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Abstract

Motivation: Type III Secretion Systems (T3SSs) play important roles in the interaction between gram-negative bacteria and
their hosts. T3SSs function by translocating a group of bacterial effector proteins into the host cytoplasm. The details of
specific type III secretion process are yet to be clarified. This research focused on comparing the amino acid composition
within the N-terminal 100 amino acids from type III secretion (T3S) signal sequences or non-T3S proteins, specifically
whether each residue exerts a constraint on residues found in adjacent positions. We used these comparisons to set up a
statistic model to quantitatively model and effectively distinguish T3S effectors.

Results: In this study, the amino acid composition (Aac) probability profiles conditional on its sequentially preceding
position and corresponding amino acids were compared between N-terminal sequences of T3S and non-T3S proteins. The
profiles are generally different. A Markov model, namely T3_MM, was consequently designed to calculate the total Aac
conditional probability difference, i.e., the likelihood ratio of a sequence being a T3S or a non-T3S protein. With T3_MM,
known T3S and non-T3S proteins were found to well approximate two distinct normal distributions. The model could
distinguish validated T3S and non-T3S proteins with a 5-fold cross-validation sensitivity of 83.9% at a specificity of 90.3%.
T3_MM was also shown to be more robust, accurate, simple, and statistically quantitative, when compared with other T3S
protein prediction models. The high effectiveness of T3_MM also indicated the overall Aac difference between N-termini of
T3S and non-T3S proteins, and the constraint of Aac exerted by its preceding position and corresponding Aac.

Availability: An R package for T3_MM is freely downloadable from: http://biocomputer.bio.cuhk.edu.hk/softwares/T3_MM.
T3_MM web server: http://biocomputer.bio.cuhk.edu.hk/T3DB/T3_MM.php.
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Introduction

The bacterial type III secretion system (T3SS) is a needle-like

hollow secretion apparatus which is expressed on the surface of a

wide variety of gram-negative bacteria [1–4]. T3SS can mediate

the translocation of a group of proteins from bacteria into the

cytoplasm of host cells; therefore, it plays an important role in the

interactions between bacteria and their hosts [1,5–6]. The proteins

specifically recognized, secreted and translocated by the T3SS are

called type III secreted (T3S) effectors, which exert their biological

activities in host cells in concert to cause pathogenicity [7].

The N-termini of T3S effectors have been shown to contain

important signals that guide their specific recognition by T3SSs

[8–14]. Due to great diversity, no consensus sequences or common

motifs have been identified from this region of T3S effectors

[10,15–16]. The limited physicochemical property preference of

amino acids (e.g., charged and polar) only gave few clues about the

specificity of T3S signals [15]. It was suggested that N-termini of

T3S effectors frequently adopted more flexible secondary or

tertiary structure [7]. However, integration of these secondary

structure features and others (such as solvent accessibility) did not

facilitate the identification of T3S signal sequences, indicating that

these properties in T3S proteins couldn’t be distinct from those in

non-T3S proteins, and they couldn’t be the major factors guiding

specific type III recognition [15,17]. Till now, very few N-terminal

sequences of T3S effectors have been resolved for three-

dimensional structures, hindering the observation and inference

of the possible recognition specificity of T3S signals. No simple,

general and comprehensively-representative features have been

observed, which could well distinguish T3S and non-T3S proteins.

Consequently, instead, multiple-aspect, subtle, and partially-

representative properties of T3S signal sequences were analysed,

extracted and combined to train different non-linear classification

models [15,17–20]. These models greatly prompted the identifi-

cation of new effectors, and meanwhile facilitated our under-

standing of type III secretion mechanisms and the evolution of

T3S effectors.

Here, we further explored the features differently represented by

T3S and non-T3S proteins. Different amino acids have been

observed to be preferred in T3S N-terminal sequences generally

[15] and position-specifically [17]. For example, serine is most

preferred by T3S signal sequences generally and specifically in

most positions [10,15,17]. Does this mean that a stretch of serines
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should be theoretically the best optimal T3S signal sequence?

Could amino acids in a T3S signal sequence exert some constraint

on amino acid composition (Aac) at their sequentially succeeded

positions? Furthermore, is this constraint different from that of

non-T3S sequences? If so, could these features be used for

discriminating T3S proteins? This study aimed to answer these

questions.

Results

Different Aac Probability Profiles Conditional on Amino
Acids at Sequentially Preceding Position

We previously reported that specific type III secretion guiding

signals were buried in the N-terminal 100 amino acid region of

T3S effectors [17]. In this study, N-terminal 100 amino acids of

T3S and non-T3S proteins were extracted for feature analysis.

The absolute composition of each species of amino acid was

calculated and compared between T3S and non-T3S sequences.

Furthermore, to observe the constraint of specific amino acids on

the Aac at succeeding positions, the conditional probability of each

amino acid on each amino acid at the preceding position was also

calculated and compared.

As for absolute composition of single amino acids, T3S

sequences had higher proportion of serine, leucine and alanine

and lower proportion of tryptophan, cysteine, tyrosine and

methionine (Fig. S1). However, T3S and non-T3S sequences

didn’t show marked differences except for serine and tryptophan,

with serine being enriched and tryptophan being depleted in T3S

sequences (Fig. S1).

For each amino acid, the probability conditional on each type of

preceding amino acid was compared with its absolute probability.

As shown in Fig. S2 (marked with star above the bar), there were

many amino acids for which the conditional probability was

significantly different from their absolute probability in T3S

sequences (p,0.05), indicating probabilistic dependence of Aac on

its sequentially preceding amino acid. The difference was not

significant in non-T3S sequences (data not shown), indicating

there was a T3S-specific Aac dependence or constraint. An

alternative binomial distribution-based statistics was also adopted

to compare the real conditional probability of each amino acid

with its expected value under independent hypothesis. The results

further confirmed the conclusion about position dependency in

T3S sequences (Fig. 1; red and grey background representing

significantly enriched and depleted amino acids in real T3S

sequence, respectively; significance set as FDR ,0.05). The T3S-

specific Aac dependence was tested further with the third strategy.

On each amino acid, the conditional probability of its succeeding

amino acid was ordered and ranked. The rank difference between

the conditional and the absolute probability of each type of

succeeding amino acid was calculated. There were a lot of cases,

which were observed with significant rank difference (absolute

value of difference $5; Fig. S2, marked with upward or downward

arrow above the bar). The results further confirmed that the Aac

in T3S sequences was influenced by its preceding position.

Many Aac conditional probabilities on each amino acid at

preceding position were significantly different between T3S and

non-T3S sequences (Fig. 1, with upward or downward arrow;

significance set as FDR ,0.05). Notably, the proportion of leucine

was generally lower in T3S sequences than in non-T3S sequences,

though it was frequently enriched after different types of amino

acids in T3S sequences (Fig. 1). Similarly, alanine was no longer

differentially composed between T3S and non-T3S sequences;

cysteine, histidine and methionine were not strikingly depleted in

T3S sequences compared with non-T3S sequences (Fig. 1). Some

other amino acids, e.g., aspartic acid and glutamine, were

frequently higher while valine was frequently lower in T3S than

non-T3S sequences, though they were not significantly enriched or

depleted in T3S sequences (Fig. 1).

The ranks of Aac conditional probabilities on each amino acid

at preceding position also showed an apparent difference between

T3S and non-T3S sequences (Fig. S2; marked with backward or

forward arrow below the bar). This difference could be caused by

the superimposed or loosened constraint by adjacent position in

T3S proteins (or in non-T3S proteins). For example, when the first

position is isoleucine, the ranks of asparagine and valine were

apparently different in T3S and non-T3S sequences (Fig. S2). The

higher and lower order of asparagine and valine composition in

T3S than non-T3S sequences, was potentially caused by the

increased and decreased asparagine and valine after isoleucine,

respectively, in T3S sequences (Fig. S2). There were many similar

examples, such as ‘NI’ and ‘NG’, ‘PP’ and ‘PR’, ‘WN’ and ‘WK’,

and so on (Fig. S2). Therefore, there were different Aac probability

profiles conditional on amino acids at sequentially preceding

position in T3S and non-T3S sequences.

Fig. S2 also demonstrated a trend that serine was preferred after

each type of amino acid in the preceding position in T3S

sequences. However, statistically, the dimer ‘SS’ was not most

significantly enriched when compared to other dimers (Fig. S2).

The occurrence rank of ‘SS’ among dimers beginning with ‘S’ was

not most significantly different between T3S and non-T3S

sequences (Fig. S2). This might partly explain why a continual

stretch of serines was not frequently found in N-terminal sequences

of T3S proteins.

Probabilistic Modeling of the Overall Difference of
Conditional Probability Profiles between T3S and Non-
T3S Proteins

A sequential likelihood ratio variable based on Markov model,

R, was created to measure the overall difference of conditional

probability profiles on position-adjacent Aac between T3S and

non-T3S proteins (Methods). The R values were calculated and

statistically analyzed for T3S and non-T3S sequences.

As shown in Fig. 2A, the R values for T3S and non-T3S

sequences could be fit to two distinct distributions. According to

the forms, the distribution of T3S R values was approximated to a

normal distribution with a mean of 0.28 and a standard deviation

of 0.26, while the distribution of non-T3S R values was

approximated to another normal distribution with a mean of

20.28 and a standard deviation of 0.22 (Fig. 2A). Both normal Q–

Q plot analysis and Shapiro-Wilk normality test supported the

normal approximation for the two distributions (Fig. 2A).

The absolute probabilities of individual amino acids were

considered as coefficients to calculate the weighted R values of T3S

and non-T3S sequences. Like R values, the weighted R values of

two types of proteins also followed distinct approximated normal

distribution (mean and standard deviation were respectively 0.29

and 0.24 for T3S sequences, and 20.29 and 0.22 for non-T3S

sequences) (Fig. 2B).

Classification of T3S Signal Sequences Based on R and
Derived Values

Based on the probabilistic modeling results, a protein could be

classified as T3S or non-T3S sequence according to a selected

cutoff R value. The training dataset with 154 putative T3S

effectors and 308 non-T3S proteins were used for classifying

performance evaluation (Text S1).

Bacterial Type III Signal Analysis
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With T3_MM, the prediction model based on distribution of R

values, the sensitivity and selectivity varied with different cutoff

values (Fig. 3). According to the ROC curve, an optimized cutoff

was selected, ensuring the best distinguishing power. For T3_MM,

a cutoff R value of 0 could well distinguish T3S sequences, with a

sensitivity of 89.6% at a selectivity of 90.9% (Fig. 3 and Table 1).

The cutoff based on ROC curve was very similar to the

discriminant function resulted value (20.025, Methods).

The performance of weighted R values based model (wT3_MM)

and individual amino acid probability based model (T3_iAA) were

also evaluated, and compared with that of T3_MM (Fig. 3 and

Table 1). As shown by the ROC figure and different performance

parameters, T3_MM was best among all three models, though the

difference between T3_MM and wT3_MM was not striking (Fig. 3

and Table 1). Both T3_MM and wT3_MM significantly

outperformed T3_iAA, with respect to sensitivity, specificity,

accuracy, MCC, and others (Fig. 3 and Table 1).

Support Vector Machine (SVM), Generalized Linear Model

(GLM) and RandomForest (RF) models were also used to train the

Aac conditional probability features. Among them, SVM could

achieve a better specificity but at a loss of sensitivity and accuracy

(Table S1). The other two models, however, performed signifi-

cantly worse than T3_MM (Table S1).

Performance Evaluation and Comparison of T3_MM and
other Established T3S Protein Prediction Methods

To better evaluate the performance of T3_MM to predict T3S

signal sequences, a 5-fold cross validation strategy was adopted to

the training datasets. As shown in Table 2, the method achieved

an average sensitivity of , 83.9% at a specificity of , 90.3%.

There are other well-established software programs to predict T3S

proteins, among which BPBAac and Effective T3 were reported

with best performance [15,17]. With the same training dataset, all

the parameters including sensitivity, specificity, accuracy, and

MCC, showed that, T3_MM performed better than Effective T3

(Table 2) and other softwares such as SIEVE, SSE-ACC, etc. (data

not shown). However, BPBAac achieved better performance than

T3_MM (Table 2).

Other new test datasets, of which the sequences were not

included in the training dataset, were also collected to further

compare the performance of models. A Ralstonia T3S and non-

T3S protein dataset was tested, from which all the sequences were

not included in the training data of T3_MM or Effective T3, and

were excluded from the training data of BPBAac model (Methods;

Text S2) [21]. As shown in Table 3, T3_MM could most

effectively distinguish the T3S and non-T3S proteins, whereas the

BPBAac and Effective T3 seemed not very stable, with a quite low

recall value even at a comparable (or slightly higher) selectivity.

To avoid overestimating the general prediction performance of

T3_MM based on a specific genus or species, another large-scale

T3S dataset from different Pseudomonas strains was also included for

performance evaluation [22]. Again, T3_MM showed the best

classification performance, with marked increase of recall value

and general prediction accuracy, at a cost of slightly lowered

selectivity (Table 3).

Figure 1. Distribution of bi-amino acids (bi-aa) with significant difference of Aac conditional probability in T3S signal sequences.
The vertical and horizontal axis represents the 1st and 2nd amino acid respectively. A binomial distribution-based statistic test was performed to each
amino acid at the second position given the first amino acid. The second amino acid with significantly biased composition compared with theoretical
random distribution was highlighted in red (enriched) or grey (depleted) background. The second amino acid with significantly biased composition
compared with non-T3S sequences was indicated with an upward (higher in T3S sequences) or downward (depleted in T3S sequences) arrow.
Benjamini & Hochberg correction for multiple tests was adopted to control the type I errors [30]. The False Discovery Rate (FDR) was set as #0.05.
doi:10.1371/journal.pone.0058173.g001
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Figure 2. Probabilistically modelling the overall difference of conditional probability profiles of T3S and non-T3S sequences. The
distribution (black curves) and normal approximations (grey curves) of T3S and non-T3S R values (A) and weighted R values (B) were shown. The
means of approximated normal distributions were also indicated. For each normal approximation, the Normal Q–Q plot and Shapiro-Wilk normality
test results were shown nearby corresponding distribution curve.
doi:10.1371/journal.pone.0058173.g002
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It is still possible that T3_MM only works well for some specific

genera and is not generally applicable. An inter-genera cross

validation strategy (Methods) was adopted to observe the inter-

genera prediction capability of this R value-based model. For most

genera, the recall percentage of known effectors was high (, 80%)

at an acceptable specificity (.85%) (Fig. 4). Even in the worst case

scenario (i.e., classification of Chlamydia effectors based on non-

Chlamydia model), 68% of the known effectors (13/19) were

correctly recognized (Fig. 4).

Taken together, the T3_MM algortithm was able to efficiently

classify T3S proteins from non-T3S proteins with high sensitivity

and general prediction accuracy. The model could also be applied

to different bacterial genera or phyla. The actual specificity of

T3_MM could be higher since the ‘‘non-T3S’’ sequences in the

training or testing datasets could contain some unknown effectors.

Amino Acid Composition Properties of T3S Signal
Sequences

Based on the probability matrix and T3_MM model, any given

peptide sequence could be calculated for its probability to be a

T3S sequence. However, it is extremely computationally demand-

ing to calculate or compare the probability of all possible peptides

of length 100 aa. To analyze the preferred and unfavorable amino

acid composition in T3S signal sequences, a selected group of

continual bi-amino acid (bi-aa) sequences were computationally

simulated and classified using T3_MM and BPBAac, respectively

(Table S2). According to the general composition of single amino

acids and the relative composition preference in T3S and non-T3S

proteins (Fig. S1), a sequence purely composed by serine was

expected to have the highest prediction value. Consistent with this

hypothesis, BPBAac gave the sequence formed by continuous

serines the highest score, since the serine composition in most

positions was apparently higher than other amino acids and

different between T3S and non-T3S proteins (Table S2; Table 4).

T3_MM, however, predicted that a string of proline and ‘NS’

(together with ‘SN’ because ‘SN’ could not be excluded from the

continual ‘NS’ string) were more likely to be T3S secreted

sequences (Table S2; Table 4). The discrepancy between T3_MM

and BPBAac results was likely caused by the different basis of the

T3_MM model: dependence on sequentially adjacent amino acids

rather than absolute or relative composition of individual amino

acids. The bi-aa composition of ‘PP’ or ‘NS’ was significantly

different between T3S and non-T3S sequences, and the difference

was more marked than ‘SS’, leading to the higher T3_MM

prediction score for ‘PP’ or ‘NS’ than ‘SS’ string (Fig. 1). Similarly,

BPBAac frequently scored bi-aa strings higher values if either of

the two amino acids were selectively preferred by T3S proteins,

such as ‘SX’ or ‘XS’, where ‘X’ represented any amino acid (Table

S2; Table 4). In contrast, T3_MM often gave these bi-aa strings

different prediction values. For example, all the ‘SX’ or ‘XS’

strings were predicted with high scores using BPBAac, while the

scores predicted by T3_MM were apparently different, with 3

pairs of strings (‘SC’/‘CS’, ‘SW’/’WS’, and ‘SM’/‘MS’) classified

as non-T3S sequences (Table S2). Moreover, some amino acids

were either not enriched in T3S signal sequences, or not

differently preferred by T3S and non-T3S sequences, such as

isoleucine and cysteine (Fig. S1). Therefore, most ‘CX’/‘XC’ and

‘IX’/‘XI’ strings (including ‘CI’/‘IC’ string) were predicted by

BPBAac to be non-T3S sequences (Table S2). T3_MM also

classified strings solely composed of isoleucine or cysteine as non-

T3S proteins (Table S2). However, the bi-aa composition of ‘IC’

or ‘CI’ conditional on the preceding amino acid (‘I’ or ‘C’,

respectively) was significantly different between T3S and non-T3S

proteins, and consequently, T3_MM gave ‘IC’/‘CI’ strings quite

high score and classified them to be T3S sequences (Table S2).

The 30 bi-aa sequences given the highest and lowest prediction

scores with T3_MM and BPBAac, respectively are shown in

Table 4.

Because there are too many combinations of amino acids in 100

positions, we cannot test all possible peptides with the method

described above. A dynamic programming algorithm was further

designed to find out the most favorable and unfavorable signal

sequences for T3S recognition. The results were shown in Table 5.

The continual stretch of proline was found to be most favorable.

Interestingly, in the most unfavorable T3S sequence, proline

covered nearly 1/3 of the total 100 positions (Table 5) further

demonstrating the significant constraint imposed by adjacent

amino acids in T3S sequences. The most favorable and

Figure 3. Receiver Operating Characteristic curves of different
T3S protein classification models. The point of cutoff value (R = 0)
was indicated with a black rectangle and an arrow.
doi:10.1371/journal.pone.0058173.g003

Table 1. The classifying performance of different models on
T3S and non-T3S training data.

Model Cutoff value Sn (%) vs. Sp (%) A (%) MCC

T3_MM 0 89.61 vs. 90.91 90.48 0.7911

wT3_MM 0 87.66 vs. 90.26 89.39 0.7666

T3_iAA 0 79.22 vs. 86.04 83.77 0.6420

The parameters were calculated based on training-reclassifying results for
training dataset.
doi:10.1371/journal.pone.0058173.t001

Table 2. Performance comparison between T3_MM, BPBAac
and Effective T3 on training dataset.

Software Sn (%) Sp (%) A (%) MCC

T3_MM 83.87 (65.10) 90.32 (65.93) 88.17 (63.10) 0.7362

BPBAac 90.97 (67.70) 97.42 (64.05) 95.27 (62.57) 0.8929

Effective T3 82.53 (66.69) 86.63 (65.42) 86.69 (63.68) 0.6852

The parameters were evaluated based on a 5-fold cross-validation strategy. The
standard deviations for Sn, Sp and A were also indicated.
doi:10.1371/journal.pone.0058173.t002

Bacterial Type III Signal Analysis

PLOS ONE | www.plosone.org 5 March 2013 | Volume 8 | Issue 3 | e58173



unfavorable T3S sequences were also classified with BPBAac, with

a confidently high and a low SVM score, respectively (Table 5).

Prediction and Comparison of Salmonella T3S Effectors
T3_MM was applied to predict T3S effectors from Salmonella

genomes of different serovars (Methods). The number of predicted

effectors was generally proportional to the genome size, with the

number of T3_MM predicted effectors representing 12.261.3%

of the total number of genome-encoding proteins. In comparison,

the ratio of effector proteins predicted by BPBAac was 5.660.5%

(Table S3 and S4; Fig. 5 and Table 6). A stable percentage of

effectors (about 25% of the number predicted by BPBAac) were

predicted by both software programs (Table 6; Table S5). For each

strain, the number of effectors predicted by T3_MM was about 2-

fold of that predicted with BPBAac (2.1860.29; Table 6). Some

recently identified effectors were successfully predicted by

T3_MM but not BPBAac. For example, GtgE (i.e., SL14028

STM14_1196 and its orthologs in S. Typhimurium strains) was an

effector validated recently, which could render S. typhi the ability to

infect mice (Table S3 and S4) [23–24]. GtgE was not included in

the training dataset of T3_MM or BPBAac, but it could be

recalled by T3_MM rather than BPBAac. Therefore, though at

the cost of more possible false positives, the larger number of

candidates predicted by T3_MM should also provide more true

T3S effectors.

The shared effectors predicted by both T3_MM and BPBAac

were further analyzed since these effectors should have both

position-specific and adjacent-constraint T3S signal features and

therefore could be more likely to be true ones (Table S5). There

were 70 effectors predicted by both programs in S. enterica serovar

Typhimurium LT2 (Table 6); 17 (24.3%) of these were currently

known T3S effectors (Table S5, Type I or II). Another 3 of the

predicted genes, STM2584, STM1318 and STM2050, may also

encode T3S effectors (Table S5, Type III), based on predictions

taking into account various structural features (Wang et al.,

unpublished data). 13 genes (18.6%, 13/70) were hypothetical

with unknown function, or originated from bacteriophages (Table

S5, Type IV). Two other genes, invE and STM1082, were closely

related with T3SS function (Table S5, Type V). InvE encodes an

accessory protein which is necessary for type 3 secretion of

substrates while STM1082 encodes an AraC-family transcriptional

regulator, an important type of T3SS gene regulator [2]. It is

worth noting that there were also predicted effectors (11.4%, 8/

70), which were annotated as flagella-related proteins (Table S5,

Type VI). T3SSs were reported to be evolutionarily related to

flagella, and therefore, the flagella-related proteins and T3S

effectors could share many sequence properties. These genes could

also be improperly annotated as flagella-related proteins. The

remaining 27 predicted effectors could participate in different

biological processes or pathways (Table S5, Type VII).

The number of predicted effectors was different in different

Salmonella strains (Table S5). It is interesting to identify strain-

specific effectors. A comprehensive comparison was consequently

performed to the effector sets in 3 Salmonella serovar Typhimurium

strains, LT2, 14028s, and SL1344. The LT2 genome was

sequenced ten years ago, while the genomes of 14028s and

SL1344 were published recently [25–26]. Table 7 showed the

Table 3. Performance comparison between T3_MM, BPBAac
and Effective T3 on new datasets.

Dataset Software Recall (%)a Selectivity (%)b A (%)

Mukaihara
2010

T3_MM 32/35 (91.43) 64/70(91.43) 91.43

BPBAac 21/35 (60.00) 67/70(94.87) 83.81

Effective T3 20/35(57.14) 70/78(92.86) 80.95

Baltrus 2011 T3_MM 275/291 (94.50) 539/582 (92.61) 93.24

BPBAac 234/291 (80.41) 558/582 (95.88) 90.72

Effective T3 223/291 (76.63) 533/582 (91.58) 86.60

Note: a‘Recall’ was adopted here instead of sensitivity to describe the number of
validated T3S proteins correctly predicted from the total number of T3S
proteins. The recall percentage was noted within parentheses after recall value,
which was identical to the sensitivity.
b‘Selectivity’ was adopted here instead of specificity, to describe the number of
non-T3S proteins correctly predicted from the total number of non-T3S
proteins. The selectivity percentage was noted within parentheses after
selectivity value, which was identical to the specificity.
doi:10.1371/journal.pone.0058173.t003

Figure 4. Inter-species cross validation of the T3S effector predictions. The sensitivity (Sn) and specificity (Sp) of classification were shown in
blue and purple, respectively. The T3S effector recall of each representative genera or subgroup was also indicated. Genus names are listed below
each series of dots.
doi:10.1371/journal.pone.0058173.g004
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specific effectors of individual strains. Two LT2-specific genes,

STM2703 and STM0909, both encoding hypothetical proteins

with unknown function, did not have orthologs in 14028s or

SL1344 (Table 7, in bold). It is possible that STM2703 and

STM0909 were obtained by horizontal transfer events. SL1344

and 14028s have two and four potential horizontally-acquired

strain-specific genes, respectively, including known sopE (SL2674)

in SL1344 (Table 7, in bold). In addition to the possible effectors

without sequence homologs, each Typhimurium strain also had

strain-specific effectors with sequence homologs in at least one

other strain (Table 7, in italic). Closer analysis of the homologous

sequences in other strains indicated they may have lost T3S signal

features as a result of mutation and therefore were not recognized

by T3SS.

Discussion

It is still an enigma how bacterial type III effectors are

specifically recognized and secreted by type III secretion conduits.

Previous experimental and bioinformatic analysis indicated that

the signal sequences of type III effectors contained specific amino

acid composition, such as being enriched in serine residues

[10,15,17]. It is not yet known whether the amino acid

composition influences the specificity of type III secretion,

although some researchers have hypothesized that the amino acid

composition is important for keeping the sequence more flexible

and useful for specific recognition [7]. In this research, we further

analyzed specific Aac features of T3S proteins. Our results

highlighted the existence of Aac dependence relationship between

adjacent positions in T3S signal sequences (Fig. 1). A closer

observation and exploration of the dependence between adjacent

amino acids could possibly provide interesting clues about the

evolution and recognition mechanisms of type III signal sequences.

In this research, we used a simple Markov model-based variable

for the Aac dependent on adjacent residues, followed by an

observation and approximation of the variable distribution, for

prediction of new T3S effectors [15,17–20]. The Markov model

was adopted because it is simple, statistically sound and can be well

fit to time or space sequences. It also has been widely applied in

biological sequence modeling. Our model was proved to be both

effective and quantitative for predicting T3S effectors. The

simplicity of the model suggests that further exploration of the

Aac features of T3S signal sequences could yield important

information about secretion recognition. Simplicity also ensures a

more stable classification performance of the model, as was

demonstrated by training data and different test datasets (Tables 1,

2, 3). We also tried other learning and classifying models, including

widely adopted SVM, GLM and RF. However, none of these

methods was comparable to T3_MM, to classify the T3S and non-

T3S proteins based on the conditional Aac features (Table S1).

This could be caused by the conditional Aac features, which are

sequence-based and therefore more suitable for a sequence-based

Markov model. The T3_MM model is sequence-based rather than

position-based, therefore, the model is tolerant to insertion or

deletion of one or several amino acids, or the possibility of

alternative start codons (data not shown). In addition, the T3_MM

model is not sensitive to the variance of sequence length because it

has been normalized for sequence length. We also developed a

wT3_MM model weighted by the probabilities of individual

amino acids. Although the wT3_MM R values seemed better fit to

known normal distributions, the classifying performance was not

as good as that of original R values (Fig. 3 and Table 1). Therefore,

we recommend that T3_MM be applied in practice instead of

wT3_MM.

Effective T3 and BPBAac are two T3S effector prediction tools

with the best prediction performance. The T3_MM model

consistently outperformed Effective T3 with the training dataset

and on test datasets from Ralstonia and Pseudomonas species (Table 2

and 3). BPBAac performed best for classification of the training

dataset (Table 2), but significantly worse than T3_MM when new

independent datasets were used, especially for sensitivity and

accuracy (Table 3). Excellent inter-genera classification results

further demonstrated the stable performance of T3_MM (Fig. 4).

In practice, users are suggested to adopt different strategies to

apply the software for different objectives. T3_MM is a better

choice when more effectors are expected to be found, because

T3_MM can predict more true effectors which other software

cannot predict correctly (e.g., the effector GtgE in S. Typhimurium,

Tables S3 and S4). This is especially useful for identification of

Table 4. The 30 simulated bi-aa sequences of highest (Pos)
and lowest (Neg) prediction scores with T3_MM and BPBAac.

T3_MM_Pos T3_MM_Neg BPBAac_Pos BPBAac_Neg

(PP)50
a (PW|WP)50 (SS)50 (VV)50

(NS|SN)50
b (HY|YH)50 (PS)50 (VD)50

(SS)50 (DW|WD)50 (TS)50 (VY)50

(NI|IN)50 (RC|CR)50 (QS)50 (VI)50

(IC|CI)50 (RW|WR)50 (RS)50 (VG)50

(TT)50 (GC|CG)50 (SP)50 (VF)50

(ST|TS)50 (YY)50 (NS)50 (FV)50

(DH|HD)50 (WY|YW)50 (ST)50 (VK)50

(MY|YM)50 (WK|KW)50 (ES)50 (VM)50

(CL|LC)50 (TC|CT)50 (GS)50 (FD)50

(NH|HN)50 (WI|IW)50 (IS)50 (KV)50

(NN)50 (HW|WH)50 (SN)50 (VW)50

(QT|TQ)50 (WA|AW)50 (SR)50 (FG)50

(AP|PA)50 (WF|FW)50 (SQ)50 (VC)50

(NT|TN)50 (DY|YD)50 (DS)50 (KD)50

(PS|SP)50 (LW|WL)50 (LS)50 (VE)50

(PT|TP)50 (KC|CK)50 (SE)50 (KY)50

(IQ|QI)50 (MV|VM)50 (AS)50 (FI)50

(HK|KH)50 (MC|CM)50 (KS)50 (FY)50

(KF|FK)50 (CA|AC)50 (SG)50 (KI)50

(HM|MH)50 (DC|CD)50 (SA)50 (YV)50

(QS|SQ)50 (VI|IV)50 (SL)50 (KG)50

(AS|SA)50 (VY|YV)50 (VS)50 (FF)50

(HH)50 (TW|WT)50 (SK)50 (KF)50

(CN|NC)50 (QC|CQ)50 (SV)50 (FK)50

(VN|NV)50 (YF|FY)50 (SD)50 (VL)50

(ME|EM)50 (GM|MG)50 (SI)50 (YD)50

(KK)50 (CC)50 (HS)50 (YG)50

(KM|MK)50 (MA|AM)50 (PP)50 (KK)50

(QH|HQ)50 (VV)50 (SH)50 (GY)50

Note: a. (bi-residue)50 means a 100-residue sequence with 50-time repeats of the
indicated bi-residue. b. The character ‘|’ means ‘or’. The higher R value for
T3_MM or SVM score for BPBAac, the more possibly being T3S effectors; vice
versa.
doi:10.1371/journal.pone.0058173.t004
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new effectors in model species, in which many effectors have been

found and highly-specific software, such as BPBAac, could not

provide new candidates. To combine T3_MM and BPBAac is also

a good choice when higher specificity is desired. The prediction

results of this combinational strategy have both sequential bi-

residue composition features and position-specific Aac features,

and these candidates are more specific, though with a tradeoff

being a loss of many new effectors. In this research, we first

predicted Salmonella T3S effectors with T3_MM, and found it

could give a larger number of possible candidates, some of which

were recently validated by experiments and not predicted by

BPBAac. A combined prediction strategy was further used to

screen more specific effectors for further comparison and analysis

(the percentage of known effectors in all predictions was increased

to ,25% from ,5% for T3_MM and ,9% for BPBAac). Many

candidates were predicted by both programs, and most of them

were conserved among different Salmonella serovars and stains

(Table S5). In addition to the conserved and well-characterized

effectors, the strain-specific ones, especially those whose encoding

genes reside in a mobile region (e.g., prophage), are more

interesting (Table 7). These potential effectors could be obtained

through strain-specific horizontal gene transfer events, and exert a

strain-specific molecular function. Careful comparison of the

effectors among different bacterial strains would give some clues

about the evolution or other knowledge of T3S effectors. For

example, Salmonella was diverged to two currently observable

species, S. enterica and S. bongori. All S. enterica strains contain two

T3SSs (SPI-1 and SPI-2) while S. bongori didn’t obtain the SPI-2

T3SS [27]. Comparison of the S. bongori predictions with those of

S. enterica strains, indicated that none of known SPI-2 T3S effectors

were present while most SPI-1 effectors were present in S. bongori.

This indicates that SPI-1 effectors were likely acquired before

divergence of Salmonella species and that SPI-2 effectors may have

been acquired in S. enterica subspecies or strains after the species

divergence (Table S5; data not shown). The effector SlrP, which

was previously considered as an effector of both SPI-1 and SPI-2

T3SSs [28], was present in S. bongori. This is an indication that slrP,

as well as other inter-species conserved candidate effector genes,

could participate in the SPI-1 T3SS activities. There were also

many predicted S. bongori effectors that were not identified in S.

enterica. These predicted SPI-1 T3SS effectors could potentially

play important, species-specific and phenotype-specific roles in S.

bongori and its interaction with cold-blooded hosts [27].

Based on the likelihood ratio matrices of adjacent bi-residues

(and the first-position residues) between T3S and non-T3S

proteins, the most favored and unfavored T3S sequence compo-

sitions were calculated using a dynamic programming algorithm

(Table 5). The most preferred sequence was not composed of a

stretch of serine resiudes, as was expected. This was also

demonstrated by modelling analysis (Table 4). The results indicate

that, due to the constraint exerted by neighbouring positions, the

most significant preference of some residue (eg., serine) doesn’t

necessarily mean the similar preference of continuous composition

of that residue. In simulating analysis, however, we found a stretch

of proline was most favorable, though proline was not as preferred

by T3S proteins as serine in most N-terminal positions (Table 4

and 5). Experiments are required to test whether this is the case.

Interestingly, the proline was also present in about 1/3 of the

positions in the most unfavorable T3S sequence, further indicating

the constraint of amino acid composition cause by its adjacent

position (Table 5). It should be pointed out that in this modeling

process, position information (i.e., position-specific bi-residue

composition) was not considered, which could be more accurate

theoretically but requires more known T3S proteins. Based on

currently available validated T3S effectors, we calculated the most

favorable T3S sequence by dynamic programming algorithms.

The results were far different (e.g., the most favorable sequence of

N-terminal 10-aa peptide being ‘TSWFAGDEKK’), and yet they

were not stable, especially for the residues close to the C-termini.

As more T3S effectors are validated, modeling based on position-

specific bi-residue composition will become more feasible. These

types of models are more likely to reveal hidden T3S motifs or

unique amino acid composition features.

In conclusion, the T3_MM model that we have developed can

be applied to identify new effectors from different bacterial species

based on their genome sequences. As more T3S proteins are

experimentally identified, the estimated parameters can be

optimized and the model can be improved.

Methods

Data Source
The T3S and non-T3S training protein dataset was described in

detail previously (Text S1) [17]. The dataset consisted of 154 non-

homologous validated T3S proteins and 308 non-T3S proteins.

The proteins were manually collected from different animal and

plant pathogens or symbiotic bacteria, except Ralstonia [2,17]. The

non-T3S proteins were selected from the proteins encoded by

different bacteria strains after removing the known effectors.

Two independent datasets were used for testing and comparing

the performance of T3_MM and other software programs. For the

first test dataset, the Ralstonia validated effectors were collected

from a recent large-scale experimental study [21]. These effectors

were identified by Cya translocation assay [21]. In total, 35

effectors and randomly selected 70 non-effectors from Ralstonia

were included in this dataset (Text S2). None of the Ralstonia

proteins were used in training dataset. The other testing dataset

consists the most comprehensive list of known Pseudomonas effectors

(Text S3) [22]. These effectors were annotated from literature with

different experimental evidence [22]. 291 known effectors and 582

randomly selected control proteins from Pseudomonas were includ-

ed. The control proteins were selected with a strategy similar with

that of the training dataset. The ratio of size between positive and

Table 5. The most favorable and unfavorable T3S peptide sequence inferred by dynamic programming algorithm.

Property Sequence T3_MM_R_value BPBAac_SVM

Most_favorable PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP
PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP

4.09 1.72

Least_favorable YHWKPWKPWKPWKPWKPWKPWKPWPWKPWKPWKPWKPWKPWK
PWKPWKPWKPWKPWKPWKPWKPWKPWKPWKPWKPWKPWKPWK
PWPWKPWKPWKPWKPW

24.97 21.13

doi:10.1371/journal.pone.0058173.t005
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negative training/testing sequences was maintained at 1:2,

according to previous experience and related reports [17,29].

Assumption, Definition and Markov Model
Let vector S~fA1,A2,:::,Ang denotes a peptide sequence in

which A represents amino acid while the number represents

position and n represents the total length of S. Besides, let A0

denotes a hypothetically initial state of sequence S. Assume A0

probability P(A0) is 1 for each sequence S. The conditional

probability of Ai+1 on the amino acid at sequentially preceding

position is denoted as: P(Ai+1|Ai), where 0#i,n. Assume the

amino acid composition at one position is only dependent on its

sequentially preceding position; consequently, the generating

probability of an sequence S could be described as an one-order

Markov chain:

P(S)~P(A0) � P(A1jA0):::P(Aiz1jAi):::

P(An{1jAn{2) � P(AnjAn{1):

Assume there are two categories of sequences (C1 and C2), and S

could be sampled either from C1 or C2. The likelihood of sequence

S belonging to category C is:

P(SDC)~P(A0DC) � P(A1DA0,C):::P(Aiz1DAi,C):::

P(An{1DAn{2,C) � P(AnDAn{1,C),

where C represents C1 or C2.

For each sequence S, a statistic variable R, is constructed to

describe logarithm of the likelihood ratio between P(S|C1) and

P(S|C2), i.e.,

R~ log½P(SDC1)=P(SDC2)�

~
Xn{1

i~0

log½P(Aiz1DAi,C1)=P(Aiz1DAi,C2)�

z log½P(A0DC1)=P(A0DC2)�,

where the base is set as 2, and log[P(Ai+1|Ai,C1)/P(Ai+1|Ai,C2)] is

predefined as zero when P(Ai+1|Ai,C) equals to 0.

For the models studied in this work, C1 and C2 represent T3S

and non-T3S proteins, respectively. The probabilities of individual

amino acids for T3S and non-T3S proteins, are used as the

coefficients for weighted T3_MM model (wT3_MM).

T3_iAA assumes that amino acids in sequence S are indepen-

dent on each other, and the probabilities of different S with fixed

length of n sum to 1. Therefore, the probability of S equals to the

probability product of each constitute amino acid. T3_iAA also

calculates the logarithm value of likelihood ratio that S being T3S

or non-T3S protein.

All the conditional probabilities, P(Ai|C) or P(Ai+1|Ai,C) (0#i,n,

C = C1 or C2), are estimated using maximum likelihood method.

The negative logarithm of probability is also calculated for more

direct comparison and observation.

Figure 5. Summary of the total genome-encoding proteins, T3_MM predicted T3S effectors and BPBAac predicted T3S effectors in
Salmonella. The total protein number for each Salmonella strain was depicted and linked with a line in red, while the number of T3S effectors
predicted by T3_MM and BPBAac was shown in blue and purple, respectively. The patterns of these three lines were generally similar with moderate
difference.
doi:10.1371/journal.pone.0058173.g005
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Probability Distribution, Parameter Estimation and
Decision Function

The R values for each T3S protein are calculated, and a

histogram is drawn afterwards to represent the R distribution. A

density curve is derived from the normal Q–Q plot and Shapiro-

Wilk normality test are further adopted to test whether the

observed distribution is a normal distribution. For normal

distribution, the parameters, mean (m) and standard deviation

(s), are estimated using a maximum likelihood method. The R

values for non-T3S proteins, and weighted R values for T3S and

non-T3S proteins, are all calculated and analysed with the same

strategy.

R values of T3S and non-T3S proteins are ideally fitting to two

distinct probability distributions: FC1 and FC2, respectively.

Suppose mean m(FC1) is not smaller than m(FC2). For any sequence

S and its R value r, PC1(R|R#r) and PC2(R|R$r) represent the

probability of S according to FC1 and FC2 distribution, respec-

tively. Let discriminant function D(r) = PC1(R|R#r)2PC2(R|R$r).

If D(r)$0, r follows FC1 distribution and S belongs to C1 or T3S

proteins; otherwise, D(r),0, r follows FC2 distribution and S

belongs to C2. When r follows FC1 distribution, the probability of S

being a C1 or T3S protein is the mean of PC1(R|R#r) and

12PC2(R|R$r). When r follows FC2 distribution, the probability of

S being a C2 or non-T3S protein is the mean of PC2(R|R$r) and

12PC1(R|R#r).

Performance Assessment
Accuracy (A), Specificity (Sp), Sensitivity (Sn), Receiver Operat-

ing Characteristic (ROC) curve and Matthews Correlation

Coefficient (MCC) were utilized to assess the predictive perfor-

mance. In the following formula, A denotes the percentage of both

positive instances (T3S) and negative instances (non-T3S) correctly

predicted. Sn (true positive rate) and Sp (true negative rate)

respectively represent the percentage of positive instances (T3S)

and the percentage of negative instances (non-T3S) correctly

predicted. An ROC curve is a plot of Sn versus (1-Sp), and is

generated by shifting the decision threshold. AUC gives a measure

of classifier performance. MCC takes into account true and false

positives and false negatives and is generally regarded as a

balanced measure which can be used even if the classes are of very

different sizes.

Table 6. Summary of Salmonella effectors predicted by T3_MM and BPBAac.

Strain Total_protein T3_MM_predicted BPBAac_predicted Shared

SL1344 4527 413 218 51

14028s 5312 746 281 74

LT2 4425 533 263 70

DT104 4585 418 210 53

CT18 4395 528 267 71

Ty2 4318 516 257 68

287_91 3965 462 245 62

AKU_12601 4074 484 245 65

ATCC9150 4093 483 239 63

CT_02021853 4513 586 250 61

CVM19633 4501 575 233 60

NCTC_12419 3863 455 239 67

P125109 4206 499 260 65

RKS4594 4574 571 260 64

RSK2980 4500 572 256 64

SC-B67 4427 554 279 69

SL254 4613 583 252 64

SL476 4651 575 242 60

SL483 4562 579 235 57

SPB7 5591 815 280 67

doi:10.1371/journal.pone.0058173.t006

Table 7. Predicted strain-specific T3S effectors.

LT2 SL1344 14028s

STM2727 SL2674 STM14_4922

STM4377 SL1076 STM14_1479

STM2703 SL2715 STM14_2428

STM0909 SL4268 STM14_5051

STM4539 SL0536 STM14_1417

STM4202 SL3702 STM14_0039

SL2941 STM14_0118

SL0277 STM14_0489

STM14_3042

STM14_5206

doi:10.1371/journal.pone.0058173.t007
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A~
TPzTN

TPzFPzTNzFN
,Sp~

TN

TNzFP
,Sn~

TP

TPzFN
,

MCC~
(TP|TN){(FN|FP)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(TPzFN)|(TNzFP)|(TPzFP)|(TNzFN)
p

where TP, TN, FP and FN denotes the number of true positives,

true negatives, false positives and false negatives, respectively.

To avoid overfitting of T3_MM, a 5-fold cross-validation

strategy was adopted to evaluate its classification performance.

The training dataset was divided into 5 subsets, each with identical

number of positive and negative sequences. Four subsets were put

together for training and the remaining subset was used for testing.

The process was repeated so that all sequences were tested once.

The performance parameters were evaluated as the average values

of the cross-validation results.

To test the robustness of T3_MM, an inter-species cross-

validation strategy was adopted. The T3S and non-T3S proteins

of a targeted genus (or phylum/subgroup) were extracted from the

training dataset at first. The remaining sequences were used to re-

train the model, which in turn was used to test the proteins of

targeted genus (or phylum/subgroup). The sensitivity and

specificity were calculated thereafter.

Comparison with other Software Programs
The Support Vector Machine (SVM), Generalized Linear

Model (GLM) and RandomForest (RF) were also used for training

the conditional Aac features. Because the size of features was large

(400), and the length of signal sequences was 100 aa, only the bi-

residues statistically different between T3S and non-T3S sequenc-

es were included for training (binomial test, FDR-corrected

p,0.05). R packages were adopted to implement SVM

(‘e1071’), GLM (‘faraway’) and RF (‘RandomForest’), respectively

(http://cran.r-project.org/).

The performance of T3_MM was also compared with other

established T3S protein prediction models, Effective T3 [15] and

BPBAac [17]. The original methods and optimal parameters were

used for re-training the models with new training datasets. To

compare the performance of each type of software to classify the

two testing datasets, the default parameters were used, except

sensitive cutoff values were adopted for either model (a probability

of 0.95 for Effective T3 and an SVM value of 0.0 for BPBAac),

since selective cutoff values for both models gave quite low recalls

for the test datasets [15,17].

Most and Least Possible T3S Signal Sequences
A dynamic programming algorithm was designed to find out the

most and least possible T3S signal sequences based on the log odds

of probabilities of individual amino acids and di-residues. Local

maximal (minimal) sum of log odds of first-position individual

amino acids and sequential di-residues between T3S and non-T3S

sequences were recursively calculated. The path for continual local

maximal (minimal) values was recorded and it was recognized as

the most (least) possible T3S signal sequence.

Prediction, Comparison and Annotation of Salmonella
Effectors

Genome and genome-encoding protein sequences of Salmonella

strains were downloaded from the NCBI website: http://www.

ncbi.nlm.nih.gov/genome. The strains and their genome acces-

sions included: S. typhimurium LT2 (NC_003197), 14028s

(CP001363), SL1344 (NC_016810), DT104, S. typhi CT18

(NC_003198), Ty2 (NC_004631), S. paratyphi A AKU_12601

(NC_011147), ATCC9150 (NC_006511), S. paratyphi B SPB7

(NC_010102), S. paratyphi C RKS4594 (NC_012125), S. enteritidis

P125109 (AM933172), S. gallinarum 287/91 (NC_011274), S. dublin

CT_02021853 (NC_011205), S. Schwarzengrund CVM19633

(NC_011094), S. newport SL254 (NC_011080), S. heidelberg SL476

(NC_011083), S. choleraesuis SC-B67 (NC_006905), S. agona SL483

(NC_011149), S. bongori NCTC_12419 (NC_015761), and S.

arizonae RSK2980 (NC_010067). The genome-encoding sequences

were input to the T3_MM server (http://biocomputer.bio.cuhk.

edu.hk/T3_MM.php) with default parameters for T3S protein

prediction. BPBAac (http://biocomputer.bio.cuhk.edu.hk/

BPBAac.php) was also used to predict effectors in different

bacteria. A sensitive cutoff value, 0.0, was set for BPBAac

prediction. To find out the orthologs of two strains, a reciprocal

alignment was performed to the protein sequences of any pair of

genomes with blast program (blastp, evalue ,0.0005). The

orthologs were defined as the mutual best alignment hits. Gene

order information was also analyzed and used as additional

evidence. The Genbank annotations for LT2 and other genomes

were referred for function annotation of predicted effectors.

Supporting Information

Figure S1 Amino acid composition difference between
T3S and non-T3S sequences. Horizontal axis: twenty types of

amino acids. Vertical axis: negative logarithm of the composition

probability of corresponding amino acid.

(PDF)

Figure S2 Comparison of Aac probability profiles
conditional on preceding-position amino acid. Horizontal

axis: sequentially adjacent two amino acids. Vertical axis: negative

logarithm of the conditional probability of corresponding bi-amino

acids (bi-aa). T3S and non-T3S sequences were shown in black

bars and grey bars, repectively. WW, WY and MV were not

present in T3S sequences, therefore, the probability for these

residues was replaced with 1/1000 so as to avoid an infinite

logarithm value. Bi-aa with conditional probability significantly

different from absolute probability in T3S sequences but not

significant in non-T3S sequences were marked with a star above

the bar (T test, p,0.05). Among bi-aas with the same first-position

residue in T3S sequences, bi-aa with the rank of conditional

probability significantly different from that of absolute probability

was marked with an upward (rank difference between conditional

and absolute probability #25; the smaller the rank value, the

higher the probability) or downward arrow (difference $5) above

the bar. Similarly, among bi-aas with the same first-position

residue, bi-aa with the rank of conditional probability in T3S

sequences significantly different from that of non-T3S sequences

was marked with a backward arrow (rank difference between

conditional probability of T3S and non-T3S sequences #25) or

forward arrow (difference $5) below the bar.

(PDF)

Table S1 Performance comparison for Markov model
(T3_MM), SVM, GLM and RF training the conditional
Aac features.

(DOC)

Table S2 Predicted score of simulated sequences.

(XLS)

Table S3 T3_MM predicted Salmonella effectors.

(XLS)
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Table S4 BPBAac predicted Salmonella effectors.
(XLS)

Table S5 Salmonella effectors predicted by T3_MM and
BPBAac.
(XLS)

Text S1 Training sequences.
(TXT)

Text S2 Mukaihara 2010 Ralstonia T3S proteins.
(TXT)

Text S3 Baltrus 2011 comprehensive Pseudomonas T3S
protein.

(TXT)
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