones for which there is

only one known gene. Note that the training data for these

phenotypes did not have the known gene. The only information for

the phenotypes comes from the phenotype-phenotype similarities.

However, there are some phenotypes for which even phenotype

similarities are not known. In such cases, all GBA or network-

based methods will fail. The results are presented in Figure 8 (left

panel). We observe that all network-based methods perform

poorly. Nonetheless, we observe a gradation in the performances

of different methods, and CATAPULT does slightly better. The

difference in performance is not surprising given that some

methods use the heterogeneous network fully ( CATAPULT and

Katz) but others only partially (ProDiGe, PRINCE and RWRH).

All the methods do substantially better on phenotypes with more

than one known gene (right panel). A qualitative analysis of the

methods discussed next, however, shows that the boost in

performance may not necessarily reflect that the predictions made

by the methods are pertinent to the phenotypes. This connection

between the size of sets and how easy they are to predict has also

been observed in the context of GO annotations, see for instance

[29].

Top predictions by supervised methods are enriched for
highly connected genes

To get a qualitative view of how the connectedness of genes

influences the rankings, we plotted the degree distribution of the

genes in the OMIM and the drug data sets in Figure 9, and

compared the results with the list of top candidates from CATAPULT

(see Table 1) and Katz (see Table 2).

The results for CATAPULT all seem very reasonable, from a

biological standpoint. For example, CATAPULT identifies APOE,

which even though is not linked to ‘‘Susceptibility to Alzheimer’s

disease’’ OMIM record (MIM:104300), is well known to be

associated with Alzheimer’s disease and is associated with two

other OMIM records involving Alzheimer’s (MIM:104310 and

MIM:606889). BRCA1 is associated with ‘‘Breast-ovarian cancer,

familial 1’’ (MIM:604370), not the record we show in Table 1

(‘‘Breast cancer, susceptibility to’’, MIM:114480), even so, it is

ranked very highly among the candidate genes for breast cancer.

Many of the other candidate genes listed are similarly very likely to

be involved in the etiology of the diseases, like TP53 and KRAS for

many cancers. Indeed, what might be the most surprising about

the results is how completely unsurprising they seem. Further-

more, there is a very high degree of overlap between the top

predictions. Indeed, almost all the top 10 candidate genes for the

eight diseases shown are shared between at least two of the eight

diseases for CATAPULT. Moreover, when studying the results for the

same diseases for ProDiGe, given in [15], we see the same pattern

as we see for CATAPULT – a strong enrichment for genes that are

already known to be associated with many diseases. For example,

EGFR is predicted as a top ten candidate gene for gastric cancer by

ProDiGe, as well as by CATAPULT (Table 1) and the Katz method

(Table 2). In case of Alzheimer’s disease, our methods and

ProDiGe all predict APOE in the top ten.

However, the top predictions for both CATAPULT and ProDiGe

seem to be governed more by what method is being tested than by

what disease is being studied. For example, ProDiGe ranks EXT1

in the top ten for six out of the eight diseases studied, and

CATAPULT ranks TP53 in the top ten for five of the diseases. In

contrast, the results for the Katz measure (Table 2) exhibit a much

lower degree of overlap between the top predictions. There is still a

certain number of predictions shared, particularly between the

different cancers and insulin resistance (type 2 diabetes). However,

there is a good reason to believe that these shared genes actually

reflect a common etiology, since epidemiological studies have

Figure 5. Precision-Recall curves for three-fold cross validation. Left panel corresponds to evaluation of OMIM phenotypes, and the right
corresponds to drug data. The vertical axis shows the precision rate, i.e. fraction of true positives in the top-k predictions. The horizontal axis shows
the recall rate, i.e. ratio of true positives recovered in the top-k predictions to the total number of positives for a phenotype (or a drug) in the hidden
set. The plots show precision-recall values at various thresholds k, in the range 1ƒkƒ200 and the value at a given k is averaged over all the
phenotypes (drugs). The plots use the same experimental setup as in Figure 4, and we observe that the comparisons illustrated by precision-recall
measure are consistent with the rank cdf measure in Figure 4.
doi:10.1371/journal.pone.0058977.g005
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shown a connection between the type 2 diabetes and cancers, in

particular breast and colorectal cancer [30]. Overall, the

predictions seem to reflect the relevance of a gene to the specific

disease more than the overall likelihood that a gene is associated

with any disease.

For example, many of the top ranked genes for Alzheimer’s

disease are related to amyloid precursor protein, APP, in various

ways, such as APLP2 and APLP1, which are homologs of APP,

CTSB, also known as amyloid precursor protein secretase, LRP1,

which is necessary for clearance of APP plaques, and APOE,

apolipoprotein E. A recent review of the role APP and its

interaction partners play in Alzheimer’s disease can be found in

[31]. CAV1 has also recently been studied in relation to APP and

Alzheimer’s disease [32]. Another interesting candidate Alzhei-

mer’s disease is BDKRB2, bradykinin receptor B2. BDKRB2 is

highly expressed in the central nervous system according to the

Human Protein Atlas, and modulation of BKRB2 results in a

cellular state highly enriched for amyloid b peptide in a skin

fibroblast cell line from a patient with early onset familial

Alzheimer’s disease [33].

We see a similar pattern with more specific predictions that still

seem well supported by the literature for most of the other diseases

in Table 2. For example, the association of MYH11 with leukemia,

through inversion of a region on chromosome 16 and the

formation of a CBFB–MYH11 chimera, is well known and was

first identified in [34]. However, it is not associated with the

OMIM record shown in Table 2. For schizophrenia, the top

ranked candidate gene, DRD2, is well known to be associated with

schizophrenia (under MIM:126450), and a recent study has

highlighted a potential role for ADRA2B in schizophrenia [35].

Validation on singletons highlights methods that detect
novelty

The cross-validation evaluation shown in Figures 3 and 4 clearly

shows that CATAPULT is better at recapitulating the genes known to

be involved in a disease than any of the other methods. However,

recapitulation of previously known results is rarely the goal in

biology. We therefore seek a measure that would reflect how suited

a method is for correctly identifying associations between diseases

and genes that are less well studied.

There are two ways one could envision for doing this in a cross-

validation framework – either one could hide all associations

between a given gene and diseases, thereby hoping to put it on

equal footing with genes still unstudied, or one restricts the cross-

validation to genes that are only associated with a single

phenotype. There are clear advantages to both approaches. The

former approach allows us to do validation on a larger set, namely

all known gene-disease associations, and thereby reach stronger

statistical strength. The latter approach has more subtle, but in our

opinion greater, advantage. The biases that favor already well

Table 1. Top predictions for CATAPULT.

Leukemia Alzheimer disease Insulin resistance Prostate cancer

MIM:601626 MIM:104300 MIM:125853 MIM:176807

FGFR3 (2261) ACE2 (59272) INSR (3643) TP53 (7157)

FGFR2 (2263) COL1A1 (1277) INS (3630) RB1 (5925)

KRAS (3845) COL1A2 (1278) PTEN (5728) CTNNB1 (1499)

TP53 (7157) KRAS (3845) TP53 (7157) BRCA1 (672)

EGFR (1956) EGFR (1956) CTNNB1 (1499) KRAS (3845)

FGFR1 (2260) TP53 (7157) KRAS (3845) PIK3CA (5290)

PTPN11 (5781) AGT (183) AKT1 (207) AKT1 (207)

CTNNB1 (1499) PLAT (5327) CREBBP (1387) INSR (3643)

INSR (3643) APOE (348) EGFR (1956) NRAS (4893)

CREBBP (1387) PTGS2 (5743) PIK3CA (5290) RAD51 (5888)

Schizophrenia Breast cancer Gastric cancer Colorectal cancer

MIM:181500 MIM:114480 MIM:137215 MIM:114500

BDNF (627) PTEN (5728) FGFR3 (2261) KRAS (3845)

NRG1 (3084) RB1 (5925) FGFR1 (2260) PTEN (5728)

CBS (875) NRAS (4893) NRAS (4893) CTNNB1 (1499)

NOS2 (4843) BRCA1 (672) HRAS (3265) HRAS (3265)

MTR (4548) HRAS (3265) EGFR (1956) CREBBP (1387)

HTR2C (3358) INSR (3643) ERBB3 (2065) RB1 (5925)

HTR2B (3357) CTNNB1 (1499) CTNNB1 (1499) FGFR3 (2261)

SLC6A4 (6532) EGFR (1956) BRAF (673) INSR (3643)

FGFR2 (2263) FGFR3 (2261) PTEN (5728) EGFR (1956)

MAT1A (4143) FGFR2 (2263) TP53 (7157) FGFR2 (2263)

Top 10 predictions not in the training set by CATAPULT for the eight OMIM phenotypes with the highest number of gene associations. Any gene which is among the top
10 candidates for more than one disease is marked in bold. CATAPULT does make a great number of very reasonable predictions as observed below. For example, it seems
quite likely that both insulin receptor (INSR, 3643) and insulin (INS, 3630) should be associated with insulin resistance, and that many growth factor receptors have been
associated with various cancers.
doi:10.1371/journal.pone.0058977.t001
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studied genes are not only present in the gene-disease association

data, but also in the data that we use for constructing the networks

and the model species data sets. This gives rise to small differences

between genes that have been the well studied genes and the

poorly characterized genes. By only looking at the least studied

genes in our data set for which we do have known gene-disease

associations, we can minimize the risk that any signal that we

detect is merely some general characteristic of well studied genes,

and instead evaluate how well a method can detect truly novel

gene–disease associations.

We tested all the methods using cross-validation restricted to

genes with only a single disease (or drug) association (which we call

singletons, shown in yellow in Figure 9). The results of this cross-

validation are presented in Figure 6. CATAPULT still does much

better than ProDiGe (the only other supervised method) but does

worse than the unsupervised methods, in contrast to Figure 4 (that

uses the same setting for all the methods). The PRINCE and

ProDiGe methods are consistent with (and sometimes perform

slightly better than) the three-fold cross-validation evaluation.

RWRH and the Katz measure perform better than the supervised

learning methods ProDiGe and CATAPULT in this evaluation

sheme. The fact that PRINCE performs so well on singletons

when evaluated on drug data is surprising, given that the only

information it uses is the HumanNet gene network. Simpler

random-walk based methods in general perform better than the

supervised counterparts, and do so consistently in two completely

distinct data sets. Furthermore, we find that the qualitative results

of the methods (Tables 1 and 2) indicate that the supervised

CATAPULT tends to emphasize the same ‘‘common’’ genes much

more than the Katz measure does, which is consistent with the

difference in performance we observe between the cross-validation

on the full set of gene-disease associations and cross-validation

restricted to the singleton genes.

The differences in performance between the full test set and the

singletons raise the question of what we really are trying to do

when we predict gene-phenotype associations. Ultimately, the

correct evaluation criterion for gene-phenotype association pre-

dictions must be successful laboratory confirmation of the

predictions. However, lacking that, we often resort to different

cross-validation schemes to measure how well a method does. We

have here shown that even quite modest changes in the evaluation

scheme can alter the relative performance of the methods tested.

In the case of CATAPULT and the Katz measure, this is likely

because the tendency of ‘‘common’’ genes to be involved in

diseases in general is a property that the supervised CATAPULT can

easily detect and make use of, which strongly boosts its

performance on the full data set but does nothing for its

performance on the singleton genes. By actively restricting the

use of features that are characteristic of ‘‘common’’ genes (For

instance by the restricting the maximum allowed path length), we

can counteract this tendency at the cost of performance in the full

cross-validation (data not shown).

Table 2. Top predictions for the Katz measure.

Leukemia Alzheimer disease Insulin resistance Prostate cancer

MIM:601626 MIM:104300 MIM:125853 MIM:176807

IL3 (3562) APLP2 (334) INS (3630) BRCA1 (672)

SOCS1 (8651) HSPA8 (3312) AKT1 (207) TP53 (7157)

GRB2 (2885) CTSB (1508) INSR (3643) RAD51 (5888)

NOP2 (4839) LRP1 (4035) GRB2 (2885) EGFR (1956)

CSF2RB (1439) NID1 (4811) IGF1R (3480) ATM (472)

PPM1L (151742) APOE (348) CTNNB1 (1499) AKT1 (207)

PTPN6 (5777) BDKRB2 (624) CREBBP (1387) MAX (4149)

MYH11 (4629) PLAUR (5329) PIK3CA (5290) CDK1 (983)

PPM1E (22843) APLP1 (333) TYK2 (7297) PIK3CA (5290)

PPM1B (5495) CAV1 (857) GPD1 (2819) CSNK2A1 (1457)

Schizophrenia Breast cancer Gastric cancer Colorectal cancer

MIM:181500 MIM:114480 MIM:137215 MIM:114500

DRD2 (1813) BRCA1 (672) GRB2 (2885) PTEN (5728)

AHCY (191) IRS1 (3667) EGFR (1956) CTNNB1 (1499)

ADRA2B (151) MRE11A (4361) NRAS (4893) CDK1 (983)

XRN2 (22803) INSR (3643) IRS1 (3667) GSK3B (2932)

MAT1A (4143) CHEK1 (1111) MAPK1 (5594) CDC20 (991)

MAT2A (4144) ATR (545) PTPN11 (5781) PCNA (5111)

CHI3L2 (1117) PTEN (5728) HRAS (3265) EGF (1950)

TSNAX (7257) MAPK1 (5594) MAP2K2 (5605) PTTG1 (9232)

DDC (1644) MAPK3 (5595) MAP2K1 (5604) IGF1R (3480)

MAOB (4129) UBE2I (7329) SOS1 (6654) FOXO3 (2309)

Top 10 predictions not in the training set by Katz for the same eight OMIM phenotypes as in Table 1. Any gene which is among the top 10 candidates for more than one
disease is marked in bold. The Katz method shows a weaker link between the number of diseases previously associated with a gene and its presence in the list, while
still giving a number of very likely candidates.
doi:10.1371/journal.pone.0058977.t002

Gene-Disease Links Using Social Network Methods

PLOS ONE | www.plosone.org 9 May 2013 | Volume 8 | Issue 5 | e58977



Conclusions
We have proposed two methods for inferring gene-phenotype

associations, Katz and CATAPULT. Katz is motivated by social

network link prediction and CATAPULT is a supervised extension to

Katz which learns the weights for walks that have different lengths

and that involve different kinds of data. While CATAPULT

significantly outperforms other state-of-the-art gene-phenotype

association methods using a conventional cross-validation evalu-

ation strategy, such a cross-validation strategy does not necessarily

reflect the properties of a scenario in which one wants to predict

novel gene-phenotype associations involving less studied genes.

To address such cases, we propose a cross-validation approach

restricted to relatively little studied genes. In this framework the

Katz method and the related RWRH and PRINCE methods do

better than the supervised methods, indicating that if the objective

is to find new gene-disease or gene-drug associations involving

genes not yet well studied, these approaches are more appropriate.

We therefore conclude that comparisons of gene-phenotype

methods do not necessarily lead to a simple ordering from best to

worst. If the goal of a researcher is to find new directions for

research or find previously unknown biology, she might not want

to use methods that perform the best in a conventional cross-

validation framework. For instance, she might prefer a method like

the Katz measure, which does better when tested on genes only

associated with a single disease, to a method like CATAPULT, which

emphasizes genes that are important in general. In the future, it is

therefore important that descriptions of new gene-phenotype

association methods include a careful discussion on how the

method is intended to be used.

Figure 6. Empirical cumulative distribution function for the rank of withheld singleton genes. Left panel corresponds to evaluation of
OMIM phenotypes, and the right corresponds to drug data. The vertical axis shows the probability that a true gene association is retrieved in the top-
k predictions for a disease. The Katz and CATAPULT methods use all species information, and all the methods use the HumanNet gene network.
PRINCE and RWRH are implemented as proposed in [7] and [8] respectively, but using the HumanNet gene network. The ProDiGe method is
implemented as discussed in the Methods section. We have not included the degree based list from Figure 4, since all the singleton genes are always
given degree 0 during cross-validation. CATAPULT (solid red) does much better than ProDiGe (the only other supervised method) but does worse
compared to walk-based methods than in Figure 4 (that uses the same setting for all the methods). PRINCE and ProDiGe are consistent with (and
sometimes perform slightly better than) the full cross-validation evaluation. RWRH and the Katz measure perform better than the supervised learning
methods ProDiGe and CATAPULT in this evaluation scheme. The fact that PRINCE performs so well on singletons in the drug data case is surprising,
given that the only information it uses is the HumanNet gene network.
doi:10.1371/journal.pone.0058977.g006

Figure 7. Empirical cumulative distribution function for the
rank of withheld genes from OMIM phenotypes, restricted to
genes in a small linkage neighborhood of the withheld genes.
The vertical axis shows the probability that a true gene association is
retrieved in the top-k predictions for a disease. The Katz and CATAPULT

methods use all species information, and all the methods use the
HumanNet gene network. PRINCE and RWRH are implemented as
proposed in [7] and [8] respectively but using the HumanNet gene
network. The ProDiGe method is implemented as discussed in the
Methods section. We observe that CATAPULT performs the best. RWRH
and Katz methods are competitive as well. The results are consistent
with our observations from Figure 4.
doi:10.1371/journal.pone.0058977.g007
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Materials and Methods

Gene Networks
We use two sources of gene-gene interactions in our experi-

ments.

1..HumanNet [14]: A large-scale functional gene network

which incorporates multiple data sets, including mRNA

expression, protein-protein interactions, protein complex data,

and comparative genomics (but not disease or phenotype data).

HumanNet contains 21 different data sources, which are

combined into one integrated network using a regularized

regression scheme trained on GO pathways. The edges in the

network have non-negative edge weights, and there are

733,836 edges with non-zero weights.

2..HPRD network [36]: Most of the published work on

predicting gene-disease associations [5–8,37] use the HPRD

network. The network data was downloaded from [4]. The

edges in the HPRD network are unweighted, and the network

is much sparser than HumanNet. In particular, the HPRD

network has 56,661 associations compared to 733,836

(weighted) associations for HumanNet.

Figure 8. Empirical cumulative distribution function for the rank of withheld genes from OMIM phenotypes with single known
gene (left panel) and more than one known gene (right panel). The vertical axis shows the probability that a true gene association is retrieved
in the top-k predictions for a disease. The Katz and CATAPULT methods use all species information. PRINCE and RWRH are implemented as proposed in
[7] and [8] respectively, using HPRD network. The ProDiGe method is implemented as discussed in the Methods section. In case of phenotypes with
only one known gene (left panel), the only information is the phenotype-phenotype similarity. From the left panel, we note that all network-based
methods perform poorly. Nonetheless, we observe a gradation in the performances of different methods, and that CATAPULT does slightly better. All
the methods do substantially better on phenotypes with more than one known gene (right panel).
doi:10.1371/journal.pone.0058977.g008

Figure 9. Distribution of the number of known genes in OMIM diseases (left) and drugs (right). The bar corresponding to the genes on
which we did the singleton validation is shown in yellow.
doi:10.1371/journal.pone.0058977.g009
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Phenotypes from other (non-human) species
We collected gene-phenotype associations from literature and

public databases for eight different (non-human) species: plant

(Arabidopsis thaliana, from TAIR [38]), worm (Caenorhabditis elegans

from WormBase [39,40]), fruit fly (Drosophila melanogaster from

FlyBase [41]), mouse (Mus musculus from MGD [42]), yeast

(Saccharomyces cerevisiae [10,43–45]), Escherichia coli [46], zebrafish

(Danio rerio from ZFIN [47]), and chicken (Gallus gallus from

GEISHA [48]). We determined orthology relationships between

genes in model species and human using INPARANOID [49].

Detailed description on the extraction of most datasets can be

found in [16] and the resulting dataset has been summarized in

Table 3.

E. coli phenotypes were obtained from the file ‘coli_FinalDa-

ta2.txt’ on May 20, 2011 [46]; we sorted each gene’s phenomic

profile by score, taking both the top and bottom forty conditions

and assigning them to the gene. Thus, we considered each

condition to be a phenotype, and the genes associated with that

phenotype were those genes whose growth was most affected

(either positively or negatively) in the corresponding condition. As

a proxy for chicken phenotypes, tissue specific mRNA expression

patterns were derived from GEISHA in situ hybridization

annotations, which were kindly provided in XML format on June

24, 2011. Genes were sorted into multiple bins by stage, by

location, and by location and stage together. If there were more

than fifty genes in a specific location and more than three at a

specific stage at that location, a new phenotype was created

(‘‘anatomical location at stage x’’); regardless, each location became a

phenotype. Worm phenotypes [40] were divided into two datasets,

‘green-broad’ and ‘green-specific’, based on the broad and specific

phenotypes. GO biological processes from TAIR and ZFIN were

processed in the same manner. We kept only those annotations

with evidence codes IMP, IDA, IPI, IGI, TAS, NAS, IC, and IEP.

For TAIR, we used ‘ATH_GO_GOSLIM.txt’, downloaded on

August 23rd, 2010; and for ZFIN, we obtained GO biological

processes from geneontology.org (‘gene_association.zfin.gz’) on

April 26th, 2011.

Evaluation data
We perform experiments on two types of data sources:

N OMIM Phenotypes: We obtained new OMIM data from

the Online Mendelian Inheritance in Man (OMIM) project

[27] on August 11, 2011. OMIM phenotypes have become the

standard data set for the evaluation of prediction of gene-

disease associations[5–8,15,37]. All the compared methods use

similarities between phenotypes [28] to form the (weighted)

phenotype-phenotype network QHs.

N Drug data: This includes four benchmark data sets of Drug-

Target interactions in humans involving enzymes, ion

channels, G-protein-coupled receptors (GPCRs) and nuclear

receptors, first studied in [50]. Refer to Table 4 for statistics on

the data sets. The data sets were made available by [19] and

downloaded from [51].

Problem setup and Notation
Let G denote the set of human genes and for each species

i[S~fHs,At,Ce,Dm,Dr,Ec,Gg,Mm,Scg, let Pi denote the set of

phenotypes for the species. Refer Table 3 for descriptions of the

species and a summary of the data sets. Also, let D denote the set

of drugs (i.e. the four benchmark data sets mentioned in Table 4).

For each species i[S, we constructed a gene-phenotype association

matrix Pi[RjGj|jPi j, such that (Pi)gp~1 if gene g is associated with

phenotype p or 0 otherwise. For methods using multiple species,

we used PS~½PAt PCe PDm . . . PSc� and recall that

P~½PHs PS� in equation (5). Similarly, we constructed a drug-

gene interaction matrix D using drugs data where Dgd~1 if gene

g is known to be associated with drug d (note that d can be one of

enzymes, ion channels, GPCRs or nuclear receptors) and Dgd~0

otherwise. Using the two types of gene-gene interaction data

HPRD and HumanNet, we constructed matrices

GHPRD[f0,1gjGj|jGj, and GHumanNet[RjGj|jGj respectively. We

constructed a phenotype-phenotype network QHs[RjPHsj|jPHsj

(i.e. corresponding to humans) using OMIM phenotype similarities

[28]. For experiments with drug data, we did not have access to

any such similarity score for drug pairs, so we set the drug-drug

network to 0. The same is the case for other species data as well,

and we set the corresponding entries in Q to be 0, both for the

experiments with OMIM and for the drug data. Following the

approach by Vanunu et al. [7], we apply a logistic transformation

to the similarities QHs, i.e. L(x)~ 1
1z exp (cxzd)

where x represents

an entry of QHs. For setting c and d, see [7]. We use the

transformed QHs network in all our experiments.

The CATAPULT algorithm. CATAPULT uses a biased SVM

framework to classify gene-phenotype pairs of humans with a

single training phase, thereby making use of the relation between

different phenotypes. Recent work [25] uses the bagging technique

to obtain an aggregate classifier using positive and unlabeled

examples. In this approach, one draws a random bootstrap sample

of a few unlabeled examples from the set of all unlabeled examples

and trains a classifier treating the bootstrap sample as negatives

along with the positive examples. Bagging helps to reduce the

variance in the classifier that is induced due to the randomness in

Table 3. Species used.

Index Species # Phenotypes # Associations

1 Human (Hs) 3,209 3,954

2 Plant (At) 1,137 12,010

3 Worm (Ce) 744 30,519

4 Fly (Dm) 2,503 68,525

5 Zebrafish (Dr) 1,143 4,500

6 E.coli (Ec) 324 72,846

7 Chicken (Gg) 1,188 22,150

8 Mouse (Mm) 4,662 75,199

9 Yeast (Sc) 1,243 73,284

Different species used for inferring gene-phenotype associations in the
proposed methods Katz and CATAPULT, and sizes of the gene-phenotype
networks for the species, restricted to orthologs of human genes. The total
number of human genes with any kind of phenotype annotation is 12331.
doi:10.1371/journal.pone.0058977.t003

Table 4. Benchmark Drug data sets used for evaluation.

Index Type # Drugs # Associations

1 Enzymes 445 2,926

2 Ion Channels 210 1,476

3 GPCRs 223 635

4 Nuclear Receptors 54 90

doi:10.1371/journal.pone.0058977.t004
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the ‘‘negative’’ samples. Let T be the number of bootstraps, let A
be the set of positives (i.e. gene-phenotype pairs that correspond to

known associations), let nz denote the number of examples in A,

and let U denote the set of unlabeled gene-phenotype pairs. We

train a biased SVM, where we use a penalty C{ for false positives

and relatively larger penalty Cz for false negatives.

The bagging algorithm that trains and combines several biased

SVM classifiers used by CATAPULT is as follows:

initialize h~0, s(x)~0,Vx[U, and n(x)~1,Vx[U.

for t~1,2, . . . ,T :

1..Draw a bootstrap sample U t(U of size nz.

2..Train a linear classifier ht using the positive training examples

A and U t as negative examples by solving:

min
h0[Rd

1

2
Eh0E2zC{

X
i[Ut

jizCz

X
i[P ji ð6Þ

subject to ji§0,Vi[A|U t,

SW(xi),h’T§1{ji,Vi[A, and

{SW(xi),h
0T§1{ji,Vi[U t:

3..For any x[U\U t update:

(i) n(x)/n(x)z1.

(ii) s(x)/s(x)zSht,W(x)T.

return s(x)/s(x)=n(x), Vx[U.

We train a biased SVM given in equation (6) during each

iteration using all the known positive examples in A and a

randomly chosen set of ‘‘negatives’’ U t(U. Positive and negative

examples may not be linearly separable, and the usual approach in

SVMs is to penalize each example based on how far it is from

meeting its margin requirement, through the use of slack variables

ji. The scoring function for iteration t is proportional to the

distance of the point x from the hyperplane and is given by the

standard dot product,

Sht,W(x)T

where ht is the normal to the hyperplane learned using the random

bootstrap at the tth iteration and W(x) is the feature vector

corresponding to x. For small number of boostraps, say T in the

range 10-100, n(x)~T for most of the unlabeled examples and

thus the procedure in effect scores (most of the) unlabeled

examples using the average hyperplane 1
T

P
t ht. We set T~30 in

our experiments. Recall that, in our framework, an instance x
corresponds to a gene-phenotype pair. In contrast to the traditional

SVM classifiers that classify a pair as positive or negative based on

the sign of Sht,W(x)T, we use the value as a score under the

assumption that the further a point is on the positive side of the

hyperplane, the more likely it is to be a true positive.
Parameters. In equation (6), Cz and C{ are the penalties

on misclassified positives and negatives respectively. Typically,

CzwC{. The weights control the relative widths of the margins

on either sides of the hyperplane. As Cz increases from 0 to ?,

the margin on the side of the positive examples shrinks, and as

Cz??, the classifier attempts to make no mistake on the positive

examples. The ratio Cz=C{ determines the ‘‘weight’’ of a positive

example, and we want this to be high. In our experiments, we set

C{~1 and Cz~10, which is found to be the best by cross-

validation. The cross-validation procedure for tuning parameters

is given as follows:

1. Sample a fraction (70%) of the positives from the training data

points (gene-disease associations) to form the validation set V.

2. Split the validation set into 5 folds: V1,V2, . . . ,V5.

3. C{/1.

4. for log (Cz) in ½{3,{2,{1,0,1,2,3�:

for i~1 to 5:

(a) Fix V i to be the test set and the remaining 4 folds,
S

j=i V j ,

to be the training set.

(b) Train CATAPULT with the positive training set A~
S

j=i V j ,

and the current (Cz,C{) values in equation (6). (Note that

an equal number of ‘‘negative’’ examples are randomly

sampled from the unlabeled gene-disease associations.).

(c) Obtain the recall rate Ri of CATAPULT on the hidden test

set, i.e. fraction of true positives in V i identified in the top k
predictions, where k~jV ij.

Let RCz
~(1=5)

P5
i~1 Ri.

5. Return Cz~argmaxCz
RCz

and C{.

Using the cross-validated values of Cz and C{ for a particular

train-test split (Fixing C{~1, log10 Cz was varied in the range

{3,{2,{1,0,1,2,3 and log10 Cz~1 was typically the best), we

train the model on the training data and evaluate on the test data.

This is done three times corresponding to 3 random train-test splits

of the full gene-disease associations data.
Features derived from hybrid walks. Before applying any

supervised machine learning approach, we need to construct

features for gene-phenotype pairs. The features that we use are all

based on paths in the heterogeneous network. Recall that in the

Katz measure, the weights for combining the contributions from

walks of different lengths are fixed beforehand. We observe from

equation (5) that, for a given length of walk, there are multiple

ways of obtaining hybrid walks, as given by the terms in the series.

For a given gene-phenotype pair, different walks of the same

length, and walks of different lengths can be used as features for

the pair. Thus learning a biased SVM provides an efficient way to

learn the weights, and could help improve on the prediction

performance over a particular choice of weights, say, (b,b2,b3, . . . )
as in the Katz measure. Clearly, the dimensionality of the feature

space is exponential in k, the length of the walk, and makes us

vulnerable to the curse of dimensionality because the examples are

limited. However, taking a cue from the fact that the weights of

increasing walk lengths need to be heavily damped, we ignore

higher order terms and thereby keep the dimensionality of the

feature space small.
Relationship between the learned h and b. The complete

set of features used by CATAPULT and the corresponding weights

learned are listed in Table 5. The features relate to the expression
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for the Katz method given in (5). In particular, the term involving

PPT can be written as PPT~
P

i[S PiP
T
i , where

S~fHs,At,Ce,Dm,Dr,Ec,Gg,Mm,Scg. The Katz method weighs

terms involving paths of length l by bl , and does not distinguish

between species or between sources. As an example of distin-

guishing by source, consider the terms corresponding to l~2 in the

expression (5), i.e. GPHs and PHsQHs. The Katz method weighs

both the types of paths by b2 whereas the CATAPULT method learns

two different weights hi~1:23 and hj~39:63 corresponding to the

two features, as observed from Table 5. For distinguishing by

species, consider the term PPT PHs corresponding to l~3 in (5). In

this case, Katz method uses b3, whereas CATAPULT learns a set of 9

different weights corresponding to different species, i.e.

PPT PHs~
P

i[S PiP
T
i PHs. We observe from Table 5 that

different species contribute differently towards the final prediction.

Furthermore, we also observe from our experiments using species-

wise features not only lends interpretability but also improves the

accuracy of the predictions, as compared to combining features

corresponding to same walk lengths (Note that all CATAPULT results

Table 5. Weights by CATAPULT.

Type Feature Learned weights Feature Learned weights

PHsP
T
HsPHs 31.04 PHsP

T
HsG

2PHs 8.97

Human PHsP
T
HsGPHs 2.60 GPHsP

T
HsGPHs 5.98

GPHsP
T
HsPHs 1.00 G2PHsP

T
HsPHs 3.31

PAtP
T
AtPHs 8.09 PAtP

T
AtG

2PHs 0.74

Plant PAtP
T
AtGPHs 1.06 GPAtP

T
AtGPHs 2.18

GPAtP
T
AtPHs 1.20 G2PAtP

T
AtPHs 0.65

PCePT
CePHs 5.75 PCePT

CeG2PHs 0.33

Worm PCePT
CeGPHs 0.69 GPCePT

CeGPHs 0.55

GPCePT
CePHs 0.62 G2PCePT

CePHs 0.29

PDmPT
DmPHs 4.58 PDmPT

DmG2PHs 0.90

Fly PDmPT
DmGPHs 0.93 GPDmPT

DmGPHs 1.36

GPDmPT
DmPHs 0.72 G2PDmPT

DmPHs 0.55

PDrP
T
DrPHs 8.28 PDrP

T
DrG

2PHs 1.16

Zebrafish PDrP
T
DrGPHs 0.77 GPDrP

T
DrGPHs 2.68

GPDrP
T
DrPHs 0.52 G2PDrP

T
DrPHs 0.69

PEcPT
EcPHs 1.67 PEcPT

EcG2PHs 0.19

E. coli PEcPT
EcGPHs 0.30 GPEcPT

EcGPHs 0.75

GPEcPT
EcPHs 0.29 G2PEcPT

EcPHs 0.12

PGgPT
GgPHs 3.76 PGgPT

GgG2PHs 0.32

Chicken PGgPT
GgGPHs 0.30 GPGgPT

GgGPHs 1.35

GPGgPT
GgPHs 0.23 G2PGgPT

GgPHs 1.82

PMmPT
MmPHs 15.03 PMmPT

MmG2PHs 1.54

Mouse PMmPT
MmGPHs 1.35 GPMmPT

MmGPHs 2.13

GPMmPT
MmPHs 0.83 G2PMmPT

MmPHs 0.70

PScPT
ScPHs 5.55 PScPT

ScG2PHs 0.30

Yeast PScPT
ScGPHs 0.61 GPScPT

ScGPHs 0.59

GPScPT
ScPHs 0.56 G2PScPT

ScPHs 0.25

Gene network GPHs 1.23 G3PHs 0.57

G2PHs 3.52 G4PHs 0.36

Phenotype network PHsQHs 39.63 PHsP
T
HsG

2PHsQHs 4.28

PHsP
T
HsPHsQHs 21.02 GPHsP

T
HsGPHsQHs 2.56

PHsP
T
HsGPHsQHs 1.70 G2PHsP

T
HsPHsQHs 1.43

GPHsP
T
HsPHsQHs 0.64

Weights learned for different features by CATAPULT using the biased SVM with bagging procedure, using the HumanNet gene network. Two important observations are:
(1) Features corresponding to longer path lengths receive relatively much smaller weights (note that path length can be deduced from the number of terms in the
feature, for example, PHsP

T
HsPHs has path length 3, while PHsP

T
HsGPHs has path length 4). (2) Features corresponding to different species receive different weights, in

particular, features derived from mouse phenotypes get the highest weights, which makes sense given the relative evolutionary proximity between humans and mice.
The relative weights of different information sources are not straightforward to interpret. However, we can see that some higher order features are informative.
doi:10.1371/journal.pone.0058977.t005
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shown in the paper use the features listed in Table 5, and results

for combining features are not shown).

Random Walks with Restart on Heterogeneous

network. Random Walks with Restart on Heterogeneous

network (RWRH) is an algorithm for predicting gene-disease

associations proposed by Li and Patra [8]. RWRH performs a

random walk on a heterogeneous network of gene interactions

(HPRD) and human diseases (we used OMIM phenotypes and the

drug data described above). The method constructs a heteroge-

neous network using GHPRD,PHs and QHs networks and runs a

personalized PageRank computation, a popular choice for ranking

documents and web pages, on the network. The random walk is

started from a set of seed nodes, which for a phenotype p is the set

of genes known to be associated with p, and gene nodes are ranked

by the probability that a random walker is at a given gene, under

the steady state distribution for the random walk. In particular,

RWRH [8] considers the following heterogeneous network:

~CC~
~GG lPHs

lPT
Hs

~QQHs

" #
ð7Þ

where ~GG is the gene-gene interactions matrix, ~QQHs is the

phenotype-phenotype similarity matrix, and l is the probability

that the random walker jumps from a gene node to a phenotype

node (or vice versa). The matrices ~GG, ~QQHs,PHs and PT
Hs are

normalized by row-degree. The rows of the matrices ~GG and ~QQHs

scaled by a factor of (1{l), as appropriate, so that ~CC is a row-

stochastic matrix, i.e.
P

j
~CCij~1,Vi. In [8], PHs is the gene-disease

association matrix corresponding to OMIM phenotypes, ~QQHs is

the corresponding similarity matrix, and ~GG is derived from GHPRD.

Genes are ranked for a given disease p using the steady state vector

s�, the solution to the equation:

s~(1{c) ~CCT szcp0 ð8Þ

where p0 is the restart vector (indicator vector of the set of seed

nodes known to be associated with p) and c is the restart

probability. In our experiments, we use OMIM phenotypes matrix

PHs as well as the gene-drug interaction matrix D, and two types

of gene-gene matrices to derive ~GG. Recall that in the latter case, we

do not have similarity information for drugs, and therefore we set

drug-drug similarity matrix to 0. It is also straightforward to

incorporate phenotype data from multiple species in the method,

by replacing PHs with P~½PHs PS�, analogous to our Katz

method.

PRINCE. The PRINCE method, proposed by Vanunu et al.

[7], is another graph-based method that can be thought of as a

special case of RWRH. Here, the random walk is only over the

gene interaction network instead of the heterogeneous network.

The phenotype similarities are incorporated in the restart vector.

The vector of scores computed by PRINCE for a given phenotype

p can be expressed as

sPRINCE~(I{cG){1~pp ð9Þ

where ~pp is the smoothed phenotype, i.e. ~ppi~(QHs)qp where q is the

phenotype most similar to p such that gene i is known to be

associated with disease q and c is the restart probability. Note that,

similarly, the scores computed by RWRH can be written

succinctly as

sRWRH~(I{c ~CC){1p ð10Þ

where ~CC is defined in equation (7). We show the relationship

between the Katz method and other random-walk based methods

(PRINCE and RWRH) in the Text S1. The absence of similarity

information for other (non-human) species phenotypes and drugs

renders direct extension of PRINCE to multiple species data

inconsequential. We must emphasize here that PRINCE does not

allow walks through the gene-phenotype interaction network or

the phenotype-phenotype interaction network. As a result,

availability of other species data becomes irrelevant when

predicting genes for a given disease (or other drug data in case

of predicting for a given drug).

ProDiGe. The ProDiGe method, proposed by Mordelet and

Vert [15], makes use of positive-unlabeled learning and a multiple

kernel learning framework to integrate information from multiple

types of gene interaction data and phenotype similarities. Kernels

are defined over pairs of genes and pairs of phenotypes, and the

kernel value for a pair of gene-phenotype pairs is derived using the

individual gene and phenotype kernels. In particular, let

Kgene(g,g
0
) denote the kernel for genes, and Kphenotype(p,p

0
) denote

that for phenotypes. Then, the kernel for the pairs ((g,p),(g
0
,p
0
)) is

simply,

Kpair((g,p),(g
0
,p
0
))~Kgene(g,g

0
)|Kphenotype(p,p

0
) ð11Þ

The gene-phenotype pairs are then classified using a support

vector machine using the constructed kernel. Note that ProDiGe

[15] does not use any other species phenotype information, but

only the OMIM phenotypes. In our experiments on OMIM

phenotypes, we used the kernels Kgene and Kphenotype provided by

Mordelet [15] downloaded from:

http://cbio.ensmp.fr/jvert/svn/prodige/html/prodige-0.3.tar.

gz. For the drug data, we used a simple Dirac kernel (since kernel

matrices need to be positive definite) for Kdrug(d,d
0
), i.e.

Kdrug(d,d
0
)~

1 if d~d
0
,

0 otherwise:

(

Implementation
We implemented all the methods in Matlab. Our implemen-

tation of CATAPULT can be downloaded from the CATAPULT home

page: http://marcottelab.org/index.php/Catapult. A web inter-

face for querying recommendations for a given phenotype is also

accessible from the page. Obtaining features for all gene-

phenotype pairs takes about 20 minutes. Training CATAPULT is

much faster, and takes a few seconds per iteration of the algorithm

on our cluster machines (2.8 GHz processor, 32GB RAM). The

sourcecodes for Li and Patra’s RWRH method and ProDiGe were

obtained from the respective project home pages http://www3.

ntu.edu.sg/home/aspatra/research/Yongjin_BI2010.zip and

http://cbio.ensmp.fr/

For PRINCE, we use MATLAB code kindly provided by Oded

Magger.
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Text S1 A detailed derivation of the relationship
between Katz on the heterogeneous network, PRINCE,
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