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Abstract

There is strong evidence from human and animal models that exposure to maternal hyperglycemia during in utero
development can detrimentally affect fetal kidney development. Notwithstanding this knowledge, the precise effects of
diabetic pregnancy on the key processes of kidney development are unclear due to a paucity of studies and limitations in
previously used methodologies. The purpose of the present study was to elucidate the effects of hyperglycemia on ureteric
branching morphogenesis and nephrogenesis using unbiased techniques. Diabetes was induced in pregnant C57Bl/6J mice
using multiple doses of streptozotocin (STZ) on embryonic days (E) 6.5-8.5. Branching morphogenesis was quantified ex vivo
using Optical Projection Tomography, and nephrons were counted using unbiased stereology. Maternal hyperglycemia was
recognised from E12.5. At E14.5, offspring of diabetic mice demonstrated fetal growth restriction and a marked deficit in
ureteric tip number (control 283.7623.3 vs. STZ 153.2624.6, mean6SEM, p,0.01) and ureteric tree length (control
33.162.6 mm vs. STZ 17.662.7 mm, p = 0.001) vs. controls. At E18.5, fetal growth restriction was still present in offspring of
STZ dams and a deficit in nephron endowment was observed (control 1246.2664.9 vs. STZ 822.4674.0, p,0.001). Kidney
malformations in the form of duplex ureter and hydroureter were a common observation (26%) in embryos of diabetic
pregnancy compared with controls (0%). Maternal insulin treatment from E13.5 normalised maternal glycaemia but did not
normalise fetal weight nor prevent the nephron deficit. The detrimental effect of hyperglycemia on ureteric branching
morphogenesis and, in turn, nephron endowment in the growth-restricted fetus highlights the importance of glycemic
control in early gestation and during the initial stages of renal development.
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Introduction

The global prevalence of diabetes in pregnancy is increasing,

both in terms of gestational diabetes mellitus (first diagnosis of

diabetes in pregnancy) and pre-existing type 1 and 2 diabetes

mellitus [1,2]. Irrespective of the etiology of maternal diabetes, the

developing fetus is exposed to a hyperglycemic intrauterine

environment, which confers an increased risk of adverse perinatal

outcomes such as birth trauma, cesarean delivery and altered fetal

growth patterns [3,4]. Maternal insulin therapy can reduce the

likelihood of these adverse perinatal outcomes [5]. Offspring

exposed to intrauterine hyperglycemia also have an elevated risk of

developing congenital malformations [6,7,8], and moreover, have

an increased susceptibility to develop metabolic diseases in

adulthood [9,10,11].

Maternal hyperglycemia is also associated with altered offspring

kidney development. Although kidney development is a compli-

cated process, two key events in kidney development are ureteric

branching morphogenesis and nephrogenesis [12]. The kidney

arises by the outgrowth of the ureteric bud and branching of the

ureteric epithelium into a complex tree-like structure, which

ultimately forms the renal collecting duct system and calyces.

Nephrogenesis is induced only at the tips of the branching ureteric

epithelium highlighting the association between ureteric tip

number and nephron endowment. Of the congenital malforma-

tions observed in offspring of diabetic pregnancy, genitourinary

defects and renal malformations are prevalent [13,14,15]. Studies

of streptozotocin (STZ) induced type 1 diabetes mellitus (T1DM)

suggest that exposure to hyperglycemia can lead to reduced

nephron endowment [16,17,18]. However, studies are few and less

than optimal methods have been used to count glomeruli. While

nephron endowment is highly dependent on adequate ureteric

branching morphogenesis, to date the effect of hyperglycemia on

ureteric tree development has not been assessed in vivo. Until

recently, assessment of ureteric branching morphogenesis typically

involved culturing fetal kidneys for a number of days in vitro. This

procedure results in a flattened kidney that can be wholemount

immunostained and imaged. Previous in vitro culture studies have

been limited to measures of ureteric tip number and have
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produced inconsistent results [16,19,20]. These discrepancies are

likely the result of variability inherent to culture preparations,

differences in the length of culture time and the type of media and

supplements used. A better understanding of the effect of

hyperglycemia on ureteric branching morphogenesis, and in turn

nephrogenesis, is required.

To explore the effect of hyperglycemia on the developing kidney

we utilized unbiased techniques to determine the effect of maternal

diabetes on key processes of kidney development in the mouse.

Ureteric branching morphogenesis was quantified ex vivo using

Optical Projection Tomography (OPT) and nephron number was

estimated using the gold standard stereological method [21].

Insulin was administered to pregnant dams to determine if

glycemic control during a period of early nephrogenesis could

prevent a nephron deficit in offspring of diabetic pregnancy.

Results

STZ increases maternal blood glucose concentrations
from E12.5 leading to offspring growth restriction and
reduced ureteric tree development at E14.5

Maternal blood glucose concentrations did not differ between

control dams (n = 5) and STZ-treated dams (n = 5) before

pregnancy (p = 0.50) or prior to STZ injections at E6.5 (p = 0.88)

(Figure 1A). Maternal blood glucose concentrations were

significantly elevated post STZ injections at E12.5 (p,0.01) and

E14.5 (p,0.0001). Glucose area under the curve (AUC) was

greater in STZ-treated dams than in control dams across gestation

(control 168.8268.96 mmol/l.day vs. STZ 205.7664.99 mmol/

l.day p,0.01).

Figure 1. Maternal blood glucose concentrations and ureteric tree development in offspring of the E14.5 cohort. (A) 3 hour fasting
blood glucose concentration of control (solid line) and STZ-treated (dashed line) dams throughout gestation. (B) Rendered reconstructions of the
ureteric tree of control (left) and STZ-treated (right) embryos at E14.5. Scale bar denotes 200mm. Quantitative analysis of (C) ureteric branch points, (D)
branch tip number, (E) ureteric tree length, (F) ureteric tree volume and (G) branch segment length of control (clear bar) and STZ-treated (solid bar)
embryos. Glucose analysis by repeated measures two-way ANOVA for maternal STZ treatment and time followed by Fishers LSD post hoc analysis;
n = 5 dams/group. Ureteric tree analysis by two-way ANOVA for maternal STZ treatment and offspring sex followed by Fishers LSD post-hoc analysis;
n = 5 litters comprising 9 kidneys per group. Values are mean6SEM. *p,0.05, **p,0.01, ****p,0.0001 vs. control group.
doi:10.1371/journal.pone.0058243.g001
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Amniotic fluid of E14.5 STZ-treated embryos had a signifi-

cantly greater glucose concentration compared with that of control

embryos (control 7.1660.49 mmol/l vs. STZ 16.3061.49 mmol/

l, p,0.0001).

There was no difference in litter size (control 8.260.7 embryos

vs. STZ 8.660.4 embryos, p = 0.62), viable embryos (control

8.260.7 embryos vs. STZ 6.660.5 embryos, p = 0.09) or

resorptions (control 0.460.2 embryos vs. STZ 0.860.4 embryos,

p = 0.40) between control and diabetic pregnancies at E14.5. Dead

embryos were absent in control pregnancies however 23% of

embryos of diabetic pregnancies were dead at collection.

Embryos of STZ-treated dams were 32% lighter in weight

(p,0.01), 12% smaller in crown-rump length (p,0.01) and 10%

smaller in head width (p = 0.01) compared with control embryos at

E14.5 (Table 1). Embryos of diabetic dams were not develop-

mentally delayed, as assessed by Theiler staging. Placentas of STZ-

treated embryos were significantly lighter than placentas of control

embryos at E14.5 (75.4365.18 mg; 115.1965.09 mg, p = 0.001).

While no treatment*sex interaction was found across growth

parameters, sex had a significant effect on growth with male

offspring exhibiting heavier bodyweights (p,0.01) and placental

weights (p = 0.02) than females.

OPT demonstrated that the kidneys of E14.5 embryos exposed

to hyperglycemia were smaller than control kidneys and had a

significantly smaller ureteric tree (Figure 1B). Quantitative

analysis revealed that the kidneys of embryos exposed to

hyperglycemia contained 45% fewer ureteric branch points

(p = 0.002; Figure 1C), 46% fewer ureteric tips (p = 0.002;

Figure 1D), a 47% reduction in total ureteric tree length

(p = 0.001; Figure 1E) and a 49% reduction in tree volume

(p = 0.004; Figure 1F) compared with control kidneys. Kidneys of

STZ-treated embryos had on average fewer branch generations

than control kidneys (control 7.560.1 vs. STZ 6.760.2, p = 0.001).

Compared with controls, STZ-treated kidneys had significantly

shorter branch segment lengths from branch generations five to

eight (5th generation, p = 0.02; 6th generation, p = 0.004; 7th

generation, p = 0.008; 8th generation, p = 0.02; Figure 1G).

Spearman’s rank coefficient revealed bodyweight, STZ treat-

ment and maternal glucose AUC to have strong associations with

measures of ureteric tree development at E14.5 (Table 2). In a

stepwise multiple regression model, fetal bodyweight, maternal

STZ treatment and maternal glucose AUC predicted branch point

number (R2 = 0.87, p,0.0001), with bodyweight contributing the

most to the model (b= 1.03, p,0.0001) above maternal STZ

treatment (b= 0.29, p = 0.17) and maternal glucose AUC

(b= 20.18, p = 0.29). When variables were considered indepen-

dently, fetal body weight was the only statistically significant factor

(R2 = 0.85, p,0.0001). Similar trends were observed for tip

number, tree length, tree volume and average branch generations.

Administration of insulin from E13.5 reduces maternal
blood glucose concentrations by E15.5 but does not
normalise fetal growth or nephron number

Similar to the E14.5 cohort, maternal blood glucose concen-

trations did not differ between control (n = 11) and STZ-treated

dams (n = 13) prior to pregnancy (p = 0.91) or at E6.5 (p = 0.29)

(Figure 2A). Blood glucose concentrations of STZ-treated dams

were significantly greater than control values at E12.5 (p = 0.0002).

Blood glucose concentrations remained significantly higher in

STZ-treated dams (n = 8) at E15.5 (p,0.0001) and E18.5

(p,0.0001). The administration of insulin from E13.5 to STZ-

treated dams (n = 5) significantly reduced maternal blood glucose

levels to a concentration that was comparable to controls by E15.5

(p = 0.21) and at E18.5 (p = 0.93) (Figure2A). Maternal glucose

AUC was significantly different across all treatment groups

Table 1. Growth parameters of control and STZ-treated embryos at E14.5; and control, STZ and STZ+Insulin-treated embryos at
E18.5.

Bodyweight (mg)
Crown-Rump Length
(mm) Head width (mm) Placenta weight (mg)

E14.5 Control Male 280.3615.7 11.9 60.3 7.160.2 118.865.5

Female 261.1615.8 11.860.3 7.060.2 111.665.6

STZ Male 189.9615.9 10.560.3 6.460.2 79.965.7

Female 180.1 616.1 10.460.3 6.360.2 71.065.8

Ptreatment 0.004 0.004 0.01 0.001

Psex 0.008 0.32 0.58 0.02

Ptreatment*sex 0.38 0.87 0.63 0.79

E18.5 Control Male 1169.7632.0 20.960.5 10.860.2 112.665.5

Female 1184.4633.7 21.060.5 10.960.2 108.765.6

STZ Male 748.7637.8 16.860.5 9.360.2 72.966.3

Female 727.7640.3 16.660.6 9.460.2 61.467.0

STZ+Insulin Male 752.3648.9 17.060.7 10.060.3 80.368.3

Female 713.7655.4 16.260.8 9.660.3 69.769.0

Ptreatment ,0.0001 ,0.0001 ,0.0001 ,0.0001

Psex 0.54 0.12 0.50 0.04

Ptreatment*sex 0.61 0.19 0.27 0.62

Data from E14.5 and E18.5 cohorts were analysed separately by a linear mixed model with maternal STZ and insulin treatment and offspring sex as independent
variables, weighted for litter. Values are mean6SEM. E14.5: (n) = control (n = 5 litters comprising 41 embryos), STZ-treated (n = 5 litters comprising 33 embryos). E18.5:
(n) = control (n = 11 litters comprising 72 embryos), STZ (n = 10 litters comprising 41 embryos), STZ+Insulin (n = 5 litters comprising 25 embryos).
doi:10.1371/journal.pone.0058243.t001
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(control 198.8562.40 mmol/l.day; STZ 260.4868.87 mmol/

l.day; STZ+Insulin 229.5862.28 mmol/l.day, p,0.0001).

For the E18.5 cohort there was no difference in litter size across

the three treatment groups (control 6.760.8 embryos; STZ

4.560.8 embryos; STZ+insulin 5.460.9 embryos, p = 0.13).

However post-hoc analysis indicated that litters from STZ-treated

dams had significantly fewer live embryos than control dams

(control 6.660.7 embryos; STZ 3.960.7 embryos, p = 0.02). No

difference was detected in the number of resorptions (control

0.560.2 resorptions; STZ 1.960.6 resorptions; STZ+insulin

1.460.5 resorptions, p = 0.055) or dead embryos (control

0.160.1 embryos; STZ 0.660.3 embryos; STZ+insulin 0.460.2

embryos, p = 0.12) at E18.5.

Post-hoc analysis found embryos of STZ-treated dams were

37% lighter in weight (p,0.0001), 20% shorter in crown-rump

length (p,0.0001) and 14% shorter in head width (p,0.0001) than

control embryos at E18.5 (Table 1). Comparably, STZ+Insulin-

treated embryos were smaller than control embryos for weight

(38% lighter, p,0.0001), crown-rump length (21% shorter,

p,0.0001) and head width (10% shorter, p = 0.004). Body weight,

crown-rump length and head width did not differ between STZ-

treated and STZ+Insulin-treated embryos. STZ-treated embryos

had a 39% lighter placental weight than control embryos

(p,0.0001). Placental weight of STZ+Insulin-treated embryos

was 32% lighter than control embryos (p = 0.0007) and did not

differ to STZ-treated embryos (p = 0.41). Sex was found to have

only a significant effect on placental weight, with males having

heavier placental weights than females (p = 0.04) and there was no

treatment*sex interaction.

At E18.5, kidneys of STZ-exposed embryos had 34% fewer

nephrons than control kidneys (p = 0.0007) (Figure 2B). Kidneys

of STZ+Insulin-treated embryos had 30% fewer nephrons than

control kidneys (p = 0.003). Nephron number did not differ

between kidneys of STZ and STZ+Insulin-treated embryos

(p = 0.67).

Spearman’s rank coefficient showed that fetal bodyweight,

maternal STZ and insulin treatment and maternal glucose AUC

had strong associations with glomerular number at E18.5

(Table 3). In a stepwise multiple regression model, fetal body-

weight, maternal STZ and insulin treatment and maternal glucose

AUC were found to predict glomerular number (R2 = 0.72,

p,0.0001), with fetal bodyweight contributing the most to the

model (b= 0.93, p,0.0001) above that of maternal STZ and

insulin treatment (b= 0.04, p = 0.76) and maternal glucose AUC

(b= 0.06, p = 0.71). When variables were considered independent-

ly, fetal body weight was the only statistically significant factor

(R2 = 0.72, p,0.0001).

Malformations of the kidney and urinary tract in offspring
of diabetic dams

Interestingly, 26% of offspring of diabetic dams demonstrated

renal and urinary tract abnormalities. This was observed as duplex

ureter and duplicated collecting duct systems at E14.5 and E18.5

(Figures 3A–C), and with hydroureter at E18.5 (Figure 3D).

Renal malformations equally affected male and female embryos,

and were evident in both STZ and STZ+Insulin treated embryos.

No urinary tract malformations were observed in control offspring.

Discussion

This is the first study to apply an ex vivo method to analyse

development of the ureteric tree of embryos exposed to

hyperglycemia, and confirms branching morphogenesis is mark-

edly reduced in hyperglycemia. Our use of OPT and parameter-

isation of the ureteric tree has shown that kidneys of diabetic

pregnancy at E14.5 have approximately half the number of

ureteric tips and branch points, a reduced tree length and volume,

and fewer branch generations compared with controls. We also

report shorter branch segments for the middle branch generations

of STZ-treated kidneys, which may correspond to a cumulative

disruption in branching morphogenesis as maternal glucose

concentrations increase. While no difference in Theiler staging

was found between embryos of diabetic and control pregnancies it

is possible kidneys of STZ-diabetic embryos are developmentally

delayed. Ureteric tree development may resemble that of earlier

staged embryos and warrants further investigation.

Table 2. Spearman’s rank coefficients: associations between measures of ureteric tree development and independent variables at
E14.5.

Bodyweight Treatment Glucose AUC

Treatment 20.87

(p,0.01)

Glucose AUC 20.82 0.87

(p,0.01) (p,0.01)

Branch number 0.87 20.82 20.81

(p,0.01) (p,0.01) (p,0.01)

Tip number 0.87 20.82 20.81

(p,0.01) (p,0.01) (p,0.01)

Tree length 0.87 20.82 20.78

(p,0.01) (p,0.01) (p = 0.01)

Tree volume 0.87 20.82 20.78

(p,0.01) (p,0.01) (p = 0.01)

Average number of branch generations 0.84 20.76 20.72

(p,0.01) (p,0.01) (p,0.01)

Spearman’s Rho (top value), p value (bottom value). Negative values indicate a negative association. AUC = area under the curve.
doi:10.1371/journal.pone.0058243.t002

Kidney Development in Diabetic Pregnancy

PLOS ONE | www.plosone.org 4 March 2013 | Volume 8 | Issue 3 | e58243



Our findings regarding ureteric tree development support those

of Kanwar et al. [19] and Amri et al. [16] who reported branching

dysmorphogenesis and inhibition of ureteric arborisation in

metanephroi cultured in the presence of a high concentration of

glucose. In contrast, Zhang et al. [20] observed a stimulatory effect

of transient high glucose on ureteric branching in vitro. While

metanephric organ culture has proven a major research tool in

developmental nephrology, cultured kidneys are unnaturally

flattened, avascular and grow at a relatively slow rate; factors

which affect and distort ureteric branching morphogenesis

[22,23]. Inconsistencies between findings from previous studies

may be due to differences in media and length of culture time.

While it is plausible that short term exposure to high glucose may

stimulate branching as observed by Zhang et al. [20], extended

periods of exposure, as observed in the present study in diabetic

pregnancy, result in a different outcome. As this study and that of

Zhang et al. [20] are described in mice on the C57Bl6

background, discrepancies between the two are most likely

explained by differences in methodology (in vivo STZ-induced

diabetes in the dam vs. in vitro kidney explants cultured in high

glucose) rather than strain differences.

Our findings demonstrate that exposure to hyperglycemia leads

to a deficit in nephron endowment at E18.5 as assessed by an

unbiased stereological technique. The present study confirms the

findings of Amri et al. [16] and Tran et al. [17] who used the acid

maceration method and disector/fractionator technique, respec-

tively. Collectively we demonstrate that diabetic pregnancy

impairs nephrogenesis in proportion to the magnitude of maternal

glycemia. Deficits in nephron endowment in offspring of diabetic

pregnancy have been described across a range of species and

strains: Sprague Dawley rat (Amri et al. 1999), Wistar rat (Rocha

et al. 2005), Swiss mouse (Cunha et al. 2008) and Hoxb7-GFP

mouse on a C57Bl6 background (Tran et al. 2007). However the

findings of Cunha et al. [18] are perhaps questionable as they

observed no difference in nephron number between control and

STZ-treated mice after the completion of nephrogenesis at PN7

yet reported a 20% reduction at PN21.

We report altered kidney development in growth-restricted

offspring of diabetic pregnancy. Human maternal diabetes is

typically associated with infant macrosomia and elevated birth

weight. However, in a subset of women with severe hyperglyce-

mia, poorly controlled diabetes, vascular complications or

excessive insulin administration, intrauterine growth restriction is

a frequent observation [24,25,26,27]. In rodent models of diabetic

pregnancy, STZ is frequently used and depending on the degree of

hyperglycemia may lead to a range of alterations in offspring

Figure 2. Maternal blood glucose concentrations and glomerular number in offspring of E18.5 cohort. (A) 3 hour fasting blood glucose
concentrations of control (solid line, filled square), STZ-treated (dashed line, open square) and STZ+Insulin-treated (dashed line, open circle) dams
throughout gestation. (B) Total glomerular number in kidneys of control (clear bar), STZ-treated (striped bar) and STZ+Insulin-treated (solid bar)
embryos. Glucose analysis by repeated measures two-way ANOVA for maternal STZ and insulin treatment and time followed by Fishers LSD post hoc
analysis; (n) = control (11), STZ (8), STZ+Insulin (5). Glomerular number analysis by two-way ANOVA for maternal STZ and insulin treatment and
offspring sex followed by Fishers LSD post-hoc analysis; (n) = control (7 litters comprising 20 kidneys), STZ (6 litters comprising 14 kidneys),
STZ+Insulin (5 litters comprising 10 kidneys). Values are mean6SEM. **p,0.01, ***p,0.001 ****p,0.0001 vs. control.
doi:10.1371/journal.pone.0058243.g002

Table 3. Spearman’s rank coefficients: associations between
glomerular number and independent variables at E18.5.

Bodyweight Treatment Glucose AUC

Treatment 20.74

(p,0.001)

Glucose AUC 20.80 0.73

(p,0.001) (p,0.001)

Nglom 0.86 20.71 20.68

(p,0.001) (p,0.001) (p,0.001)

Spearman’s Rho (top value), p value (bottom value). Negative values indicate a
negative association. AUC = area under the curve. Nglom = total estimated
glomerular number.
doi:10.1371/journal.pone.0058243.t003
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growth. Both normal and large for gestational age pups

[16,28,29,30] have been observed in mildly diabetic dams,

however growth restriction is a common outcome in severely

hyperglycemic STZ-treated dams [17,31]. In the latter instance,

this is due to profound fetal hyperglycemia and hyperinsulinemia

associated with fetal pancreatic exhaustion. In the present study

STZ-treated dams exhibited severe fasting hyperglycemia and

their offspring were hyperglycemic (measured in amniotic fluid at

E14.5) and growth restricted. Kidney development in large for

gestational age offspring of diabetic pregnancy has yet to be

investigated. This may relate to the difficulty in obtaining

macrosomic pups in rodents where fat composition at birth is

low (2% fat) compared to humans (,15% fat). However,

considering the strong linear relationship we observed between

fetal growth and nephron endowment the effect of maternal

diabetes in macrosomic offspring would be of particular interest.

Despite restoring glucose levels to within the range of control dams

from E15.5, insulin treatment did not normalise fetal growth of

STZ+insulin treated dams. This may be due to the timing of

insulin treatment after hyperglycemia onset considering insulin

mini-pumps were implanted at E13.5, seven days after STZ

administration. Studies utilising immediate insulin treatment

following STZ administration, in contrast, report normal embryo

growth [32,33]. It is therefore likely that the persistent deficit in

nephron number at E18.5 observed in STZ+insulin exposed

embryos is related to the late instigation of glycemic control.

Embryos exposed to diabetes had a marked deficit in ureteric

branching morphogenesis at E14.5. As nephron induction occurs

at the site of nascent ureteric tips it is likely that a low nephron

number was already established prior to insulin treatment at

E13.5. Insulin was administered at this time point to determine if

the effect on the developing kidney is principally due to altered

branching morphogenesis (which largely occurred prior to

instigation of insulin treatment) or nephron induction/mainte-

nance (which primarily occurred post commencement of insulin

treatment). While we did not expect complete normalisation of

nephron endowment at E18.5 in this group, if the process of

nephrogenesis was indeed retarded by hyperglycemia then we

might predict that normalizing glycaemia would result in some

increase in the nephron endowment. As this was not observed, we

conclude that the process of branching morphogenesis was

severely affected giving rise to a deficit in ureteric tip number

and thus sites for nephron formation. An alternative explanation is

that insulin therapy was administered too late after diabetes

induction and late glycemic control, initiated past the time-point

when ureteric branching morphogenesis is at its peak, could not

restore these deficits. The hypothesis that impaired ureteric

branching is central to the nephron number deficit is supported

by Chen at el. [34] who found insulin treatment to partially

normalise nephron number in neonates of STZ-treated dams

where diabetes was induced later in gestation at E13 followed by

insulin implantation at E15. This protocol partially restored

Figure 3. Congenital abnormalities in offspring of mothers with diabetes. (A, B) Rendered OPT images of duplex ureter at E14.5. Note that
each ureter is associated with a separate region of the ureteric tree. (C) Duplex ureter at E18.5 compared with control kidney on the left. (D)
Hydroureter at E18.5. Scale bar denotes 200 mm.
doi:10.1371/journal.pone.0058243.g003
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maternal blood glucose concentrations from a 5-fold to 2.5-fold

elevation compared with controls, normalised neonatal body-

weight to within control values and reduced the nephron deficit by

half [34,35].

Infants of gestational diabetic and overt diabetic pregnancies

have an elevated risk of anomalies of the urinary tract [14,36,37].

We observed malformations of the urinary tract in embryos of

diabetic pregnancy, further suggesting that early ureteric branch-

ing morphogenesis and possibly ureteric budding are primary

processes targeted in hyperglycemia. These abnormalities included

duplex ureters and hydroureter. Together the findings highlight

that the longer the window of exposure to diabetes the more

adverse the consequences are to fetal and renal development, yet

may also indicate that hyperglycemia exposure during specific,

shorter windows of development (i.e. when branching of the

ureteric tree is maximal) may also be detrimental to kidney

development.

The effects of STZ treatment in this study are ascribed to

changes in maternal pancreatic function, but direct effects of STZ

on the fetus should also be considered. Previously, the addition of

STZ (1 mg/ml) to cultured rat embryos was found to reduce their

viability and growth (Deucher et al. 1977). This dose was

administered to reflect the dose given to an adult rat to induce

diabetes and likely does not reflect the level of STZ the fetus is

exposed to in vivo. In the rhesus monkey, STZ has been reported to

cross the placenta with relatively low concentrations reaching the

fetus (Reynolds et al. 1974), but data for rodents is lacking. While

we cannot rule out the secondary effects of STZ on fetal growth,

given the short half-life of STZ (,15 min) and the small volumes

reaching the fetus we believe it is unlikely that STZ exerts a toxic

effect on the fetus. This can be further extended to the developing

kidney. Tran et al (2008) examined kidney size and the number of

glomeruli in fetuses of STZ-exposed dams that went on to develop

or not develop diabetes. They found renal damage to be

independent of STZ administration or length of STZ exposure

but attributable to the level of maternal hyperglycemia. This

finding is supported by Amri et al. (1999) who reported a

comparable nephron deficit in offspring of a glucose infusion

model in the pregnant rat and in offspring of STZ-induced

diabetes. STZ has a serum half-life of 15 minutes [38] and

following STZ treatment at E6.5, E7.5 and E8.5 in the present

protocol it is expected to be cleared from the maternal circulation

before fetal metanephric development commences at E10.5.

In our model of growth restriction in diabetic pregnancy it is

difficult to discriminate the effect between low birth weight and

high glucose as the driving force of altered kidney development.

Regression analysis identified fetal growth as the strongest

predictor of kidney development in diabetic pregnancy, and is

consistent with published literature. Human studies have identified

a strong linear relationship between birth weight and nephron

number [39,40,41]. Animal models of spontaneous [42,43] and

induced growth restriction [42,44,45] further support this associ-

ation. In rodents, high glucose exposure is reported to alter kidney

morphology and lead to a nephron deficit in growth restricted and

normal birth weight offspring [16,17]. The direct effect of high

glucose on the kidney has been linked to aberrant Pax-2, NF-kb
and p53 signaling pathways, nascent nephron apoptosis [17,34]

and the altered expression of extracellular matrix glycoproteins

[46]; processes mediated by elevated reactive oxygen species

(ROS) generation. While infants of diabetic pregnancy have an

increased risk of renal and urinary tract malformations [15,36,37],

less severe outcomes such as altered nephron endowment in

persons exposed to intrauterine hyperglycemia have not been

described.

Pregnant women are typically not screened for diabetes until

28-30 weeks gestation. As kidney development begins at 5 weeks

gestation with the full complement of nephrons reached by 36

weeks, the developing fetal kidney may be unknowingly exposed to

a lengthy window of hyperglycemia. Impaired kidney development

may therefore already be established and pharmacological

interventions such as insulin therapy could have limited potential

to mediate fetal kidney development, if the outcomes of this study

are transferrable to humans. Impaired kidney development (by

altered ureteric branching morphogenesis, nephrogenesis, or both)

may lead to a permanent nephron deficit and a predisposition to

hypertension and chronic renal disease, a hypothesis first

enunciated by Brenner and colleagues [47]. While offspring were

not followed into adulthood, we can predict that offspring may

display a range of long-term metabolic defects as reported in a

small number of animal [28,35,48] and human studies [49,50,51].

In conclusion, we report ureteric branching morphogenesis and

nephrogenesis to be adversely affected in offspring exposed to

STZ-induced diabetic pregnancy. We present the first study to

examine ex vivo and in 3D the ureteric tree of embryos of diabetic

pregnancy, and report a marked deficit in ureteric branching

morphogenesis. We hypothesize that this early alteration in

ureteric tree architecture gives rise to the nephron deficit observed

in late gestation. Glycemic control which normalized maternal

glucose levels to that of control values did not prevent embryo

growth restriction or a nephron deficit prior to birth, and

highlights the detrimental effect of hyperglycemia in pregnancy

on kidney development. This suggests that late insulin therapy

would not be useful in preventing aberrant kidney growth. This is

particularly important for women identified with diabetes

relatively late in gestation as kidney development is well underway,

and potentially irreversible deficits in branching morphogenesis

and nephrogenesis may be established. This adds impetus to the

importance of vigilant glucose monitoring throughout pregnancy

as it may set the scene for poor kidney health and long-term

consequences in the offspring.

Materials and Methods

Animals
Experimentation was performed on 8-12 week old C57BL/6J

mice (Monash Animal Services, Victoria, Australia). All animal

handling and experimental protocols were approved by the

Animal Ethics Committee of Monash University (SOBS A/

2010/07) and conformed to the guidelines of the National Health

and Medical Research Council of Australia. Mice had ad libitum

access to standard chow and water with a 12 hour light/dark

cycle. Mice were mated overnight. The presence of a vaginal plug

the following morning indicated embryonic day 0.5 (E0.5).

Diabetes Induction
Maternal diabetes was induced by the intraperitoneal admin-

istration of streptozotocin (STZ) (Sigma-Aldrich, Castle Hill,

Australia) in 0.1 M sodium citrate buffer. STZ was administered

for 3 consecutive days commencing at E6.5 at doses of 100, 100

and 80 mg/g bodyweight. Control mice received intraperitoneal

injections of 0.1 M sodium citrate buffer for 3 days from E6.5.

Maternal blood glucose concentration (mmol/l) was measured

prior to mating and throughout pregnancy by cheek bleed

following a 3 hour fast (Accu-Chek Go Blood Glucose Monitor,

Roche Products, Dee Why, NSW, Australia). The glucose

concentration of amniotic fluid at E14.5 was measured on the

same glucometer. Maternal glucose concentrations across gesta-

tion were estimated by plotting glucose concentrations (mmol/l)
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against time (days) and quantifying the area under the curve

(AUC, mmol/l.day).

Insulin Treatment
A proportion of hyperglycemic dams received insulin to form a

glycemic control group (n = 5). Dams at E13.5 were surgically

implanted under isoflurane anesthesia with an osmotic mini-pump

(model 1007D, Alzet, Durect Co., Cupertino, CA, USA) filled with

NovoRapid insulin aspart (100 U/ml, Novo Nordisk, Baulkham

Hill, NSW, Australia) at a 1:10 dilution in saline with an infusion

dose of 0.5 ml/hr. Control animals underwent sham surgery that

followed the protocol as outlined above bar the implantation of the

mini-pump (n = 4). Tissue was collected at E18.5 for animals in the

glycemic control group.

Tissue Collection
Pregnant mice were dissected at E14.5 and E18.5 to form two

separate cohorts. Embryo development was verified by Theiler

staging criteria [52]. Embryos and placentas were weighed and

measures of crown-rump length and head diameter recorded with

digital micro-calipers. Embryos were sexed (based on gonad

appearance) and metanephroi removed and fixed in 4% parafor-

maldehyde (PFA) in phosphate buffered saline (PBS) (Sigma-

Aldrich, Castle Hill, NSW, Australia).

Analysis of Ureteric Tree Development: Optical Projection
Tomography

The ureteric epithelium of E14.5 kidneys was wholemount

fluorescently immunostained, optically cleared and imaged by

OPT as based on the protocol of Short and Smyth [53].

Metanephroi were transferred to methanol and subject to 3

freeze-thaw cycles to assist antigen retrieval [54]. Kidneys were

rehydrated, blocked, and incubated in E-cadherin primary

antibody (1:100 dilution, rat E-cadherin monoclonal antibody;

Invitrogen, Mulgrave, VIC, Australia). Kidneys were washed and

then incubated in secondary antibody (1:400 dilution, Alexa Fluor

555 goat anti-rat IgG; Invitrogen, Mulgrave, VIC, Australia).

Stained E14.5 kidneys were embedded in 1% low melting point

agarose, dehydrated in methanol and cleared in benzyl alcohol/

benzyl benzoate (1:2 mixture) (Sigma-Aldrich, Castle Hill, NSW,

Australia). Immunostained kidneys were imaged in a Bioptonics

3001 OPT scanner and OPT tomographic data were reconstruct-

ed using N-Recon software (SkyScan, Kontich, Belgium). Drishti

software (v2.0, Australian National University, ANUSF VizLab,

Canberra, ACT, Australia) was used to visualise and render

reconstructed 3D data sets (see provided Supplementary Informa-

tion Video S1).

Quantitative assessment of the ureteric tree was performed

using Tree Surveyor software (version 1.0.8.20 [55]) from which

branch point number, ureteric tip number, tree length and tree

volume were automatically obtained. Kidneys with duplex ureters

and collecting duct systems were excluded from analysis.

Estimation of Glomerular Number: Histochemistry and
Stereology

Total glomerular number was determined using an unbiased

stereological method as previously described [21]. Briefly,

metanephroi were embedded in paraffin and exhaustively

sectioned at 5 mm. 10 evenly spaced section pairs were system-

atically sampled and histochemically stained with the lectin peanut

agglutinin (PNA) to localise the plasma membrane of glomerular

podocytes. Sections were counterstained with hematoxylin.

Section pairs were used to estimate PNA-positive developing

nephrons using the physical disector/fractionator combination

[21]. Kidneys with duplex ureter and hydroureter were excluded

from analysis.

Statistical Analysis
Data were analysed using SPSS (version 19, SPSS Inc., USA)

and GraphPad Prism (version 5, GraphPad Software, Inc., USA).

Glucose levels were analysed by two-way repeated measures

ANOVA with maternal STZ and insulin treatment and time as

main effects, followed by Fishers LSD post hoc analysis. Litter size

was analysed by independent samples t-test at E14.5 and one-way

ANOVA at E18.5. Measures of embryo growth and kidney

development were analysed by a two-way repeated measures

ANOVA for maternal STZ and insulin treatment and offspring

sex as main effects, and incorporating a mixed linear model to

account for any intra-litter bias [56]. Spearman’s rank co-efficient

with Bonferroni correction was used to measure associations

between kidney development and independent variables of interest

(fetal weight, maternal STZ and insulin treatment, maternal

glucose AUC and offspring sex). Spearman’s rank coefficient and

multiple regression analysis were performed using STATA

(version 8.0, Stata Corporation, USA). Throughout the paper n

refers to the number of dams or litters and not the total number of

pups. No difference in growth or kidney development was found

between control and control-sham embryos at E18.5 therefore the

two groups have been pooled to conserve power. Offspring sex was

incorporated as a variable in all analyses and had no statistically

significant effect unless otherwise stated. Data are presented as

mean 6 standard error of the mean (SEM). p,0.05 was

considered statistically significant.

Supporting Information

Video S1 Reconstructed 3D data set of E15 mouse
kidney.
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