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Abstract

Background: The emergence of drug-resistant pathogen strains and new infectious agents pose major challenges to public
health. A promising approach to combat these problems is to target the host’s genes or proteins, especially to discover
targets that are effective against multiple pathogens, i.e., host-oriented broad-spectrum (HOBS) drug targets. An important
first step in the discovery of such drug targets is the identification of host responses that are commonly perturbed by
multiple pathogens.

Results: In this paper, we present a methodology to identify common host responses elicited by multiple pathogens. First,
we identified host responses perturbed by each pathogen using a gene set enrichment analysis of publicly available
genome-wide transcriptional datasets. Then, we used biclustering to identify groups of host pathways and biological
processes that were perturbed only by a subset of the analyzed pathogens. Finally, we tested the enrichment of each
bicluster in human genes that are known drug targets, on the basis of which we elicited putative HOBS targets for specific
groups of bacterial pathogens. We identified 84 up-regulated and three down-regulated statistically significant biclusters.
Each bicluster contained a group of pathogens that commonly dysregulated a group of biological processes. We validated
our approach by checking whether these biclusters correspond to known hallmarks of bacterial infection. Indeed, these
biclusters contained biological process such as inflammation, activation of dendritic cells, pro- and anti- apoptotic responses
and other innate immune responses. Next, we identified biclusters containing pathogens that infected the same tissue.
After a literature-based analysis of the drug targets contained in these biclusters, we suggested new uses of the drugs
Anakinra, Etanercept, and Infliximab for gastrointestinal pathogens Yersinia enterocolitica, Helicobacter pylori kx2 strain, and
enterohemorrhagic Escherichia coli and the drug Simvastatin for hematopoietic pathogen Ehrlichia chaffeensis.

Conclusions: Using a combination of automated analysis of host-response gene expression data and manual study of the
literature, we have been able to suggest host-oriented treatments for specific bacterial infections. The analyses and
suggestions made in this study may be utilized to generate concrete hypothesis on which gene sets to probe further in the
quest for HOBS drug targets for bacterial infections. All our results are available at the following supplementary website:
http://bioinformatics.cs.vt.edu/ murali/supplements/2013-kidane-plos-one
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Introduction

Infectious diseases are the second leading cause of death

worldwide, next to cardiovascular diseases [1]. Bacterial infections

such as tuberculosis and food- and water- borne infections from

Salmonella enterica and Escherichia coli still present many challenges to

biomedical researchers. Foremost among these challenges is that

infectious agents rapidly mutate and become resistant to drugs [2].

The conventional approach of targeting pathogen proteins has

accelerated the spread of resistance, resulting in the re-emergence

of once-contained infectious diseases, such as those caused by

multidrug-resistant strains of Mycobacterium tuberculosis, Staphylococcus

aureus, and Salmonella enterica [3]. In an effort to combat the issue of

drug resistance, anti-infective drug discovery is shifting to a new

approach that targets the host instead of pathogens [3,4]. ‘‘Host-

oriented’’ drug discovery focuses on manipulating or subverting

biological processes in the host that pathogens utilize [5]. Another

problem facing the treatment of infectious diseases is the

increasing number of pathogenic agents [6]. Furthermore, new

pathogens are appearing regularly, e.g., the pandemic swine flu
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H1N1 virus recognized in 2009. The expanding range of

infectious agents coupled with the high cost associated with drug

discovery have made it economically infeasible and practically

impossible to tackle each pathogen individually [6,7]. These

factors have necessitated treatment regimens that are effective

against a wide variety of infectious agents.

These factors have encouraged efforts in host-oriented broad-

spectrum (HOBS) drug discovery, i.e., finding targets in the host

that can simultaneously cure multiple infections [3,8]. Examples of

HOBS drugs currently available in the market include Statins and

Isoprinosine. Statins are used in the treatment of Leishmania,

Staphylococcus aureus, and HIV infections [9–11]. Statins lower the

cholesterol level in human body. They are effective against

pathogens that utilize cholesterol in binding and internalization to

the host cell. Isoprinosine, which stimulates the proliferation of T-

cells, is used in the treatment of Herpes simplex, Hepatitis, and Epstein-

Barr virus infections [12].

A first and important step in HOBS drug discovery is the

development of computational tools to discover common physi-

ological processes and cellular pathways that different pathogens

utilize to infect, proliferate, and spread in the host. We

hypothesized that comprehensive molecular datasets of host

responses to diverse varieties of pathogens might form a powerful

resource to discover such pathways. Transcriptional datasets that

correspond to different infectious diseases, cell/tissue types, and

organisms are the most abundantly available. Meta-analysis of

transcriptional datasets have been performed for a wide range of

diseases. For instance, Rhodes et al. [13] analyzed 40 cancer

related microarray datasets to identify common signatures of

cancer. English and Butte [14] integrated 49 obesity-related

genome-wide experiments obtained from human, mouse, rat, and

worm to predict new genes that may be associated with obesity.

Magalhaes et al. [15] performed meta-analysis of 27 age-related

gene expression profile datasets from human, mouse, and rat to

reveal several common signatures of aging. Jenner et al. [16] used

hierarchical clustering of gene expression profiles of 77 pathogens

in order to find genes that exhibited similar expression profiles

across several disease types.

Recent approaches have taken meta-analysis of DNA micro-

array datasets one step further by incorporating drug targets into

the analysis and inferring new uses for existing drugs on the basis

of disease similarities. The premise underlying these approaches is

that diseases with a high degree of transcriptional similarity might

be treated with similar drugs [17]. Hu et al. [18] discovered

disease-disease links by using correlation-based methods and gene

set enrichment analysis to measure the similarities between gene

expression profiles of diseases. They also integrated gene

expression profiles that pertain to responses of cell lines to drugs

derived from the Connectivity Map [19] to create a drug-disease

network where clusters of drugs and diseases suggested shared

drug mechanisms and molecular disease pathology. Suthram et al.

[20] performed integrative analysis of 54 disease-related mRNA

expression datasets. They measured the perturbation of predefined

protein functional modules using the mean normalized transcrip-

tional activity of each module’s component genes in the disease’s

transcriptional profile. Furthermore, they identified known drug

targets in the modules that were perturbed by multiple disease

types, which they proposed as pluripotent/broad-spectrum drug

targets .

The goal of our work is similar to that of Jenner et al. , Hu et al. ,

and Suthram et al. : to discover transcriptional responses common

to many diseases, specifically those caused by bacterial pathogens,

and to discover existing drug targets within those transcriptional

signatures. The previous authors have used global correlation

measures to detect disease associations, which may obscure

relationships that exist over only a subset of the diseases or genes.

In contrast, we use a combination of gene set level enrichment and

biclustering. As we demonstrate in this work, this approach

enables us to group sets of host genes that are dysregulated only by

a subset of the pathogens, facilitating the capture of pathway-

specific relationships among groups of pathogens.

Results

We start with an overview of the method (Figure 1). We

obtained genome-wide transcriptional data sets of host responses

after infection by bacterial pathogens from the NCBI’s Gene

Expression Omnibus (GEO) (Figure 1A). After data filtering (see

Methods), we retained 29 gene expression profiling studies which

represent 213 host samples and 38 bacterial pathogens or

pathogen strains. We sub-divided the datasets into four major

kinds of infection: gastrointestinal, oral cavity, hematopoietic, and

respiratory. A complete description of these datasets and their

GEO accession numbers is provided in Table S1.

Figure 1. Overview of our system. Overview of our computational
system to compute host-oriented broad-spectrum drug targets. (A)
Obtaining relevant collection of taxonomic names for human bacterial
pathogens. Querying the GEO metadatabase in search of relevant
transcriptional datasets. (B) Gene Set Enrichment Analysis of the
transcriptional datasets collected in Step A. (C) Identification of
pathogen-gene set biclusters and estimation of statistical significance
of biclusters (D) Testing bicluster enrichment for known drug targets.
(E) Literature analysis of putative HOBS drug targets contained in
biclusters.
doi:10.1371/journal.pone.0058553.g001
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Since these datasets were generated by different research groups

with different objectives in mind, they tended to be very diverse,

e.g., in the microarray platform used, the infected host, and the

tissue or cell type from which the gene expression measurements

were taken. Such variations made the direct comparison of the

datasets difficult. To alleviate this problem, we computed gene sets

perturbed by each pathogen using Gene Set Enrichment Analysis

(GSEA) (Figure 1B), thereby enabling comparison across patho-

gens at the level of perturbed gene sets. We recorded all pathogens

and the gene sets they perturbed in a matrix. Next, we biclustered

this matrix in order to identify all subsets of the gene sets that were

co-perturbed across a subset of the pathogens (Figure 1C). We

assessed the statistical significance of the biclusters by comparing

their sizes to biclusters found in randomized matrices. This process

yielded 84 up-regulated and three down-regulated significant

biclusters at a 0.05 p-value cutoff, after adjusting for multiple-

hypothesis testing [21] (Tables S2 and S3). In this paper, we focus

our discussion on up-regulated biclusters as (a) they are far greater

in number than down-regulated biclusters and (b) up-regulated

genes and pathways may be controlled, in general, by drugs that

prevent function of their targets. We used Fisher’s exact test to

estimate the enrichment of a bicluster in known drug targets

(Figure 1D). We acknowledge that even a bicluster with a single

drug target may be worthy of study. We computed bicluster

enrichment in drug targets in order to prioritize biclusters for

examination since we had a large number of biclusters. Finally, we

searched the literature for biologically meaningful connections

among the gene sets, pathogens, and drug targets in a bicluster in

order to find support for the hypothesis that modulating the

activity of the drug targets may control the infection caused by the

pathogens (Figure 1E).

We have organized the results from our study into two major

sections. First, we asked if the biclusters we computed could reveal

well-known immunological responses in the host to bacterial

infection. To this end, we identified host gene sets that were

contained in those biclusters that were also perturbed by many

pathogens. Our analysis revealed that biological functions

pertaining to the up-regulation of inflammatory gene sets,

Lipopolysaccharide (LPS)-inducible gene sets, innate immunity

response, induction and inhibition of apoptosis, and maturation of

dendritic cells are host responses that are triggered by most of the

bacterial pathogens. Rediscovering well known host responses to

infection established the validity of our approach in detecting

common host signatures. Second, we analyzed the biclusters for

putative HOBS targets. Out of the 84 significantly up-regulated

biclusters, 47 of them were enriched in known drug targets at the

0.05 significance level (Table S2). We identified seven biclusters

where all the pathogens contained in each of these biclusters

infected a single tissue or organ in the human body. For instance,

in bicluster 38, we found four gastrointestinal pathogens, namely,

Yersinia enterocolitica wap and p60 strains, Helicobacter pylori kx2

strain, and Enterohemorrhagic Escherichia coli. From this bicluster,

we suggested the potential use of chronic inflammation suppressors

such as Anakinra, Etanercept and Infliximab in treating infection

caused by these four pathogens.

Gene Sets Perturbed in Response to Bacterial Infection
There are several stages and outcomes that are hallmarks of

generalized infection. On one hand, pathogens try to enter,

multiply, and spread in the host, causing disease. On the other

hand, hosts attempt to defend the attack from pathogens using

processes conferring innate and adaptive immunity, leading to the

elimination of pathogens. There are different strategies that are

utilized by pathogens and by hosts to achieve these objectives.

Among other things, pathogens induce or inhibit apoptosis, import

their genetic material into the host, and replicate their genome

[22,23]. Hosts utilize various arms of the immune system such as

inflammation, response to stimulus, maturation of dendritic cells

and activation of various components of the innate immunity to

lessen pathogenicity.

The 84 statistically significant up-regulated biclusters contained

1,364 distinct gene sets and 34 pathogens. To determine if our

biclusters capture the hallmarks of infection mentioned above, we

asked which gene sets belonged to the largest number of biclusters.

Upon ranking the gene sets in decreasing order of number of

biclusters they were perturbed in, we observed that the number of

biclusters that a gene set was contained in had a high positive

correlation (r~0:89, p-value v 2:2|10{16) with the number of

pathogens that perturb the gene set (Figure S1). Table 1 shows the

top ten gene sets in this ranked list. Then, for each gene set, we

assigned Gene Ontology (GO) biological processes for intuitive

interpretation (Table 2) using the procedure described in Methods.

We now proceed to discuss these highly-ranked gene sets and

correlate them to well-known hallmarks of infection.

Inflammatory Response.. Inflammation is one of the

immediate reactions by the host against pathogenic infections.

Of the top ten gene sets, four gene sets have a high overlap with

genes annotated with GO’s inflammatory response process

(GO:0006954; ‘‘Zhang Response to IKK Inhibitor and TNF

up’’, ‘‘Uzonyi Response to Leukotriene and Thrombin’’, ‘‘Hinata

NFKB Targets Keratinocyte up’’, and ‘‘Mahadevan Response to

MP470 up’’). For each of these gene sets, we describe the

experiment that generated it. We note that these experiments were

conducted in diverse tissues and were not directly related to

pathogen infection. Nevertheless, by examining the connection

between each of these gene sets and inflammation, we demonstrate

that inflammation is a non-specific response triggered by many of

the pathogens irrespective of the type of cell being infected. The

gene set ‘‘Zhang Response to IKK Inhibitor and TNF up’’ is

perturbed in 83 biclusters spanning 33 different bacterial

pathogens. This gene set contains 219 genes that are up-regulated

in BxPC3 pancreatic cancer cells after treatment with tumor

necrosis factor (TNF)-a, a pro-inflammatory cytokine [24]. This

gene set consists of genes encoding for pro-inflammatory

mediators such as IL1A, IL1B, TNFSF10 and a number of other

chemokines including CCL20, CCL5, CXCL1, CXCL10,

CXCL11, CXCL16, CXCL2, and CXCL3. The next set in the

Table 1. Gene sets perturbed in many pathogens.

Gene Set # Pathogens # Biclusters

Zhang Response to IKK Inhibitor and TNF up 33 83

Seki Inflammatory Response LPS up 33 83

Dirmeier LMP1 Response Early 32 76

Dauer STAT3 Targets up 31 75

Hinata NFKB Targets Keratinocyte up 31 74

Tian TNF Signaling via NFKB 32 73

Lindstedt Dendritic Cell Maturation B 30 67

Uzonyi Response to Leukotriene and Thrombin 31 63

Netpath IL 4 Pathway Down 30 59

Mahadevan Response to MP470 up 30 53

For each gene set, the table shows the number of pathogens that perturb it
and the number of biclusters it appears in.
doi:10.1371/journal.pone.0058553.t001
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list is ‘‘Hinata NFKB Targets Keratinocyte up’’, which was

perturbed by 31 pathogens and appeared in 74 biclusters. This

gene set contains 71 genes that were up-regulated in primary

keratinocyte cells after transduction with NF-kappa B [25]. The

majority of the genes in this gene set are cytokines and growth

factor genes including chemokines ( CCL20, CCL5, CXCL10,

CXCL11, CXCL3, CXCL6); interleukins ( IL15, IL1B, IL1RN,

IL6, IL8); and growth factor genes (TNC, VEGFA, ESM1, MP2).

The ‘‘Uzonyi Response to Leukotriene and Thrombin’’ gene set is

perturbed by the same number of pathogens as ‘‘Hinata NFKB

Targets Keratinocyte up’’. It contains 37 genes that were up-

regulated in Human Umbilical Vein Endothelial Cells (HUVEC)

after stimulation with leukotriene LTD4, a leukocyte produced at

sites of inflammation [26]. The fourth gene set is ‘‘Mahadevan

Response to MP470 up’’, which is perturbed by 30 pathogens and

appeared in 53 biclusters. This gene set contains 19 genes that

were up-regulated in gastrointestinal stromal tumor cell-line after

treatment with protein-kinase inhibitor drug (MP470) [27]. This

gene set also contains chemokines and proinflammatory cytokines

such as CCL5, CXCL1, CXCL10, CXCL3, CXCL5, CXCL6,

IL8, and IL6.

Activation of Innate Immunity.. In addition to inflamma-

tion, innate immunity also involves the activation of anatomical

barriers, mechanical removal of antigens, pattern-recognition

receptors, complement pathways, and phagocytosis. The ‘‘Netpath

IL 4 Pathway down’’ gene set (which contains 90 genes that are

supposed to be transcriptionally down-regulated by the activation

of IL4 pathway) is among the top ten most perturbed gene sets. It

is perturbed by 30 pathogens and is implicated in 59 biclusters.

This gene set has a high overlap with three GO biological process

namely ‘‘Activation of Innate Immune Response’’, ‘‘Pattern

Recognition Receptor Signaling Pathway’’, and ‘‘Toll-like Recep-

Table 2. Mapping of Gene Sets to GO Biological Processes.

Gene Set GO Enriched Processes (Top Three) p-value

Zhang Response to IKK Inhibitor and TNF up Inflammatory Response 2:89|10{6

Response to Wounding 1:28|10{4

Defense Response 4:56|10{4

Seki Inflammatory Response LPS up Locomotory Behavior 1:19|10{6

Response to External Stimulus 1:36|10{5

Defense Response 6:49|10{5

Dirmeier LMP1 Response Early Apoptosis GO 9:42|10{3

Programmed Cell Death 9:56|10{3

Viral Genome Replication 1:38|10{2

Dauer STAT3 Targets up Cyclic Nucleotide Metabolic Process 1:94|10{3

Protein Import into Nucleus Translocation 1:94|10{3

DNA Damage Response Signal Transduction Resulting in Induction of
Apoptosis

3:66|10{3

Hinata NFKB Targets Keratinocyte up Response to Wounding 1:09|10{6

Inflammatory Response 1:31|10{6

Response to Stress 3:63|10{5

Tian TNF Signaling via NFKB Defense Response 1:77|10{3

Regulation of I KAPPAB Kinase NF KAPPAB Cascade 3:09|10{3

Response to Wounding 3:4|10{3

Lindstedt Dendritic Cell Maturation B Apoptosis GO 9:05|10{4

Programmed Cell Death 9:22|10{4

Cell Development 2:47|10{3

Uzonyi Response to Leukotriene and Thrombin Heart Development 1:72|10{2

Inflammatory Response 3:19|10{2

Regulation of Transcription 3:26|10{2

Netpath IL 4 Pathway Down Activation of Innate Immune Response 5:27|10{6

Pattern Recognition Receptor Signaling Pathway 5:27|10{6

Toll-like Receptor Signaling Pathway 5:27|10{6

Mahadevan Response to MP470 up Locomotory Behavior 1:6|10{7

Defense Response 3:62|10{7

Inflammatory Response 1:01|10{6

The table shows top three GO biological processes that have the highest overlap with each of the ten most frequently perturbed gene sets (in Table 1). The p-value
indicates the statistical significance of the overlap, based on Fisher’s exact test.
doi:10.1371/journal.pone.0058553.t002
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tor Signaling Pathway’’. The perturbation of this gene set

indicated that in addition to inflammation, other components of

the innate immunity process are also perturbed by multiple

bacterial pathogens.

Maturation of Dendritic Cells.. Dendritic cells have the

ability to develop from immature antigen-capturing cells to more

specialized antigen-presenting cells. The maturation of dendritic

cells is a very important aspect of the host response to bacterial

infection. This step indicates the stimulation of various cytokines,

chemokines, and other co-stimulatory molecules that are necessary

for the onset of adaptive immunity [28]. A number of factors drive

the maturation of dendritic cells including the type of antigen (e.g.,

lipopolysaccharide) and the presence of inflammatory cytokines

(e.g., IL-1 and TNF-alpha). In our study, we found that the

‘‘Lindstedt Dendritic Cell Maturation A’’ gene set was perturbed

by 30 pathogens and implicated in 67 biclusters. This gene set

contains 54 genes that were up-regulated in a transcriptional study

involving stimulation of human monocyte-derived dendritic cells

with inflammatory stimuli, consisting of tumor necrosis factor

(TNF)-a and IL-1b [29].

Induction and Inhibition of Apoptosis.. Induction and

inhibition of apoptosis are important mechanisms of bacterial

pathogenesis [22]. The ‘‘Dirmeier LMP1 Response Early’’ gene

set, which has a high overlap with GO’s ‘‘Apoptosis’’

(GO:0006915) and ‘‘Programmed Cell Death’’ (GO:0012501)

biological processes is the second most highly perturbed gene set

across the significant biclusters. It is perturbed by 32 pathogens

spanning 76 biclusters. This gene set contains 54 genes that are

dysregulated in B lymphocyte cells after induction of LMP1, an

oncogene. This gene set contains both pro- and antiapoptotic

genes whose balance permitted survival of B lymphocyte cells [30].

Perturbation of the ‘‘Dirmeier LMP1 Response Early’’ gene set by

most of the pathogens we analyzed indicated that genes with

opposing activities involved in cell survival were up-regulated

during bacterial infection. This gene set contains tumor suppres-

sors (KLF6, TNFAIP3), oncogenes (BIRC3, CXCR7, HER-

PUD1, HSP90AB1, LCP1, MYC, NFKB2), cell differentiation

markers (CD69, CD83, ICAM1, SLAMF1), and growth markers

(LTA, NPPB, TNFSF9).

Response to Lipopolysaccharide Stimulation.. The host

responds in a variety of ways against internal or external stimuli.

An example of an external stimulus is a lipopolysaccharide (LPS).

LPS is a molecule found on the outer membrane of Gram-negative

bacteria. It triggers the expression of a number of signaling

molecules, pro-inflammatory cytokines, and antibacterial genes

when interacting with the Toll-like receptor of the host cell [31].

The ‘‘Seki Inflammatory Response LPS up’’ gene set [32,33]

contains genes that were up regulated in hepatic stellate cells of the

mouse after stimulation with bacterial LPS. This gene set is up-

regulated in as many as 83 biclusters (similar to ‘‘Zhang Response

to IKK Inhibitor and TNF up’’ gene set) indicating that, genes

related to LPS stimulation are predominantly perturbed across a

significant number of Gram-negative pathogens. Previous studies

have shown that LPS and Gram-negative bacteria such as

Salmonella elicit identical patterns of gene regulation in macro-

phages [34,35].

We expected this gene set would be perturbed only by Gram-

negative bacteria, as LPS is a characteristic of these bacteria [31].

However, we observed that 30% of the pathogens that up-

regulated this gene set were Gram-positive. Figure 2 shows 20

distinct pathogens (without counting strains of the same pathogen)

that up-regulated the ‘‘Seki Inflammatory Response LPS up’’ gene

set. Six of these pathogens are Gram-positive, namely Streptococcus

pneumoniae, Listeria monocytogenes, Bifidobacterium bifidum, Streptococcus

pyogenes, Lactobacillus acidophilus, and Bacillus anthracis. We noted that

this gene set has a significant overlap with genes annotated with

the biological process ‘‘Response to External Stimulus’’

(GO:0009605). This biological process represents the cells’s

response to external stimuli. Of the 83 genes annotated to this

GO term, 14 genes also belong to ‘‘Seki Inflammatory Response

LPS up’’ gene set (p-value 1:36|10{5). This high degree of

overlap suggests that many genes that respond to LPS may belong

to a broader class of genes that are perturbed by any external

stimulus, including a pathogenic bacterium. This possibility may

explain our finding that many Gram-positive bacteria perturb the

gene set ‘‘Seki Inflammatory Response LPS up’’.

Putative HOBS Drug Targets
We now turn our attention to discovering potential HOBS drug

targets in our biclusters. To this end, we further filtered the 84

significant biclusters based on the type of infection caused by the

pathogens they contained. Table 3 shows biclusters that contained

pathogens that cause an infection in a single type of tissue. We

identified seven such biclusters: five gastrointestinal, one respira-

tory, and one hematopoietic. We selected the most statistically

significant bicluster from each category for discussion in this paper.

Gastrointestinal Pathogens.. Bicluster 38 consisting of the

Gram-negative pathogens Yersinia enterocolitica wap and p60 strains,

Helicobacter pylori kx2 strain, and enterohemorrhagic Escherichia coli

is the bicluster most enriched with gastrointestinal pathogens (p-

value 1:5|10{3). Yersinia enterocolitica causes a broad range of

gastrointestinal syndromes ranging from acute diarrhea, terminal

ileitis, mesenteric lymphadenitis, and pseudoappendicitis [36].

Helicobacter pylori kx2 strain is responsible for causing gastric

adenocarcinoma [37]. Enterohemorrhagic Escherichia coli causes

diarrhea or hemorrhagic colitis in humans [38]. The four

pathogens jointly up-regulate 227 gene sets (Figure 3A shows the

gene sets in this bicluster that contain drug targets). There are 18

known drug targets in this bicluster (p-value 3:7|10{7). Below we

will discuss the drug targets IL1R1 and TNF, which are both

primary pro-inflammatory cytokines.

Interleukin-1 type 1 receptor (IL-1R1) is a target molecule for

the drug Anakinra (DrugBank ID DB00026). Anakinra is designed

to treat rheumatoid arthritis by competitively binding to IL-1R1

thereby inhibiting the action of elevated levels of the pro-

inflammatory cytokine IL-1. Previous studies have shown that

Yersinia enterocolitica, Helicobacter pylori kx2 strain, and Enterohemor-

rhagic Escherichia coli induce chronic inflammation [37,39,40].

These observations suggest the potential use of drugs that suppress

elevated levels of IL-1, such as Anakinra, in the treatment of

gastrointestinal infections caused by these four pathogens. Another

pro-inflammatory molecule produced by cells infected with

bacteria is TNF-a, which can cause TNF-a-induced apoptosis.

TNF-a has been implicated as a target molecule for a number of

FDA-approved drugs. Etanercept (DrugBank ID: DB00005) and

Infliximab (DrugBank ID: DB00065) are TNF-a blockers. Anti-

TNF therapies have shown to be effective in the treatment of

Crohn’s disease and ulcerative colitis, which are both disease of the

gastrointestinal tract that are characterized by inflammation

[41,42]. Although we did not find supporting evidence on the

use of these drugs in the treatment of infections caused by Yersinia

enterocolitica, Helicobacter pylori kx2 strain, and Enterohemorrhagic

Escherichia coli, the potential use of TNF-a blockers such as

Etanercept and Infliximab in the treatment of infection caused by

these four pathogens may be worth investigating.

Respiratory Pathogens.. Bicluster 72 is enriched with

respiratory pathogens (p-value 3:0|10{2). It contains the

pathogens Pseudomonas aeruginosa and Mycobacterium tuberculosis.

Prediction of Drug Targets for Infectious Diseases
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Pseudomonas aeruginosa causes major infections in immunocompro-

mised patients. It is also a leading cause of hospital-acquired

infections such as pneumonia [43]. Mycobacterium tuberculosis is a

causative agent of tuberculosis. The two pathogens jointly perturb

245 gene sets including the IL-12 and IL-23 pathways (Figure 3B

shows the gene sets in this bicluster that contain drug targets). The

role of IL-12 induction in the treatment of M. tuberculosis has been

reported in previous studies. For instance, Lowrie et al. have shown

that up-regulation of IL-12 suppressed proliferation of M.tubercu-

losis in mice [44]. They further suggested the inclusion of this

cytokine in tuberculosis vaccines. IL-12 plays a significant role in

the host response against P.aeruginosa. It is an important molecule

in the generation of IFN-c and TNF-a, which are essential to

promote bacterial clearance. Up-regulation of IL-12 by the host

cell is a common strategy used by the host to fight infections

caused by these two pathogens. Boosting the level of this molecule

when needed, e.g., in immunocompromised patients, might be a

viable strategy to treat infection caused by Pseudomonas aeruginosa

and Mycobacterium tuberculosis. Studies suggest that Pseudomonas

aeruginosa up-regulates IL-23 thereby creating airway inflammation

in the host. Dubin et al. [45] suggested the suppression of IL-23 as

a potential avenue for immunotherapy to infection with this

pathogen. Another study indicated that IL-23 is not required by

the host to control Mycobacterium tuberculosis infection [46]

Figure 2. Pathogens that perturb the ‘‘Seki Inflammatory Response LPS up’’ gene set. Pathogens that perturb the ‘‘Seki Inflammatory
Response LPS up’’ gene set. The second column contains the q-values as well as a color indicating the magnitude of the q-value. Figure 3 contains the
legend mapping q-values to colors. All pathogens up-regulate this gene set, except Streptococcus gordonii, which down-regulates it.
doi:10.1371/journal.pone.0058553.g002
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indicating that the down-regulation of IL-23 may not disrupt the

host defense mechanism during M.tuberculosis infection. Therefore,

we suggest that down-regulating IL-23 might be a common

strategy to treat infection caused by Pseudomonas aeruginosa and

Mycobacterium tuberculosis.

Hematopoietic Pathogens.. Bicluster 0 contains two E.chaf-

feensis species, Arkansa and Wakulla. Infection with Ehrlichia

chaffeensis causes ehrlichiosis, which is characterized by an

influenza-like illness, elevation of transaminase levels and sepsis

[47]. These two strains commonly up-regulated as many as 979

gene sets, which is not surprising considering the fact that they are

different strains of the same bacterial pathogen. However, what is

interesting is that the E.chaffeensis Liberty strain, which is a part of

our study, is not part of this bicluster. This result indicates

E.chaffeensis Arkansa and E.chaffeensis wakulla elicit similar host

responses that are different from those perturbed by the Liberty

strain. Considering the similarity in the host transcriptional

responses, it is tempting to speculate that a common treatment

regimen may exist for infection caused by the strains Arkansa and

Wakulla.

Among the commonly up-regulated gene sets, ‘‘Hsiao Liver

Specific Genes’’ contains the highest number of known drug

targets (Figure 3C shows the gene sets in this bicluster that contain

drug targets). There are 49 known drug-target proteins in this gene

set alone. The ‘‘Hsiao Liver Specific Genes’’ gene set determined

by Hsiao et al. [48] contains 255 genes that are selectively

expressed in the human liver in a gene expression profiling study

that involved 59 human samples of 19 different tissue types. The

genes in ‘‘Hsiao Liver Specific Genes’’ genes are annotated with

liver-specific function including blood coagulation (GO:0007596)

and homeostasis (GO:0007599). The up-regulation of the ‘‘Hsiao

Liver Specific Genes’’ gene sets by by Wakulla and Arkansas (but

not by Liberty) might indicate that E.chaffeensis Liberty is inactive

in the liver.

The liver is an important organ in cholesterol synthesis,

regulation, and export to the other cells. The ‘‘Hsiao Liver

Specific Genes’’ gene set contains the protein F2, coagulation

factor II (thrombin), which is linked to the cholesterol lowering

drug Simvastatin (DrugBank ID: DB00641). Simvastatin reduces

total and LDL-cholesterol as well as plasma triglycerides and

apolipoprotein B. Previous studies have indicated that E.chaffeensis

requires cholesterol for survival and growth. However, E.chaffeensis

does not have the genes for synthesizing cholesterol. Instead, it

depends on the host cell to acquire this molecule [49]. In another

study, treatment of E.chaffeensis with cholesterol extraction reagent

methyl-b-cyclodextrin hampred the ability of this pathogen to

infect leukocytes [50]. With this observation in mind, we reasoned

that cholesterol lowering drugs such as Simvastatin can be used in

the treatment of E.chaffeensis infection.

Known Anti-infective Drug-targets in Biclusters
In the previous section, we attempted to predict HOBS drug

targets for three biclusters where the pathogens contained in each

bicluster are known to infect similar organs of the human host. In

this section, we ranked all statistically significant biclusters based

on the number of known anti-infective drug targets that they

contain. Identification of such biclusters may be useful to predict

other HOBS drug targets in the same bicluster.

To this end, we used the Anatomical Therapeutic Chemical

(ATC) Classification from DrugBank and categorized drug targets

that are found in statistically significant biclusters as anti-infective

or non-anti-infective targets (Table S4). Out of 479 drug targets

that are contained in these biclusters, 73 of them are known to be

targeted by one or more anti-infective drugs. A functional

enrichment analysis of these drug-target genes using DAVID

[51] revealed that ‘‘response to wounding’’ (GO:0009611),

‘‘inflammatory response’’ (GO:0006954), ‘‘defense response’’

(GO:0006952), and the KEGG complement and coagulation

cascades pathway are among the top five highly enriched

biological processes (Table S5). These results shed light on which

biological processes in the host are commonly targeted by existing

anti-infective drugs.

Bicluster 0 and Bicluster 72 that we discussed in the previous

section are the two biclusters that contain the highest number of

anti-infective drug targets. Bicluster 0 that contains two strains of

Ehrlichia Chaffeensis, arkansa and wakulla, has 58 anti-infective drug

targets. Bicluster 72 that contains two respiratory pathogens

Pseudomonas aeruginosa and Mycobacterium tuberculosis, has 12 anti-

infective targets. It appears that biclusters that had the highest

number of anti-infective targets also contained pathogens that are

Table 3. Biclusters divided by kind of infection.

Pathogens Bicluster p-value # Gene Sets # Targets Target Enrich. (p-value)

Gastrointestinal

Yersinia Enterocolitica wap and p60 strains, Helicobacter Pylori, and Escherichia Coli 1:5|10{3 227 18 3:7|10{7

Yersinia Enterocolitica, Lactobacillus Acidophilus, Listeria Monocytogenes, and
Helicobacter Pylori

1:3|10{2 173 11 9:2|10{4

Yersinia Enterocolitica and Helicobacter Pylori 1:7|10{2 272 21 7:9|10{6

Yersinia Enterocolitica, Listeria Monocytogenes, and Bifidobacterium Bifidum 1:8|10{2 269 17 2:1|10{4

Yersinia Enterocolitica, Bifidobacterium Bifidum, Streptococcus Pyogenes, and
Helicobacter Pylori

3:6|10{2 101 6 9:7|10{3

Respiratory

Pseudomonas Aeruginosa, and Mycobacterium Tuberculosis 3:0|10{2 245 16 4:7|10{4

Hematopoietic

Ehrlichia Chaffeensis; Strains: arkansa and wakulla v10{9 979 186 4:1|10{55

The table shows the biclusters that contained pathogens that cause an infection in a single type of tissue. The columns from left to right are: (i) list of pathogens
contained in a bicluster, (ii) a p-value indicating the statistical significance of the bicluster, (iii) the number of gene sets in the bicluster, (iv) the number of known human
drug target genes/proteins in the bicluster, and (v) p-value indicating the enrichment of the bicluster in know human drug-target genes/proteins.
doi:10.1371/journal.pone.0058553.t003
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related to one another. This result provided support to our

approach of focusing on biclusters that contained pathogens

infecting similar organs/tissue of the host.

Conclusions

In this paper, we have presented a computational approach to

identify potential host-oriented broad-spectrum drug targets. Gene

set enrichment and biclustering were key ingredients of our

method. We combined these two techniques to compute subsets of

pathogens that commonly up- or down- regulated sets of biological

pathways, gene sets, or protein complexes. We applied this

approach on a compendium of gene expression data that

represented 38 bacterial pathogens and pathogen strains, from

which we identified 84 up-regulated and three down-regulated

statistically significant biclusters. Using this approach we were

successful in detecting common host responses that are hallmarks

of bacterial infections.

Motivated by the premise that diseases that have high degree of

transcriptional similarity may be treated with similar drugs [17],

we integrated drug target information into our analysis to predict

HOBS targets for bacterial infections. Focusing on biclusters that

contained pathogens that infected same tissue, we predicted new

uses of the drugs Anakinra, Etanercept, and Infliximab for

gastrointestinal pathogens Yersinia enterocolitica, Helicobacter pylori

kx2 strain, and enterohemorrhagic Escherichia coli and the drug

Simvastatin for hematopoietic pathogen Ehrlichia chaffeensis.

Broadly, the approach we presented in this paper falls in the

realm of integrative DNA microarray data analysis. It can be

viewed as an alternative approach to the existing methods

developed to discover transcriptional responses common to many

diseases [16,18,20]. Unlike previous approaches, our method

leverages biclustering to detect pathway-specific relationships only

among subsets of pathogens.

Our computational approach depends on the identification and

targeting of genes whose expression is modulated during host-

pathogen interactions. A potential concern with this approach is

that it may not distinguish between beneficial host responses and

those that may worsen the pathogenecity of the microbe.

Dysregulation of a particular biological pathway may not have

the same effect on the host under all kinds of infections. For

instance, inflammation is often an important host defensive

mechanism that may be harmful if uncontrolled.

We computed biclusters that contained groups of biological

pathways that are commonly dysregulated by group of pathogens.

We acknowledged that a pathway may not be appropriate to

target by HOBS drugs simply because a group of pathogens

dysregulated that pathway. Accordingly, we used biclustering as a

filtering step that would provide potential candidates for HOBS

drug targets. In our analysis, we subjected each commonly

dysregulated pathway to additional examination, wherein we

studied the literature on these pathways and the genes they

contained in the context of the pathogens that perturbed them. We

used this additional manual step in order to prevent us from

proposing an intervention mechanism that would inadvertently

block beneficial host responses.

Another difficulty that may arise with our approach is that the

number of pathways in a bicluster can sometimes be overwhelm-

ing for subsequent analysis. A rational extension to our work is to

design methods to prioritize non-redundant biclusters and

biological processes based on the similarity of their perturbation.

Recent techniques for functional enrichment [52] may be

appropriate for this task.

The perturbation of a group of gene sets by a group of

pathogens indicates by itself that there might be some underlying

similarities in the mechanisms used by the pathogens to infect the

host. Therefore, we would ideally like to examine each statistically

significant bicluster regardless of whether it contains a drug target

or not. The large number of biclusters we computed precluded this

detailed analysis. Hence, we chose the strategy of prioritizing

biclusters based on drug-target enrichment. The other statistically

significant biclusters presented in our supplementary results may

also be worthy of further study in the future.

In this study, we analyzed host response data from bacterial

infections. In the future, we plan to apply the approach developed

here to fungal and viral data sets as well. The results from our

studies and related approaches [20] may serve as powerful

resources for researchers engaged in host-oriented broad-spectrum

drug target discovery.

Methods

Gene Expression Datasets
We retrieved 808 distinct taxonomic names of bacterial

pathogens from the American Biological Safety Association

database of human pathogens. We downloaded the GEO meta

database [53] that contains metadata associated with the NCBI’s

Gene Expression Omnibus (GEO) [54] samples, platforms, and

datasets. Next, we queried the meta database using the taxonomic

names as keywords. We obtained gene expression datasets for 105

of the 808 bacterial pathogens. Next, we pruned the datasets using

Figure 3. Dendrogram of hierarchical clustering of gene sets
for three tissue-specific biclusters. Dendrogram of hierarchical
clustering of gene sets for three tissue-specific biclusters. (A) Yersinia
enterocolitica wap and p60 strains, Helicobacter pylori kx2 strain, and
enterohemorrhagic Escherichia coli. (B) Pseudomonas aeruginosa and
Mycobacterium tuberculosis. (C) E.chaffeensis Arkansa and Wakulla
strains. The figure only shows gene sets that contain one or more
known human drug targets.
doi:10.1371/journal.pone.0058553.g003

Prediction of Drug Targets for Infectious Diseases

PLOS ONE | www.plosone.org 8 March 2013 | Volume 8 | Issue 3 | e58553



the following criteria: (i) We removed time-course data to avoid

complications that could arise due to temporal variation of cellular

responses to the various pathogens. (ii) We excluded datasets that

have less than six samples (infected and healthy samples combined)

so that our datasets conform to the recommended sample size for

conducting t-tests. (iii) We considered DNA microarray data

collected from three hosts, namely, Homo sapiens, Mus musclus, and

Rattus norvegicus. (iv) We considered experiments that involved the

comparison of normal and infected samples. After this process, we

retained 29 GEO datasets for subsequent analysis. Details on these

datasets are given in Table S1.

Gene Set Compendium
We built comprehensive functional annotation data sets

encompassing biological pathways and functionally associated

genes. We integrated data from four sources:

1.National Cancer Institute-Nature Pathway Interaction Data-

base (NCI-PID): The NCI-PID contains a collection of curated

and peer-reviewed pathways of molecular signaling, regulatory

events, and cellular processes [55].

2.NetPath: The NetPath database contains cancer and immune

signaling pathways, such as the T- and B- cell receptor signaling

pathways [56].

3.CORUM: The CORUM database houses protein complexes

mainly from human, rat, and mouse. A protein complex

contains multiple gene products annotated by the same function

or localization e.g., respiratory chain protein complex mito-

chondrial [57].

4.The Molecular Signature Database (MsigDB): MsigDB

contains genes that are biologically related. This relatedness

can be defined by participation in the same biological pathway,

chromosomal location, or response to some treatment as

evidenced by high-throughput experiments such as gene

expression profiling. MsigDB houses four categories of gene

sets namely, positional gene sets, curated gene sets, motif gene

sets, and computational gene sets. In our analyses we used only

curated gene sets.

We collected 449 curated pathways from NCI-PID, 20 curated

pathways from the NetPath database, 1,765 protein complexes

from the CORUM database, and 3,272 curated gene sets from

MsigDB.

Drugs and Drug Targets Data
We collected 1,652 human drug target proteins from DrugBank

[58]. These drug targets were linked to 6,796 therapeutically-

validated and experimental drugs.

Computation of Gene Sets Perturbed in the Host by a
Pathogen

We downloaded the raw gene expression profiles (CEL files)

from the NCBI’s Gene Expression Omnibus (GEO) [54] for the 29

GEO accessions identified above. We normalized the datasets with

the Microarray Analysis Suite (MAS5) [59] using the Expression-

FileCreator Module of the GenePattern genomic analysis platform

[60]. We ran Gene Set Enrichment Analysis (GSEA) [61] on each

gene expression dataset using the compendium of gene sets

collected above. We collected the resulting q-values (False

Discovery Rate or FDR values) into a matrix that indicates the

significance of perturbation of each gene set by each pathogen. A

q-value is the expected probability that GSEA’s assessment that a

pathogen perturbs a gene set represents a false positive finding. We

use a cutoff of 0.2 on q-value, which implies that four out of five

gene sets that we consider to be perturbed by a pathogen are likely

to be true discoveries. As we describe below, we further reduce the

possibility of false discoveries in three steps: (i) we compute

pathogen-gene set biclusters, (ii) we estimate the statistical

significance of each bicluster, and (iii) we compute the enrichment

of biclusters in known drug targets. A bicluster associates multiple

pathogens with multiple gene sets. Therefore, each gene set in a

bicluster is perturbed by more than one pathogen, decreasing the

possibility that the perturbation of this gene set is a random

occurrence. Furthermore, by estimating the statistical significance

of each bicluster, we discard biclusters (and the pathogen-gene set

associations that they represent) that could have arisen by random

chance. Finally, we filter-out biclusters that are not significantly

enriched in known drug targets. This process enabled us to focus

on drug-target enriched, non-random, pathogen-gene set associ-

ations.

Biclustering the q-value Matrix
Then, we created two binary matrices representing up-regulated

and down-regulated biclusters, respectively. In each matrix, each

row corresponded to a gene set and each column to a pathogen.

An entry in one of these matrices had a value of 1 if and only if the

GSEA q-value for that gene set-pathogen pair was at least 0.2. We

applied the BiMax algorithm [62] implemented in the BicAT

biclustering analysis toolbox [63] on these matrices to obtain two

sets of biclusters, one for up-regulated gene sets and another for

down-regulated gene sets.

Computing the Statistical Significance of Biclusters
We generated 10,000 randomized binary matrices using the

swap randomization algorithm [64]. Given a binary matrix M
with values 0 and 1, the swap randomization algorithm creates a

random matrix M 0 such that each row (respectively, column) of

M 0 has the same number of 1s as the corresponding row

(respectively, column) of M. The algorithm achieves this goal

through a series of steps that swap row-column pairs. We used our

own Perl implementation of this algorithm. We computed

biclusters in each of these matrices. We built two sets of

distributions reflecting the number of pathogens and the number

of genes sets in random biclusters. First, for every integer k§1, we

recorded the number of biclusters that contained k pathogens and

at least l gene sets, for different values of l. Next, we repeated this

process for each integer k, considering the number of gene sets in a

bicluster. Now, given a bicluster in the original data containing k
pathogens and l gene sets, we computed two p-values. One p-value

was the fraction of random biclusters that contained k pathogens

and at least l gene sets. The second p-value was the fraction of

random biclusters that contained l gene sets and at least k
pathogens. These p-values indicate the probability of observing a

bicluster that contains at least a certain number of pathogens or

gene sets in the original dataset by chance. We adjusted the p-

values for multiple hypothesis testing using the method of

Benjamini-Hochberg [21]. Finally, we chose the greater of the

two p-values as a p-value for each bicluster. We further considered

only biclusters with p-value of at most 0.05.

Computation of Bicluster Enrichment
We computed the enrichment of each bicluster in various

attributes such as the number of known drug targets, host type

(human, mouse, and rat), infected cell type (epithelial, dendritic,

and macrophage), Gram stain of the pathogen (positive and

negative), and infection kind (gastrointestinal, respiratory, oral

cavity, and hematopoietic). We used Fisher’s exact test for testing
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the significance of enrichment of a bicluster in each of these

attributes.

Translating Gene Identifiers
Different data sources use different naming schemes for

identifying genes . For instance, the molecular signature database

uses HUGO symbols while DrugBank uses UniProt namespaces.

We used HUGO gene symbols as the common gene identifier in

our study. We used the Synergizer service for translating gene/

protein’s identifiers from other namespaces to HUGO [65].

Assigning Gene Ontology Biological Processes to a Gene
Set

Some of the gene set names in the MsigBD are not self-

explanatory, affecting intuitive interpretation of results. In order

alleviate this problem, we considered the Gene Ontology

biological processes that have the highest overlaps with each

respective gene set. To this end, we used the pre-computed

overlap/hypergeometric p-values between a gene set and GO

processes that are provided on the MsigDB website. For the

‘‘Netpath IL 4 Pathway Down’’ gene set, we obtained the

corresponding GO biological processes using GOrilla [66].

Supporting Information

Figure S1 Scatter plot of number of pathogens vs.
biclusters. Plot indicates that number of pathogens perturbing

a gene set are positively correlated with the number of biclusters a

particular gene set appeared in. Supporting information can also

be accessed from our supplementary website: http://

bioinformatics.cs.vt.edu/ murali/supplements/2013-kidane-plos-

one.

(PDF)

Table S1 Details of DNA microarray dataset used in the
study. It contains GEO accession numbers, microarray platform

used, infected host, and tissue or cell type from which the gene

expression measurements were taken.

(HTML)

Table S2 Up-regulated biclusters. It contains detail infor-

mation on all up-regulated biclusters. This include: bicluster ID,

list of pathogens and gene sets in bicluster, p-values indicating

statistical significance of bicluster and enrichment of these

biclusters in various attributes such as drug targets and host type.

(HTML)

Table S3 Down-regulated biclusters. It contains detail

information on all down-regulated biclusters. This include:

bicluster ID, list of pathogens and gene sets in bicluster, p-values

indicating statistical significance of bicluster and enrichment of

these biclusters in various attributes such as drug targets and host

type.

(HTML)

Table S4 Known anti-infective targets in biclusters. It

contains bicluster ID, list of all drug targets, and anti-infective

targets in bicluster.

(XLS)

Table S5 Functional annotations of anti-infective tar-
gets. It contains p-values indicating enrichment of anti-infective

drug targets in GO biological processes.

(XLS)

Acknowledgments

We thank Oswald Crasta, Josep Bassaganya-Riera and Stephen Melville

for useful discussions.

Author Contributions

Conceived and designed the experiments: TMM. Performed the

experiments: YHK. Analyzed the data: YHK. Wrote the paper: YHK

CL TMM.

References

1. Fauci AS, Touchette NA, Folkers GK (2005) Emerging infectious diseases: A 10-
year perspective from the national institute of allergy and infectious diseases. The

International Journal of Risk and Safety in Medicine 17: 157–167.

2. Walsh C (2000) Molecular mechanisms that confer antibacterial drug resistance.
Nature 406: 775–781.

3. Schwegmann A, Brombacher F (2008) Host-directed drug targeting of factors
hijacked by pathogens. Sci Signal 1: re8+.

4. Schneider DS, Ayres JS (2008) Two ways to survive infection: what resistance

and tolerance can teach us about treating infectious diseases. Nat Rev Immunol
8: 889–895.

5. Tan SL, Ganji G, Paeper B, Proll S, Katze MG (2007) Systems biology and the
host response to viral infection. Nature Biotechnology 25: 1383–1389.

6. Woolhouse ME, Gowtage-Sequeria S (2005) Host range and emerging and

reemerging pathogens. Emerging Infectious Diseases 11: 1842–1847.

7. Rawlins MD (2004) Cutting the cost of drug development? Nature reviews Drug

discovery 3: 360–364.

8. Finlay BB, Hancock RE (2004) Can innate immunity be enhanced to treat

microbial infections? Nature reviews Microbiology 2: 497–504.
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