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Abstract

Recently, there has been much interest in describing the behaviour of animals by fitting various movement models to
tracking data. Despite this interest, little is known about how the temporal ‘grain’ of movement trajectories affects the
outputs of such models, and how behaviours classified at one timescale may differ from those classified at other scales.
Here, we present a study in which random-walk state-space models were fit both to nightly geospatial lifelines of common
brushtail possums (Trichosurus vulpecula) and synthetic trajectories parameterised from empirical observations. Observed
trajectories recorded by GPS collars at 5-min intervals were sub-sampled at periods varying between 10 and 60 min, to
approximate the effect of collecting data at lower sampling frequencies. Markov-Chain Monte-Carlo fitting techniques,
using information about movement rates and turning angles between sequential fixes, were employed using a Bayesian
framework to assign distinct behavioural states to individual location estimates. We found that in trajectories with higher
temporal granularities behaviours could be clearly differentiated into ‘slow-area-restricted’ and ‘fast-transiting’ states, but
for trajectories with longer inter-fix intervals this distinction was markedly less obvious. Specifically, turning-angle
distributions varied from being highly peaked around either 00 or 1800 at fine temporal scales, to being uniform across all
angles at low sampling intervals. Our results highlight the difficulty of comparing model results amongst tracking-data sets
that vary substantially in temporal grain, and demonstrate the importance of matching the observed temporal resolution of
tracking devices to the timescales of behaviours of interest, otherwise inter-individual comparisons of inferred behaviours
may be invalid, or important biological information may be obscured.
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Introduction

Understanding the causes and consequences of animal move-

ment and how it is an overt expression of behaviour has become a

central theme in biology, especially during the last decade, which

has witnessed the birth of the new scientific discipline of

‘movement ecology’ [1–3]. Critical to identifying the hierarchy

of factors that affect how and why animals move is the choice of

methods for characterising their movement patterns [4]. A topic of

intense interest to ecologists and ethologists currently is how Bayes’

Theorem can be used to infer latent states of behaviour from

within individual movement trajectories, or ‘geospatial lifelines’.

Examples include stochastic time-series analyses such as state-

space models, in which the underlying process represents serial

changes in behavioural states [5], and/or the ‘true’ locations of

recorded observations [6,7]. Typically, such models apply

Markov-Chain Monte-Carlo (MCMC) fitting techniques to

predict distinct modes of behaviour at observed locations, based

on information about movement metrics, and less frequently,

covariate environmental data [5,8]. A fundamental assumption of

such models is that certain behavioural states (e.g., resting,

commuting, area-restricted foraging), because they are the product

of quasi-stereotypic responses to movement-inducing stimuli (e.g.,

food, shelter, mates), can be identified by their geometric

configuration in space-time.

Despite the increasing interest, little is known about how the

data from which movement trajectories are derived affect the

outputs of inferential models. Attributes such as the speed and

turning angle between adjacent fixes (as well as more complex

measures such as fractal dimension) intrinsically are dependent on

the temporal and spatial resolution of sampling regimen. For

example, as the interval between sequential location estimates

increases, mean rates of movement decrease and turning angles

become more uniform [9]. Eventually, temporal grain may

become so coarse that biologically meaningful information is lost

(at least at fine scales), yet there are practical limits (both physical

and computational) to how high the sampling rates of tracking

devices can be. Thus, knowledge of how the modelling process and

its subsequent outputs are dependent on the temporal resolution of

movement data is essential, if the utility of inferential models is to

be maximised.

Here, we examine how the sampling interval of animal

movement trajectories affects the distributional parameters and

states of behaviour inferred by a random-walk movement model

(as in Morales et al. [5]). We show results both for a set of

synthetically generated data, and for data collected from the

common brushtail possum (Trichosurus vulpecula), a Phalangerid
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marsupial native to Australia. Our findings have general

implications for comparison of inferred behaviours derived from

tracking data sets that differ markedly in temporal resolution. We

hope that this paper encourages other researchers to consider how

the temporal grain of movement data may influence their

modelling results, and to carefully match the sampling interval

of tracking devices to study objectives. In demonstrating our

findings, we also present several new methods for displaying

outputs from MCMC methods that may prove useful to others. An

advantage of these methods is that, since model outputs are

distributions of parameter estimates (rather than single estimators),

outputs are not discretised, but rather are representations of all

available information, thus permitting determination of the

credible ranges of model parameters.

Methods

Generation of synthetic data
We generated a synthetic trajectory of 487 data points (similar

in number to that of a possum movement trajectory) made of

segments of ‘straight’ and ‘area-restricted’ behaviour. Each

straight or foraging segment contained between 20 and 100 data

points, chosen at random from a uniform distribution. For each

trajectory segment, successive points were generated using the

algorithm

xjz1~xjzlj coshj

yjz1~yjzlj sinhj

where hj was picked from a Von Mises distribution with mean

hj{1 and concentration k (given by the density function

f (hj)~e
kcos(hj{hj{1)

=2pI0(k) where I0 is a modified zeroth-order

Bessel function) and lj was chosen from a normal distribution with

mean lj{1 and variance s2.

For the straight segments, k~10 and s~2. For the area-

restricted behaviour, k~0 and s~0:1. The initial direction of the

straight segments was chosen randomly from a uniform distribu-

tion. The length of the initial step in a straight segment was lj~6

and in an area-restricted segment was lj~2. This difference in

initial step lengths represents the fact that animals generally move

slower during area-restricted movements. Without loss of gener-

ality, we choose initial points (x0,y0)~(0,0) and h0~0.

Study species and data collection
The common brushtail possum (‘possum’: Trichosurus vulpecula) is

a primarily folivorous, semi-arboreal member of the marsupial

family Phalangeridae. Under normal conditions possums are

almost exclusively nocturnal [10], usually emerging from their

dens 20–30 min after sunset [11,12] and often remain active until

1–2 h before sunrise. We choose possums as our study subject

because of their high population numbers and ease of capture and

handling.

Tracking data for our study were obtained from a population of

possums located near Muriwai Beach, on the western coast of the

North Island of New Zealand (174.482E, 36.818S). Tracking data

modelled in this study were obtained from two male and two

female possums between October 2007 and September 2008. We

used SirtrackTM (Havelock North, New Zealand) GPS/VHF

telemetry collars (c. 105 g) to track the nightly movement patterns

of the study animals. Collars weighed v5% of body mass, and

were programmed to determine locations at 5-min intervals,

beginning at the approximate time of sunset.

Animals were trapped overnight, fitted with collars and released

the following morning, where they were allowed to roam freely for

approximately 10 d. To recover the collars, traps were placed

around the locations of den sites that were determined during the

day by standard radio-telemetry. All capture and handling

protocols were approved by the University of Auckland’s Animal

Ethics Committee (AEC/03/2006/R452).

Location data from the collars were converted from latitude and

longitude to the New Zealand Transverse Mercator coordinates

using the Blue Marble GeoCalc software (Gardiner, ME).

Following standard practice, prior to calculation of inter-fix

distances we attempted to remove individual position fixes of

questionable accuracy. This was done by applying ‘Option 2’

proposed by Lewis et al. [14], which suggests excluding fixes

calculated using information from only three satellites (two-

dimensional fixes) that have corresponding values of positional

dilution of precision w5. Application of this procedure removed c.

10% of the observed fixes.

For additional details on all tracking and handling procedures

see Dennis et al. [13].

Data subsampling and conversion
For both the synthetic and tracking data, observed data

consisted of sets of sequential triplets of geographic coordinates

and a timestamp (xj ,yj ,tj), where j~1, . . . ,T and T was the total

number of observations made.

For the synthetic data, time is in arbitrary units, and data were

subsampled at intervals of 1{12 times the original sampling

frequency. For each possum dataset, we subsampled the data at

intervals of m[(5,10,15,20,25,30,35,40,45,50,55,60) min to sim-

ulate the data that might have been obtained had the GPS device

recorded a fix every m minutes instead of every 5 minutes.

Data were converted to movement rates rj and turning angles wj

using the formulae:

rj~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 2

j zY 2
j

q
tjz1{tj

, wj~tan{1 Yj

Xj

� �
{tan{1 Yj{1

Xj{1

� �

where Yj~yjz1{yj and Xj~xjz1{xj and the tan{1 function

was computed so as to take account of the quadrant of the

argument and give a solution in the range {p to p.

Because in this study we are investigating the effects of sampling

rate on model fitting, it was necessary to ensure that within a given

trajectory the data were sampled at fixed frequencies. To reduce

the effects of missing data in the possum data, if data points

required to compute a given value of wj or rj were not available,

then that value of wj or rj was excluded from further analysis. The

sub-sampling algorithm used is described in Appendix S1. Note

that the set of locations used at higher sampling intervals was not

necessarily a subset of those used for lower sampling intervals.

That is, data used for m~30 may contain position fixes that were

not used for m~15.

The models
To evaluate the effect of the temporal grain of movement

trajectories on model outputs we used a multiple-random-walk

model first introduced by Morales et al. [5]. Movement paths of

individuals were assumed to be comprised of steps and turning

angles, with distributions of these attributes specified by one of a

set of correlated random walks. We considered models with one,

Temporal Resolution of a Model of Animal Movement
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two or three behavioural states. In each model, each observation

of a trajectory is classified as belonging to a particular behavioural

state, which corresponded to a different random walk. The

parameters in the models include both the parameters specifying

the speed and turning angle distributions, as well as the state to

which each observation is assigned.

For a data set of movement rates r~(r1, . . . ,rN ), and turning

angles w~(w1, . . . ,wN ), the likelihood of observing the data is

given by the density function

P(r,wDh,I)~ P
N

j~1
f (rj ,wj DhIj

)

where f is a probability density function for rj and wj at one step in

the time series of data, h~(h1, . . . ,hk) is a vector of parameters,

where k is specified and is the number of different behavioural

states in the model. Each hi is a vector of parameters describing

the random walk model in each of the k behavioural states. The

vector I~(I1, . . . ,IN ) describes the behavioral state at each

timestep, and each Ij[f1, . . . ,kg. In this paper, we do not model

the switching behavior between states directly, that is, each state Ij

is determined independently (as described below). Including

models of switching behavior is a simple extension of the model

we use, and is described in detail by Morales et al. [5].

Following Morales et al. [5], we use

f (rj ,wj DhIj
)~W (rj DaIj

,bIj
)C(wj DmIj

,rIj
),

where

W (xDa,b)~abxb{1 exp({axb), x§0, a,bw0,

is a Weibull distribution and

C(wDm,r)~
1

2p

1{r2

1zr2{2r cos(w{m)
, 0ƒw,mƒ2p, 0ƒrƒ1,

is a wrapped Cauchy distribution. Thus for each i[1, . . . ,k, the

vector hi~(ai,bi,mi,ri) are the parameters describing the random

walk in each behavioral state.

The Weibull distribution has a mean of a{1=bC(1z1=b), and a

mode of ((b{1)=(ab))1=b if bw1, and a zero mode otherwise. The

mean of the wrapped Cauchy is m, and r is the concentration

parameter. As r approaches one, the mean vector tends to a point

on the unit circle, that is, the distribution converges to a point

distribution at w~m. As r approaches zero, the mean vector tends

to the origin, and the distribution converges to a uniform

distribution on ½0,2p�.
We considered three models, which differed only by the maximum

number of behavioural states that were allowed. That is, we considered

the three cases k~1, 2, or 3. In each model, the vector of all parameters

is H~(h,I)~(a1, . . . ,ak,b1, . . . ,bk,m1, . . . ,mk,r1, . . . ,rk,I1, . . . IN ).
For each model, parameters were fitted to the data by MCMC

techniques, using the software WinBUGS (Lunn et al. 2000 [15]).

WinBUGS creates a chain of samples of the parameters H, using Gibbs

sampling to update from the sample Hl to the sample Hlz1.

Vague priors were used wherever possible, specifically, for the

parameters ai and bi we used Gamma distributions with means of

30 and variances of 3000. For the parameter mi the prior was

uniform from 0 to 2p and for the parameter ri the prior was a

uniform distribution which ranged in value between 0 and 0:999

(we require a maximum rv1 so that we can define a maximum

value for C(wDm,r) in the WinBUGS code).

For each model we ran a single MCMC chain for 100,000

iterations (after a burn-in period of 2000 iterations), keeping every

10th MCMC sample of the parameters Hl for posterior estimation.

Convergence of the chains was checked for a random sample of

parameters. In mixture models such as our two- and three-state

variants, posterior distributions are symmetric with respect to

permutations of the labels of the states. This causes ‘label-

switching’ within the Markov Chain. We used the re-labelling

algorithm of Stephens [16] to address this problem before

performing any posterior analyses.

For the synthetic data, we used MCMC methods to fit the two-

state model at each of the twelve sub-sampling intervals. For each

of the four possums, we used MCMC to fit all three models, at

each of the twelve sub-sampling intervals.

Visualisation techniques
The output of the MCMC model-fitting techniques contains a

wealth of information, and in the Results section we present

several novel ways of displaying such data. The methodology

described here could be used for the displaying the output of any

fitting process using MCMC methods.

A standard method of displaying results of MCMC fitting

procedures is to show posterior distributions of the parameters, in

this case a1, b1 etc. However, in our situation, distributions of these

parameters do not give particularly useful information about

movement rates or turning angles. Instead, we compute what we

term ‘posterior distributions’.

For example, we label the parameter sample from the MCMC

fitting procedure as Hl ,l~1, . . . ,L, where in this case L~10,000.

To compute the posterior Weibull distribution for behavioral state

i, we use

W i(x)~
1

L

XL

l~1

W (xDail ,bil): ð1Þ

Note that since W is the mean of a set of distributions, the area

under W will also integrate to one. The mean of a Weibull

distribution is a{1=bC(1z1=b), so we define the posterior mean of

the Weibull distribution to be

E(W (xDai,bi))~
1

L

XL

l~1

E(W (xDail ,bil))

In a similar fashion, we compute the posterior wrapped Cauchy

distribution, and the posterior mean vector for the wrapped

Cauchy distribution. Variances of the posterior means also can be

determined, relative to the MCMC samples.

In generating the posterior distributions in this manner, we were

able to use all the information from the MCMC output. Examples

of this approach are in Fig. 1, showing posterior movement rate

and turning angle distributions. In this figure, we also indicate the

confidence of the posterior mean distributions, by plotting the

curves obtained by taking one or two standard deviation either

side of the values computed in equation (1) (with respect to the

MCMC samples). These curves are shown by the grey shaded

areas. Note that these curves do not represent distributions, but if

the standard deviations are large, we have less confidence in the

results of the MCMC fitting procedure than if they are small, and

hence the curves contain useful information. Figs. 2 and 3 show

Temporal Resolution of a Model of Animal Movement
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Figure 1. Movement-rate and turning-angle distributions of one set of trajectories (possum #1882). Each sub-figure shows, for each
state in the two-state model, movement-rate (top, in m/s) and turning-angle (bottom, in degrees) distributions, at subsampling frequencies of (a)
5 min, (b) 15 min, (c) 30 min and (d) 60 min. Lines and colors are as in Fig. 2.
doi:10.1371/journal.pone.0057640.g001
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posterior means and variances of the mean vector of the wrapped

Cauchy distribution.

We also use the information from the posterior distributions of

the behavioral state parameters Ij in displaying our results. For

each j, we take the mean over the L samples to create a posterior

probability for each of the trajectory’s data points belonging to a

particular behavioural state. Rather than discretising the output,

and assigning each data point to one or other of the states, we

represent this probability by a continuous colour gradient. An

example of this can be seen clearly in Fig. 4, where each data point

is coloured with respect to its probability of being in State 1. We

also use this method for the histogram plots in Fig. 1, where each

bar is coloured with respect to the mean probability for the states

‘counted’ in that bar.

These methods provide a simple way of displaying more details

of the model outputs, and allow for easier recognition of the

biological signals ‘hidden’ in the data.

Results

Results from synthethic data
The synthetic position data are shown in Fig. 4. The two-state

model divided the data into two distinct modes, characterised

primarily by differences in movement rates. We refer to the ‘slow-

area-restricted’ state as ‘State 1’ and the ‘fast-transiting’ state as

‘State 2’. Results from the MCMC fitting for the data at the

original resolution are also shown in Fig. 4, with a colour scale

from red to green indicating the posterior probability of that

location being in State 1 (red) or State 2 (green). The MCMC

model correctly classifies 86% of the points.

Figure 2. Mean vectors of posterior turning-angle distributions. Mean vectors are represented for subsampling intervals of 5, 15, 30 and
60 min, for both behavioural modes (red is State 1, green is State 2), for each of the four possums. Each arrow and circle represents one behavioural
mode for one possums. Circles around arrow heads have radii equal to the posterior standard deviation of mean vectors. The dashed arrow in (a) is of
length 0.4 (the maximum possible length for a mean vector is 1, which corresponds to a point distribution).
doi:10.1371/journal.pone.0057640.g002

Figure 3. Posterior mean vectors of turning-angle distributions of possum #1882. The figure shows the posterior mean vectors of the
wrapped Cauchy distribution of turning angles, for each sub-sampling interval and behavioural state. Circles around each arrow head have radius
equal to the posterior standard deviation of the mean vector.
doi:10.1371/journal.pone.0057640.g003

Temporal Resolution of a Model of Animal Movement
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Fig. 5 shows the results of the MCMC fitting procedure for the

thinned data. The turning angles and movement rate distributions

are shown for each state. Solid lines indicate posterior Weibull and

wrapped Cauchy distributions, with + one (two) posterior

standard deviations shown in dark (light) grey. The histograms

represent the frequencies observed from the data with a greater-

than-50% probability of being in that state, with each bar coloured

according to the mean posterior probability that data points in that

interval should be classed in that particular state. The distinction

between slow and fast movement rates between states at all sub-

sampling frequencies is clear. For the original data, State 1 has a

turning-angle distribution which has a peak around 180o while

State 2 has a distribution which is highly peaked around 0o, as is

the case in the algorithm generating the data. As the frequency

between data points decreases, both turning angle distributions

become more uniform.

Results from possum trajectories
From the 36 individual tracking nights that were modelled in

this study we obtained a total of 3272 location estimates (mean of

818+ 250 SE fixes per animal). It should be noted that the GPS

collars only recorded locations when the possums were outside of

dens, where it was possible to receive data from satellites. Thus,

the number of locations obtained was lower than what would be

expected had the collars collected data continuously during the 11-

h operational period, because periods of activity generally ranged

between only 6 and 9 h.

Tables of the estimated parameter values from the MCMC

output for all possums are available in the supplementary material.

We first consider in detail the results from the two-state model,

which clearly show the differences in posterior distributions that

occur when the sub-sampling interval increases. We then briefly

discuss comparisons with the single and three-state models.

Results from the two-state model
As for the results from the synthetic data, we refer to the ‘slow-

area-restricted’ state as ‘State 1’ and the ‘fast-transiting’ state as

‘State 2’. We first discuss some general results for all possums, and

then to show greater detail, provide more specific results of a single

animal (#1882). For low values of m (approximately 5ƒmƒ20),

State 1 is characterised by high mean-turning angles and low

movement rates, while conversely, State 2 is associated with low

mean-turning angles and high movement rates. We consider these

states to correspond with ‘area-restricted’ and ‘transiting’ modes of

behaviour, respectively. For higher values of m (approximately

mw30), both states have turning-angle distributions that are

approximately uniform over all angles.

As expected, mean movement rates in both states decreased

with increasing sub-sampling interval (Fig. 6). It can be seen (Fig. 2)

that for the smaller sub-sampling intervals (m~5,15), State 1 has a

mean turning-angle vector close to the negative real axis, meaning

a high mean turning angle with a peaked (‘leptokurtic’) distribu-

tion. Similarly, State 2 is characterised by a mean turning-angle

vector close to the positive real axis, indicating a low mean turning

angle, again with a leptokurtic distribution. As sub-sampling

intervals increased, the mean vectors for both states approached

zero, and the posterior variance of the mean angles increased

(Fig. 2), suggesting that a uniform distribution of turning angles

was more likely.

Due to space limitations, we present detailed results only for one

individual (#1882). Figs. 1 and 7 represent the data only from sub-

sampling intervals of m~5,15,30,60.

Fig. 1 shows the turning angles and movement rate distributions

for each state, for possum #1882. as for the synthetic data shown

in Fig. 5. The distinction between slow and fast movement rates

between states at all sub-sampling frequencies is clear. For m~5
and m~15, State 1 has a turning-angle distribution which is

centred and peaked around 180o. Additionally, turning angles

further from 180o are those that are less likely to be considered to

be representative of State 1. Mean turning angles for State 2 are

Figure 4. Synthetic data, at original frequency. Inferred behavioural states from the MCMC fitting are shown for each location (red is ‘slow-area-
restricted’, green is ‘fast-directed’), and the colour scale indicates the posterior probability of each data point being in State 1.
doi:10.1371/journal.pone.0057640.g004
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Figure 5. Movement-rate and turning-angle distributions for MCMC output from synthetic data. Each sub-figure shows, for each state in
the two-state model, movement-rate (top) and turning-angle (bottom) distributions, at subsampling frequencies of (a) 1, (b) 3, (c) 6 and (d) 12 units,
where the original data are ‘observed’ every unit. Solid lines are posterior Weibull and wrapped Cauchy distributions, with + one (two) posterior
standard deviations shown in dark (light) grey. Histograms are observed frequencies, with division of data into states using output from MCMC
computations. Histogram bars are coloured according to the mean probability of observations in that bar being in State 1 or 2, as given in the colour
bar in Fig. 1, that is, red bars are more likely to be in State 1 and green bars more likely to be in State 2. Yellow bars are close to being undetermined -
that is, they have an approximately equal probability of being in either state.
doi:10.1371/journal.pone.0057640.g005
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near zero. Conversely, for m~30 and m~60, turning-angle

distributions for both states are approximately uniform.

In Fig. 7 we show the data from a single night’s activity, with

state probabilities again represented by colour, over an aerial

photograph of the study site.

Fig. 3 shows the posterior-mean vectors for the angular

distributions over all sub-sampling intervals. For small m, the

mean turning angle vector for State 2 (‘fast-transiting’) is near the

positive real axis, therefore the mean turning angle is small and the

distribution is peaked around that point. It can be seen that the

variance of the mean vector increases as the sub-sampling interval

increases. The mean turning angle vector for State 1 (‘slow-area-

restricted’) is close to the negative real axis for small sub-sampling

intervals. This corresponds to a high mean-turning angle and a

peaked distribution. As the sub-sampling interval increases, the

magnitude of the mean vector decreases, again demonstrating that

the turning-angle distribution becomes more uniform.

Comparison with single-state and three-state models
While it is not our intention in this paper to find the ‘best’ model

that fits the observed data, we also apply one and three-state

models to the possum tracking data to examine relationships

among the numbers of states and sampling intervals. In this section

we briefly discuss the results of this investigation.

For the one-state model, obviously there is no division of data

into different modes. In this model the posterior variances of both

movement rates and turning angles increased as m increased. The

turning-angle distribution tended to be uniform even for small m.

In the three-state model, many of the same phenomena that

were observed in the two-state model were also evident as the

sampling interval increased. The three states were, for small m,

typically (i) fast, with a small turning angle, (ii) slow with a large

turning angle, and (iii) slow with a uniformly distributed turning

angle. As m increases, the turning angle distributions of all three

states becomes more uniform.

Discussion

We have shown that the temporal grain of movement

trajectories has profound influence on the observed distributions

of posterior model parameters, and thereby on the states of

behaviour inferred by a movement model. To our knowledge, our

study is the first systematic assessment of such effects that has been

published in the primary literature. Although we have demon-

strated our findings using location data obtained from GPS

devices, the results of our study also are relevant for data obtained

by other remote-tracking methods, such as radiotelemetry,

ARGOS satellite telemetry, or light-based geolocation methods.

Differences in sampling intervals and issues of irregularly sampled

position fixes are common (although not equivalent) amongst these

data types [17].

Determination of how the temporal resolution of tracking data

affects the parameterisation of inferential movement models is a

complex issue, given the many factors that influence the modelling

process. Multifarious interactions among these factors, which

include the choice of behavioural template, the metrics used to

characterise movement, and biological scales of interest make it

difficult to draw general conclusions regarding their hierarchical

importance. In this paper we did not systematically consider

differences between observation- and process-related scales (see

Bovet & Benhamou, 1988 [19]; Benhamou, 2004 [20], Codling &

Hill, 2005 [9]), or their influence on the nature of information that

can be derived from inferential movement models. From a

pragmatic perspective, because such models are becoming

increasingly popular (Patterson et al., 2008), it is essential that

researchers who employ these methods are aware of the various

factors that affect the modelling progression. While knowledge of

the influence of observation- and process-related scales is of great

importance, and most definitely should be methodically addressed

in subsequent work, a formal treatment of this matter is beyond

the scope of our paper. We suggest that effects of temporal grain

should be considered throughout all phases of the modelling

process, from how it influences measured attributes of movement,

to how movements subsequently are expressed as behaviours.

Failure to do so may lead to poor representation of the biological

patterns of interest, and ultimately, wasted research efforts.

Possum movement model
In this paper we considered a two-state behavioural model and

examined changes in the distributions of turning angles and

movement rates for each of the two random walks. In all cases, the

two-state model produced both ‘fast’ and ‘slow’ states. For high-

subsampling frequencies, the slow state had a turning-angle

distribution that was peaked around 180o, while the fast state had

a turning-angle distribution that was peaked around 0o; our most

important finding is that as the sampling interval increased, the

distribution of turning angles of both states became more uniform.

This result held for both synthetic and empirical data. It is obvious

in the original 5-min trajectories (in the possum data) that locations

classified in the ‘slow’ state, because of high turning-angles and

slow speeds, are associated with ‘area-restricted behaviour’ in

which the possum either foraged or rested in a localised area.

However, it is much less clear what the turning-angle distributions

of lower-temporal-resolution trajectories represent biologically.

Turning-angle distributions of fast states also changed, although

less significantly in the possum tracking data than the synthetic

data. For high sampling frequencies, turning-angle distributions of

Figure 6. Posterior means of movement-rate distributions with
respect to the temporal resolution of modelled trajectories.
The figures show the posterior means of the Weibull distributions for
movement rates (in m/s), with error bars of one posterior standard
deviation, for each of the four possums, as a function of sub-sampling
interval. State 1 is indicated with dashed lines, and State 2 with dotted
lines. As expected, the movement rates decrease with increasing sub-
sampling interval.
doi:10.1371/journal.pone.0057640.g006
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fast states were peaked around zero, indicating a ‘transiting’ or

‘commuting’ mode of behaviour. Similar to the slow state, turning-

angle distributions of fast states became more uniform as the

sampling frequency decreased, and again it is less apparent what

this state represents biologically.

One possible criticism of the use of Bayesian methods in this

manner is that the data sets at lower resolution naturally contain

fewer data points, and in a Bayesian analysis, this means that the

posterior distribution will look more like the prior distribution,

which for the turning angles, was uniform. However, we believe

that the number of data points used, even for the 60-min-interval

data set, was sufficiently large for the prior distribution to have a

very limited effect on the posterior distributions. To test this, we

repeated the MCMC fitting procedure for a subset of the 5- min

data set for possum #1882, such that the subset contained the

same number of data points as the 60-min data set. Appendix S2

contains the results of this analysis.

It is abundantly clear that as the temporal resolution of

movement trajectories decreases, information about behaviour

also decreases. Codling and Hill [9] studied the effects of sampling

rate on various types of random walks. They showed that as

sampling frequency decreased, observed movement rates also

decreased, because of ‘smoothing effects’ and reduction in

temporal autocorrelation, which tends to make turning-angle

distributions more uniform. These same effects also are inherent in

our multi-state models: mean speeds of both ‘slow’ and ‘fast’ states

decreased as sampling frequencies decreased, and turning-angle

distributions became more uniform. Moreover, we also observed

higher posterior variances in distributions as the temporal

resolution of trajectories decreased.

We must additionally consider how variation in temporal

resolution affects the division of trajectories into multiple states.

Specifically, for high frequency trajectories, we were able to

discern that high turning-angles were correlated with low

Figure 7. Data from a single night’s activity of possum #1882. Example of a nightly movement trajectory of possum #1882 at sub-sampling
intervals of 5, 15, 30 and 60 min. Inferred behavioural states are shown for each location estimated by the two-state model. Panel (a) shows the
original trajectory as recorded at 5-min intervals from a GPS collar. Panels (b–d) indicate sub-samples of the original trajectory at progressively larger
intervals (15, 30, and 60 min, respectively). Piecharts show the proportions of the two behavioural modes (red is ‘slow-area-restricted’, green is ‘fast-
directed’). In this example, it is obvious that as sub-sampling interval increases, the proportion of ‘slow-area-restricted’ behaviour correspondingly
decreases (by 25%). The figure also demonstrates the considerable loss of information about behaviour at larger sampling intervals.
doi:10.1371/journal.pone.0057640.g007
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movement rates (area-restricted behaviour), and that low turning

angles were correlated with high rates of movement (transiting

behaviour). However, because the turning-angle distributions of all

states became more similar as sampling rates decreased, correla-

tion was no longer apparent and the ability to distinguish different

states of behaviour was lost. For the possums in our study, a 5-to-

15 min sampling interval was sufficient to detect the typical nightly

pattern of two-to-three sessions of feeding behaviour at two-to-four

different sites. These were usually separated by several hours of

comparative inactivity, and collectively sum to about 45% of the c.

8 h possums spend outside of their dens [11,12,18].

We did not attempt to identify the precise sampling frequency at

which changes in inferred behaviours were related to temporal

resolution. However, we note that to successfully discriminate

distinct behavioural modes, the sampling frequency of trajectory

data must be high enough so that there are sufficient location

observations recorded during periods of each state to detect

differences in movement patterns.

Practical implications
Our study highlights two important considerations when

modelling behaviour using movement data. First, researchers

should match the sampling intervals of tracking devices to the

approximate time scales of behaviours of interest. For example, if

the principal objective of a hypothetical study of common

brushtail possums were to elucidate the relationships between

foraging bouts and micro-habitat structure, then GPS collars

configured to record location estimates at 5-min intervals likely

would provide sufficient data with which to identify even single

trees as important landscape elements. Successful discrimination of

the importance of single landscape features probably would not be

possible if movement trajectories were characterised at much

lower temporal granularities (e.g., mw60 min), especially if such

features were visited only infrequently, or the average duration of

visits was v1 h. Conversely, if the primary aim were description

of behaviours occurring over much longer time scales (e.g., long-

distance dispersal, or extra-range excursions that last on the order

of days), then 60-min sampling intervals most probably would

suffice. A more extreme example is the difference between the

temporal scales of the diurnal movement patterns of seabirds (for

example, foraging trips during chick rearing) and the transit phase

of annual migratory events, which can last for weeks (e.g., Egevang

et al. [21]). Because of the trade-offs between sample frequency

and operational life that are inherent to satellite-telemetry devices

[22–24], it may not be possible to simultaneously model

behaviours that occur over vastly different time scales using

location data obtained by these technologies. Concurrent deploy-

ment of tracking devices configured to record location observa-

tions at markedly different sampling intervals on different

individuals may be an efficient means of simultaneously collecting

data with which to model behaviour over multiple temporal scales.

A second important consideration when modelling behaviour

within movement data is that the temporal resolution of

trajectories should be broadly similar if inter-subject or inter-study

comparisons are to be valid. We emphasise that both the

configured and observed (i.e., that actually obtained and used

following data pre-processing) sampling rates of data-capture

devices affect the temporal grain of geospatial lifelines. This being

the case, both attributes jointly will influence the ability of

movement models to discriminate behavioural modes. It is well

known by users that the performance characteristics of currently

available remote-tracking technologies are dependent at least to

some extent on aspects of both the environment and behaviour of

study subjects. For example, the accuracy and fix-success rates of

GPS receivers are strongly modified by topography and vegetation

[25–27], as well as by body orientation [28] and patterns of

activity [29,30]. Likewise, environmental and species-specific

factors are reported to affect the performance of ARGOS PTTs

and light-based geolocators [31–33]. Another important factor

affecting the temporal resolution of movement trajectories is the

choice of method(s) by which researchers attempt to remove fixes

with large location errors from positional data sets prior to

modelling. (State-space models incorporating observation error do

not require this.) Depending on the tracking technology, the

screening method, and the willingness of researchers to retain

error-prone data, such procedures can exclude substantial

numbers of observed locations (e.g., 35% of the fixes of a black

bear data set using ‘Option 4’ in Lewis et al. 2007 [14]), with

obvious implications for the temporal grain of trajectories. We

found in our study that there was a clear bias between the

sampling interval of trajectories and the proportions of inferred

behavioural states. To correctly make inter-individual compari-

sons, it may be necessary to re-sample some trajectories so that

temporal grain is standardised. Failure to account for differences

in temporal resolution may lead to biased or erroneous inferences

about behaviour.

In light of our findings, we suggest researchers tailor their

sampling regimes to account for limitations in data-collection

methods, and develop objective means of validating model

parameters, to ensure that inferred states of movement are

representative of ‘real’ behavioural patterns. We also recommend

that whenever possible pilot studies be conducted on a sample of

test animals to assess how well data-capture devices operate at

study sites and to help determine which sampling intervals (if

variable configurations are possible) are most appropriate for

research objectives. In some instances, it may be prudent to

configure tracking devices to record location estimates at the

highest sampling frequency that is logistically feasible (i.e., ‘over

sample’), given the constraints of body size, battery life of tracking

devices, and study aims. High sampling rates will help compensate

for lost data and also may provide sufficient information with

which to detect short-lived, or ‘spatially indistinct’ behaviours that

may be infrequent but important elements of life cycles.

Conclusions

Inferential movement models provide an effective framework

for classifying observer-free patterns of behaviour within the

geospatial lifelines of animals. The utility of these models may be

further enhanced through association of predicted behaviors with

corresponding information about physiological states or environ-

mental conditions (see reviews in Cooke et al. [34], Patterson et al.

[7], Schick et al. [3]). Despite the potential dangers of complex

models, the popularity and value of such methods almost certainly

will increase as fine-scale movement trajectories become easier to

obtain (due to reductions in the size, cost, and spatial error of

tracking devices), as the computational power of computers

improves, and as modelling algorithms become more mathemat-

ically tractable (because of advances in the functionality and ease-

of-use of modelling software). As a new paradigm for study of

movement phenomena emerges, there will be increased interest in

modeling the dynamic processes that influence the movement and

space-use of animals. Understanding how the temporal grain of re-

location data affects the functionality and validity of such models

thus is of paramount importance.
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