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Abstract

Is there a relation between working memory (WM) and incidental sequence learning? Nearly all of the earlier investigations
in the role of WM capacity (WMC) in sequence learning suggest no correlations in incidental learning conditions. However,
the theoretical view of WM and operationalization of WMC made strong progress in recent years. The current study related
performance in a coordination and transformation task to sequence knowledge in a four-choice incidental deterministic
serial reaction time (SRT) task and a subsequent free generation task. The response-to-stimulus interval (RSI) was varied
between 0 ms and 300 ms. Our results show correlations between WMC and error rates in condition RSI 0 ms. For condition
RSI 300 ms we found relations between WMC and sequence knowledge in the SRT task as well as between WMC and
generation task performance. Theoretical implications of these findings for ongoing processes during sequence learning
and retrieval of sequence knowledge are discussed.
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Introduction

Everyday mental activities such as calculating, language

comprehension and reasoning require a system that can tempo-

rally maintain, flexibly modify and access mental relational

representations [1,2]. This system is called working memory

(WM). However, learning to speak in the grammatically correct

way or learning properly to walk takes place in an incidental way.

This ability to progressively adapt to specific environmental

constraints with less or no awareness about how this complex

knowledge was acquired and applied is often defined as implicit

learning [3,4]. Incidental sequence learning is a process through

which we become sensitive to certain regularities in the

environment without intentionally attempting to filter them out.

There are only a few studies linking these two domains whose

interactions are currently poorly understood (e.g., [5]). Our study

investigated this central issue with WMC tasks representing

transformation and coordination [6–8] while simultaneously the

response-to-stimulus interval (RSI) was varied in a serial reaction

time (SRT) task [9,10]. Next we consider the concepts of WM(C)

and incidental sequence learning before we describe the theoret-

ical and empirical connections between them in light of varying

the RSI.

Working memory
WM can be conceptualized as a system that creates and

manipulates a limited amount of structural information on the

basis of currently activated long-term memory (LTM) units.

Within this activated LTM part temporal, direct accessible,

bindings between contents (e.g., objects), context (e.g., spatial

positions) and procedures (e.g., pressing a specific button) can be

set into a new structure and manipulated within the focus of

attention [2,11].

WM capacity (WMC) can be measured by the number of items

that can be recalled during a WM task. Most often these WMC

tasks require simultaneous storage (maintenance of information,

e.g., letters in an active state for an immediate serial recall at the

end of a task trial) and processing of a typically unrelated task (e.g.,

calculating) called complex-span paradigms (e.g., operation span,

reading span). Performances in complex-span paradigms are

related to a wide range of processing outcomes (e.g., language

comprehension, [12]; logic learning, [13]; resisting interference,

[14]; suppression of irrelevant or goal incongruent information,

[15]; learning new facts, [16]; fluid intelligence, [17]; and

integration of preexisting domain knowledge, [18]). However,

there is another class of WMC tasks that fall into the category of

coordination and transformation tasks [6–8]. In these tests

participants have to manipulate and/or integrate information to

arrive at a correct response. Structural equitation modeling

analysis from Oberauer and colleagues [7,8] showed that

relational integration seems to be a function of WM which can

be separated from the function of storage and processing.

Furthermore, these tasks of coordination and transformation are

substantially correlated with a test of reasoning ability and a test of

general intelligence [7,19,20].

Incidental sequence learning
It is not a compelling prerequisite to intentionally attempt to

learn information. Much of our daily learning is incidental. One of

the best paradigms through which to study sequence learning is

the SRT task. In a typical SRT task, participants are asked to react

to a visual presented stimulus (e.g., a dot). In the deterministic

sequence learning task this dot appears sequentially in predefined
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positions following a repeating pattern and participants have to

press a corresponding key as fast and as accurately as possible (vs.

probabilistic sequences in which the dot follows a specific sequence

only in e.g., 85% of the cases, [21]). Reaction times (RTs) tend to

decrease progressively during practice and are increased when the

repeating pattern does not follow in the original way [10,22,23]. In

addition, when learning is incidental, participants acquire more

knowledge about the underlying structure than they can

consciously convey ([10]; but see [24]).

Working memory and incidental sequence learning
To describe a possible interaction between WM and sequence

learning one has to take into account a possible interaction

between WM and LTM. In literature we find increasing

theoretical and empirical progress along this line [25,26]. For

Oberauer [2] LTM contributes to the functioning of WM through

activation of existing representations and learning and recall of

structural information which are represented as chunks. For

instance, evidence is found in the Hebb effect that implies that

repeated presentation of digit sequences across a series of trials

support immediate serial recall of this sequence on further trials

even though presentation and recall of other sequences intervenes

between these repetitions [27]. Within activated LTM bindings

between different representational dimensions can be bound into a

new structure, i.e., connections between simultaneously active

dimensions are strengthened (e.g., item and position). Long-term

learning is possible to accumulate when the input is repeated.

During recall then given temporal-contextual cues help to find and

reactivate the activation pattern during presentation and therefore

the content within LTM [2,26,28,29].

During the binding and learning process the question rises of

how much information is under cognitive control, i.e., is explicit

and how much information is not under cognitive control, i.e., is

implicit. It was argued that incidental sequence learning processes

occur with minimal attentional demands [30]. However, this

assumption is controversial [31]. Attentional demands on

sequence learning are investigated under dual-task conditions. In

the dual-task SRT experiment of Nissen and Bullemer [32] either

a high- or a low-pitched tone was produced during the RSI,

whereby participants were encouraged to count only the low-

pitched tones. They argued that the tone-counting task impairs the

sequence learning process because of attentional resource exhaus-

tion. Other authors like Stadler [33] argued that a secondary tone-

counting task does not limit attentional resources. However,

updating processes when encoding a low-pitched tone would insert

a temporal asymmetry (extension of the RSI) leading to an

inability of the participant to parse the sequence into consistent

chunks and consequently impair sequence learning. Frensch and

Miner [5], in contrast, argued that short-term memory (STM)

limitations are responsible for impaired sequence learning in dual-

task conditions. For Frensch and Miner lengthening the RSI leads

to decreased sequence learning because it makes it difficult for

participants to link together existing memory traces in the

activated part of LTM. They found impaired sequence learning

with a RSI of 1500 ms compared to a RSI of 500 ms.

Furthermore they related STM performance (i.e., digit and

location span) to the degree of implicit learning. Their results

revealed reliable correlations only when task instructions were

intentional or when dual-task situations were realized. Frensch and

Miner proposed a theoretical framework for explicit (intentional)

and implicit (incidental) sequence learning. They assumed that

explicit learning occurs only in the subset of LTM that is in the

focus of attention and is achieved through active processing (e.g.,

hypothesis testing). Implicit learning occurs in the activated subset

of STM inside and/or outside the focus of attention and is

achieved through a passive associative process. Destrebecqz and

Cleeremans [9,10] investigated the contributions of implicit and

explicit knowledge on sequence learning by varying the RSI

between 0 ms, 250 ms, and 1500 ms. They found sequence

learning in all three conditions but a lack of conscious control in

condition RSI 0 and increasing explicit knowledge when RSI was

lengthened. Cleeremans and Jiménez [34] and Cleeremans [35]

proposed a framework in line with these findings arguing that the

difference between explicit and implicit knowledge lays in the

quality of the memory traces. Therefore, consciousness about a

given representation depends on the strength of the memory

traces, their stability in time, and their distinctiveness which is

increased by lengthening the RSI. Memory is one fundamental

aspect for predicting an upcoming event. This opportunity to

generate a prediction might be crucial for learning to occur.

Prediction error terms are at the core of many learning models

(e.g., [36]), and have been documented in the field of neuroscience

(e.g., [37]). Thus RSI might be expected to have an inverted U-

shaped relation to sequence learning and WM as well. Smaller

RSIs (e.g., 0 ms) should lead to reduced learning because of

reduced opportunities to use a prediction and long RSIs (e.g.,

1500 ms) should cause a lesser overlap of sequence traces in WM

[5], respectively. Strong sequence learning and at the same time

possible connections to WM should occur for RSIs that are in

between.

The present study
There are at least two reasons why WM could be included in

sequence learning. (1) WM is needed when cognitive control is

needed to override automatic response tendencies [26]. In a

typical deterministic SRT task several hundred reactions are

conducted to a complex training sequence before it is changed to a

new sequence. Training leads to a decrease in RTs, change to the

new sequence to an increase in RTs. This change is the measure of

learned sequence knowledge. When we argue that WM is needed

to override automatic response tendencies during the transfer

phase, i.e., when LTM representations of the training sequence

compete with the new sequence structure for being retrieved then

we should find relations between WMC and sequence knowledge.

Evidence for this assumption is not found in the sequence learning

literature for incidental single task conditions ([5,38,39]; the same

pattern is found for probabilistic sequences, e.g., [40]). (2) WM is

needed to retrieve sequence information from LTM, i.e., for a

controlled retrieval of information from LTM information has to

be reactivated and captured by the attentional focus [2,6,28,29].

However, it is conceivable that sequence learning takes place

outside WM. This is clearly an empirical question. For instance,

Keele, Ivry, Mayr, Hazeltine, and Heuer [41] proposed two

systems of implicit sequence learning. Sequence learning in the

first system is implicit and takes place on noncategorized stimuli

within dimensional modules. Sequence learning in the second

system can be implicit or explicit and allows associations across

dimensions. Thus, the former system would be a theoretical view

that makes plausible that WM is not necessarily related to

sequence learning.

For the present study two important methodological improve-

ments were made. (1) Studies investigating the relation between

WMC and sequence learning most often deployed complex span

tasks (beside simple span tasks) which depicted only the WM

function of maintaining information in a highly active state and

overcome competition when processing a secondary task [5,38–

40]. We believe using only this class of tasks narrows the construct

and function of WM. For this we used two validated tasks namely

Working Memory and Deterministic Sequence Learning
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memory updating (MU) and spatial short-term memory (SSTM)

taken from the WM test battery from Lewandowsky, Oberauer,

Yang, and Ecker [20]. With the applied WM measures the

demands on WM of storage and replacing old WM contents by

new contents (MU task) and relational integration, i.e., building of

new relations between elements (SSTM task, [7,20]) were

measured. (2) MU and SSTM task scores were related to sequence

knowledge in the SRT task and performance in the followed free

generation task of two RSI conditions (RSI 0 ms vs. RSI 300 ms).

Based on the theoretical outlines above we predicted sequence

knowledge in both RSI conditions and higher correlations with

WMC scores in condition RSI 300. High WMC individuals

should acquire more sequence knowledge than low WMC

individuals. For the following free generation task we predicted

higher generation scores in condition RSI 300. High WMC

individuals should generate more sequence knowledge than low

WMC individuals.

Methods

Ethics Statement
The present research was conducted with approval by the

Institutional Review Board of the University of Innsbruck (Faculty

of Psychology and Sport Science). The data were analyzed

anonymously. Participants gave written informed consent.

Participants
Fifty-eight undergraduate students (14 males, 44 females, mean

age = 21.21 years, SD = 1.77, range = 19–27 years) took part in the

experiment. None of them had previously taken part in any

sequence learning experiment. They were randomly assigned to

condition RSI 0 ms (n = 25) and RSI 300 ms (n = 33).

Material and Procedure
The three tasks were MU, SSTM, and SRT. The tasks were

always administered in this order. The MU and SSTM tasks took

together approximately 30 minutes. They were taken from the

WM test battery of Lewandowsky, Oberauer, Yang, and Ecker

[20] and run on MATLAB 7.10.0.499 (R2010a) and Psytoolbox

Version 3 [42,43]. The sequence learning and generation task took

about 20 min and was programmed in Java Version 6. All four

tasks run on laptops with 14-inch screens.

MU task. Participants had to hold in mind an initial set of

digits, each presented in a separate frame on the screen, and to

subsequently update these digits through arithmetic operations.

This task represents updating because information has to be

retrieved, transformed, and substituted [44]. Set size varied

between three to five frames per trial (frames were organized

horizontally, whereby three frames were presented in one row;

four and five frames were presented in two rows). After a key press

the starting digits were presented in their frames, one by one, for

1 sec each. Arithmetic operations (ranging between 27 to +7,

excluding 0) were displayed in individual frames for 1.3 sec. each,

followed by a 250 ms blank interval. The participants had to apply

the operation to the digit that they currently remembered in that

frame and were instructed to replace the memorized content by

the result. The final recall was signaled by question marks

appearing one by one in each frame. The interim and final results

ranged from 1 to 9. Participants were instructed to type the

remembered digit for that particular frame. There was no time

constraint for recall, and no performance feedback was provided.

The 15 test trials were preceded by two practice trials. Digits,

operations, updating, recall orders, and trial orders were generated

randomly.

SSTM task. Participants had to remember the location of two

to six dots per trial in a 10610 grid. Following the central

presentation of a fixation cross for 1 sec, the grid was shown, and

randomly generated dots appeared, one by one, in the cells of the

grid for 900 ms each (interstimulus interval 100 ms). The

participants were instructed to remember the spatial relations

between the dots. Absolute dot positions were irrelevant; only the

overall pattern of dots was to be remembered. After all of the dots

were presented, the participants had to reproduce the pattern of

dots in a blank grid of the same size by clicking the cells with the

computer mouse. No feedback was given. There were 30 trials, 6

at each set size. Test trials were preceded by two practice trials.

The SSTM score was computed according to the distance between

the learning dots and the generated dots. If the distance is 0 cells,

2 points are gained. If the distance is 1 cell, 1 point is gained. If the

distance is further than 1 cell, 0 points are gained. The total score

in the SSTM task is the sum of all scores on all trials [20]. The

SSTM task is not an updating task because the dot positions

needed not to be transformed and substituted. Furthermore the

SSTM task requires more spatial abilities than the MU task

because stimuli are presented within a frame consisting of 100

cells.

SRT task. The display consisted of four small grey orientation

dots arranged in a horizontal line on the computer’s screen.

Orientation dots were separated by intervals of 3 cm. Each screen

position corresponded to a key on the keyboard. The spatial

configuration of the four keys was fully compatible with the four

screen positions. The stimulus was a small black circle that

appeared on a white background. On each trial, this stimulus

appeared at one of four possible screen locations. Participants were

instructed to respond as fast and as accurately as possible by

pressing one of the four possible keys marked as response keys.

The target was removed as soon as a key was pressed, and the next

stimulus appeared after either a 0 ms (condition RSI 0) or 300 ms

(condition RSI 300) delay. Response latencies were measured from

the onset of the target to the completion of a correct response. The

target followed one of the two second-order conditional sequences

(SOC 1 = 3-4-2-3-1-2-1-4-3-2-4-1; SOC 2 = 3-4-1-2-4-3-1-4-2-1-

3-2). In SOC sequences every location is completely determined

by the previous two locations. They are balanced for location

frequency (each location occurred three times), transition frequen-

cy (each location was preceded once by each of the other three

locations), reversal frequency (e.g., 1-2-1, one in each sequence),

and they have no repetitions [45]. The two SOC’s only differed in

terms of the subsequence of the three elements that they contained

(e.g., the transition 3–4 was followed by locations 2 in SOC 1 and

by locations 1 in SOC 2). The whole SRT task consisted of 10

blocks for a total of 960 trials. Short rest breaks occurred between

each block. Participants were trained on SOC 1 during blocks 1–8

and 10, and on SOC 2 during block 9. After the SRT task,

subjects were informed that the dots had followed a repeating

pattern. Participants then were instructed to freely generate a

series of 96 trials that resembled the training sequence as much as

possible. They were told to rely on intuition when feeling unable to

recollect the location of the next stimulus and to find back into the

response rhythm they followed during the training phase.

Results

SRT task
The RT analysis was performed on the participants mean

correct RTs. Mean RTs were calculated for each participant and

each block after removal of erroneous responses, discard of the

first two trials from each block, and correct responses with RTs

Working Memory and Deterministic Sequence Learning
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three standard deviations above the mean RT of the block (see

Figure 1, Table 1). Three outliers were removed from analysis in

condition RSI 300 (n = 30). Overall error rates were assessed by

dividing the number of incorrect target localization responses by

940 trial responses. Error rates were low in both conditions (RSI 0:

M = .06, SD = .04; RSI 300: M = .05, SD = .02). A t-test revealed

no significant differences, t(34.20) = .96, p = .350. Analysis of

training block 8 and transfer block 9 revealed higher error rates

in block 9 in both conditions (see Table 1). We calculated a

difference score of errors (De score) of the proportion of errors in

block 9 and block 8 for condition RSI 0 (M = .04, SD = .06) and

RSI 300 (M = .01, SD = .04) and found a significant difference,

t(53) = 2.39; p = .020.

In order to analyze the RT data, we performed a mixed-design

ANOVA with block (1–10) as within-subject variable and

condition (RSI 0 vs. RSI 300) as between-subjects variable.

Greenhouse-Geisser corrected analysis revealed significant effects

of block (F(5.20, 275.54) = 16.20, MSE = 2266.13, p,.001) and

condition (F(1, 53) = 15.20, MSE = 35744.67, p,.001). Moreover,

a significant block6condition interaction was found indicating

superior learning in condition RSI 300 (F(5.20, 275.54) = 3.86,

MSE = 2266.13, p = .002).

To assess sequence knowledge, we conducted a second mixed-

design ANOVA with block (8 and 9) as within-subject variable and

condition (RSI 0 vs. RSI 300) as between-subjects variable. The

reason for involving block 8 and not the mean RTs of blocks 8 and

10 were our interest in the direct switch from a highly learned

training phase to a new sequence in the transfer phase. The mean

RTs of blocks 8 and 10 would include RTs from the switch of a

weakly learned sequence structure (block 9) to a trained one (block

10). Analysis revealed significant effects of block (F(1, 53) = 54.67,

MSE = 1433.91, p,.001) and condition (F(1, 53) = 25.11,

MSE = 8314.79, p,.001). The block6condition interaction was

not significant (F(1, 53) = .42, MSE = 1433.91, p = .520). These

results indicate that participants acquired equal amounts of

sequence knowledge in both conditions, and the transfer effect is

not significantly influenced by the value of the RSI.

Generation task
To assess generation performance, we computed the number of

generated chunks of three elements that were part of the training

sequence (G score). The generated knowledge test (see Table 1) of

the training sequence consisted of 96 trials. The maximum

number of correct chunks that could be produced was 94. G score

was therefore calculated for each person as the sum of triplets

divided by 94. Two one sample t-tests were computed to compare

generation scores to chance level (chance level was .33; because no

repetitions were allowed, only three options remained after each

key press; e.g., [9,10]). G scores were significantly above chance

level in condition RSI 0 (t(24) = 2.48, p = .020) and RSI 300

(t(28) = 5.44, p,.001). These results indicate that learning was

explicit to some extent in both conditions. Furthermore, G scores

in condition RSI 0 and RSI 300 differed significantly

(t(52) = 22.44, p = .020), indicating that more explicit knowledge

was generated in condition RSI 300 compared to RSI 0.

Correlational analysis between working memory
capacity, RT measure of sequence knowledge, error
indicator of sequence knowledge and generation
measure of sequence knowledge

In order to analyze the relation between WMC, and the three

measures of sequence knowledge (RT, error, and generation

knowledge) we computed bivariate zero-order Pearson correla-

tions. As a RT measure of sequence knowledge we used the above

outlined D score (difference of the mean RT of transfer block 9

and training block 8). In regard to the error indicator of sequence

knowledge we applied the above calculated De score (proportion

of errors in transfer block 9 minus the proportion of errors in

training block 8). As a generation measure of sequence knowledge

we used the above mentioned G score (number of triplets/94).

Scores of WMC measures (MU and SSTM) were then related to

D, De, and G scores for condition RSI 0 and RSI 300.

Furthermore for testing the difference between two correlation

coefficients of condition RSI 0 and RSI 300 we conducted a

Fisher’s r-to-z transformation.

Figure 1. Mean RTs by RSI conditions. Mean RTs (in ms) for training blocks (1–8 and 10) and transfer block (9), plotted separately
for the corresponding RSI conditions. Error bars depict standard errors.
doi:10.1371/journal.pone.0056166.g001
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D scores. We found no significant correlations between

WMC measures with D scores in condition RSI 0 (MU: r = .06,

p = .770; SSTM: r = .10, p = .630) and significant correlations in

condition RSI 300 (MU: r = .50, p = .005; SSTM: r = .46, p = .010).

These results indicate that the higher the MU score and the higher

the SSTM score, respectively, the higher is the difference of the

mean RT of block 8 and 9 in condition RSI 300. In addition the

difference among the correlation coefficients between condition

RSI 0 (rMU-D score = .06; rSSTM-D score = .10) and RSI 300 (rMU-D

score = .50; rSSTM-D score = .46) were significant for MU (z = 21.70,

p = .045, one-tailed) but not for SSTM (z = 21.38, p = .084, one-

tailed). The significant result indicates a higher correlational

coefficient in condition RSI 300.

De scores. One significant correlation was found for De

scores in condition RSI 0 (MU: r = 2.17, p = .432; SSTM:

r = 2.44, p = .027) and no correlations with De scores in condition

RSI 300 (MU: r = .03, p = .883; SSTM: r = 2.26, p = .162). These

results indicate that the higher the SSTM score, the lower is the

difference of the proportion of errors in block 8 and 9. The

difference among the correlation coefficients between condition

RSI 0 (rMU-De score = 2.17; rSSTM-De score = 2.44) and RSI 300

(rMU-De score = .03; rSSTM-De score = 2.26) revealed no significant

differences for MU (z = 2.68, p = .248, one-tailed) and SSTM

(z = 2.72, p = .235, one-tailed).

G scores. We found no significant correlations between

WMC measures with G scores in condition RSI 0 (MU: r = 2.21,

p = .320; SSTM: r = 2.11, p = .610) and significant correlations in

condition RSI 300 (MU: r = .53, p = .003; SSTM: r = .58, p = .001).

These results indicate that the higher the MU score and the higher

the SSTM score, respectively, the higher is the number of

generated triplets. The difference among the correlation coeffi-

cients between condition RSI 0 (rMU-G score = 2.21; rSSTM-G

score = 2.11) and RSI 300 (rMU-De score = .53; rSSTM-De score = .58)

revealed a significant difference for MU (z = 22.77, p = .003, one-

tailed) and SSTM (z = 22.67, p = .004, one-tailed). These results

indicate significantly higher correlational coefficients in condition

RSI 300.

Discussion

The present study adds to a small number of studies so far to

examine relationships between WM and sequence learning.

Overall results show that WM is involved in sequence learning

and generation of explicit knowledge about an underlying

structure when RSI is lengthened. Furthermore, we found a

relation between WM and an error indicator of sequence

knowledge when there is no-RSI. Our results indicate that a

higher WMC might predict better learning and less impact of

trained sequence knowledge simultaneously. High WMC individ-

uals might show more learning and are potentially better able to

shield retrieval of misleading sequence knowledge in the block with

the novel sequence. To additionally test the learning prediction we

took the difference of the mean RT of the first training block and

the last pre-transfer block as indicator of sequence learning. This

difference should be unaffected by effects of inhibition of

misleading sequence knowledge which might come to effect in

the transfer block. Results of Pearson correlational analysis

confirmed this prediction for condition RSI 300 (MU: r = .53,

p = .002; SSTM: r = .39, p = .034; RSI 0: MU: r = .04; p = .868;

SSTM: r = .12; p = .563). However, this analysis might not only

capture RT decreases by sequence learning but might also include

attentional and motivational variations. Significant RT increase in

the block with the novel sequence can be the result of (a) a large

amount of sequence knowledge (b) low capacity to shield

performance from retrieval of misleading sequence knowledge,

or both. In addition, the generation task performance (G score)

and the learning gain (first training block minus last pre-transfer

block) should both not be substantially influenced by the capacity

to shield from misleading sequence knowledge (transfer block

minus last pre-transfer block, D score). Pearson correlational

analysis revealed for condition RSI 0 a significant relation between

D score and learning gain (r = .68, p,.001) and no significant

correlation between D score and G score (r = .03, p = .880). For

condition RSI 300 we found no relations between D score and

learning gain (r = .30, p = .114) and a significant correlation

between D score and G score (r = .59, p = .001).

During learning of a repeating sequence a LTM representation

of this sequence is generated. Repetition of the sequence leads to

stronger LTM representations and therefore more sequence

knowledge. This notion is in line with results of studies on

immediate serial recall indicating that background knowledge

concerning domain-specific regularities in sequential structure can

affect recall performance. For instance Baddeley, Conrad, and

Hull [46] could show that consonant strings were better recalled

when they contained high-frequency letter transitions compared to

low ones. Furthermore in an incidental phonological learning

paradigm participants of Majerus, Van der Linden, Mulder,

Meulemans, and Peters [47] listened to a continuous sequence of

stimuli that was based on an artificial phonotactic grammar. Their

results could show that verbal STM performance was improved

for lists that conformed to the artificial grammar. During the

transfer block then active LTM representations compete for being

selected into the focus of attention [2,28]. LTM knowledge of the

training sequence discussed here can affect response decisions in

the transfer block. The stronger the representation of the training

sequence is the more it will interfere with the new sequence in the

transfer block. Higher WMC scores relate to stronger training

sequence representations but at the same time these representa-

tions affect adaption to a new sequence at a greater extent which

resulted in higher D scores.

Table 1. Descriptive statistics of the relevant data for the two RSI conditions.

Mean RTs
Block 8

% errors
Block 8

Mean RTs
Block 9

% errors
Block 9

Mean RTs
Block 10

% errors
Block 10 MU SSTM D De G

RSI 0 M 492.09 6.2 550.41 10.5 480.28 8.5 .51 .82 58.32 .04 .38

SD 74.56 7.3 52.94 9.7 56.45 10.6 .15 .04 57.55 .06 .11

RSI 300 M 409.31 5.9 458.22 6.8 392.34 5.4 .57 .84 48.91 .01 .46

SD 81.27 3.2 65.51 3.4 74.69 2.9 .17 .05 49.98 .04 .13

Note: MU = memory updating, SSTM = spatial short-term memory, D = difference score, De = difference score of the errors, G = generation score.
doi:10.1371/journal.pone.0056166.t001
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The influence of LTM sequence representations may also be

responsible for the unexpected high error rates in the transfer

block compared to the last training block in condition RSI 0.

Botvinick and Bylsma [48] tested participants on immediate serial

recall on sequences of pseudowords generated on the basis of an

artificial grammar. They could show that errors display a tendency

toward regularization that is a bias toward sequences which are

higher in probability than the actual, to be recalled stimulus.

Furthermore investigations into low versus high WMC individuals

indicate that low WMC individuals are more error prone (e.g.,

antisaccade task, [49]; Stroop task, [15]; or in shadowing during a

dichotic listening task, [50]). We hypothesize that low WMC

individuals in condition RSI 0 have a higher tendency to

regularization compared to high WMC individuals.

Results of the generation task revealed that lengthening the RSI

resulted in a higher proportion of explicit knowledge, i.e., higher

controllable sequence knowledge compared to the no-RSI

condition. Despite the fact that no difference in sequence learning

performance itself existed, the formed representations during

sequence learning in the RSI condition were of higher accessibility

for retrieval processes from LTM into the focus of attention. This

may be accomplished by a finer tuned adjusting of thresholds

within active LTM representations during training blocks for later

retrieval [2,28,51]. During sequence learning specific stimulus-

response representations are set and connected based on an

underlying sequence structure. When it comes to a switch to a new

sequence the old sequence competes for being retrieved into the

focus of attention. Low set thresholds in the training phase of

condition RSI 0 might therefore lead to a higher old-new sequence

competition during the transfer block. Low WMC individuals

were less able to shield performance from retrieval of the old

sequence leading to higher error rates. The same picture can be

drawn for condition RSI 300. Here, WM was significantly

involved in higher training phase learning gain (block 1 minus

block 8) setting higher dissociable thresholds. Furthermore WM

was significantly involved in the switch from the old sequence

structure to a new one in the transfer block. High WMC

individuals therefore learned more and had to shield performance

from misleading sequence knowledge to a bigger extent than low

WMC individuals. These higher set thresholds in condition RSI

300 might be responsible for the difference of explicit knowledge in

the generation task. During retrieval in the generation task

activated LTM representations continuously compete for being

retrieved into the focus of attention [2]. The stronger and

dissociable the threshold signals are, the higher the probability that

sequence parts are correctly retrieved into the focus of attention.

In condition RSI 0 these thresholds seemed to be set too low which

might led to concurring co-activated sequence parts. In condition

RSI 300 higher thresholds seemed to be set during sequence

learning of high WMC individuals which led to significantly higher

generation scores for high WMC individuals compared to low

WMC individuals. These qualitative different representations

seem to differentiate them between implicit and explicit knowledge

[34,35] and are in line with a recent WM theory of Oberauer [2]

who described two interacting processing modes, an analytic

processing and an associative mode that are seen as the end points

of a continuum. The associative system consists of the activated

part of the LTM whereas the analytic mode represents more an

active state that ideally excludes influences from active LTM and

which enables selection and manipulation of those representations.

It is conceivable that incidental sequence learning takes place in

the associative processing mode where specific WM processes

adjust the threshold on the LTM sequence representations. When

there is a transition from the trained sequence to a new sequence

the old one competes for being retrieved in the attentional focus

([2] termed it response focus in the procedural WM). For

Oberauer [2] the retrieval from LTM is automatic, without being

intended. In our case of sequence learning this means that stronger

LTM representations should have a privileged status of being

retrieved into the attentional focus compared to weaker represen-

tations that are formed in the transfer block. The strength of

sequence representation together with the instructional goal for

reacting on the appearing stimulus as accurately and fast as

possible produces a conflicting situation. In this situation the

higher the acquired sequence knowledge is at the end of the

training blocks the more capacity it takes to shield performance of

misleading LTM sequences representations for being retrieved

during the transfer block. The associative system should play a role

in the generation task where thresholds for retrieval from LTM

have to be raised. The higher the threshold is, the weaker the

influence of co-activated LTM representations and the higher the

probability of correctly retrieving the sequence of the training

phase or parts of it.

Our study can show that WM is related to deterministic

sequence learning. However some critical points have to be

addressed. First, it is conceivable that RSI affects the acquisition of

sequence knowledge and/or the employment of sequence knowl-

edge to boost performance. In order to disentangle effects of RSI

on learning versus performance one should equate RSI between

conditions when testing for sequence knowledge at the end of the

sequence learning task. A similar structural problem has been

raised by Frensch and colleagues [30,52] in the debate on

secondary task load. Their studies suggest that it is not sequence

learning per se that is affected by the secondary task. Rather,

sequence learning is suppressed by the secondary task. After the

concurrent task was removed in the transfer phase results indicated

that equal amounts of sequence knowledge were learned. Second,

we placed our focus primarily on the relation between WM and

sequence learning from a capacity perspective. Considering the

content perspective Abrahamse, Jiménez, Verwey, and Clegg [53]

suggested that task sets held in WM determine the content of

sequence knowledge. Gaschler, Frensch, Cohen, and Wenke [54]

put this prediction to test in a SRT task by varying whether the

mapping of gray shapes to keys was instructed based on the color

or based on the position of keys. Their results suggested that

instructions influenced how participants coded responses in WM

and which content they acquired in sequence learning. While

participants in the color instruction condition acquired response

color sequence knowledge, participants in the spatial instruction

condition acquired response position sequence knowledge.

Future research has to further clarify the role of the relations

between WM and sequence learning. This might include exploring

similarities and differences in the representation of serial order in

WM and implicit sequence learning [cf. 55] and testing how

representations of serial order in WM might translate to the

representation of serial order in implicit sequence knowledge. For

example, for Oberauer [28] two long-term learning mechanisms

exist, namely chunking of structures and the gradual build-up of

associations. Evidence of the former comes from analogical

retrieval (e.g., [56]), the Hebb effect (e.g., [27]) and retrieval times

for lists (e.g., [57]). Evidence of the latter comes from varying the

transition probabilities of an item sequence based on an artificial

grammar which results in gradual learning of frequently repeated

trials [29,46,58,59]. Schuck, Gaschler, Keisler, and Frensch [55]

discuss work from the verbal learning tradition (including the

Hebb effect) on the representation of serial order and models on

the representation of serial order in WM in order to then test the

representation of serial order in implicit sequence learning. Based
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on our results it might be a next step to directly test whether and

how the presentations of serial order in WM determines the

presentation of serial order in implicit sequence knowledge, i.e.,

does implicit sequence learning store the order representation held

in WM? This is not necessarily the case. There are evidences

outside the sequence learning literature that assume that binding

of features in WM did not lead to binding of features in LTM (e.g.,

[60,61]). In addition, further fundamental executive functions

should be identified that might be involved in sequence learning

(e.g., inhibition, [15]; focus switching, [62]; and lower level control

processes such as response selection, [63]).
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34. Cleeremans A, Jiménez L (2002) Implicit learning and consciousness: A graded,
dynamic perspective. In: French RM, Cleeremans A, editors. Implicit learning

and consciousness: An empirical, computational and philosophical consensus in
the making. Hove: Psychology Press. pp. 1–40.

35. Cleeremans A (2008) Consciousness: The radical plasticity thesis. Progress in
Brain Research 168: 19–33.

36. Sutton RS, Barto AG (1981) Toward a modern theory of adaptive networks:
Expectation and prediction. Psychological Review 88: 135–171.

37. Schultz W, Dayan P, Montague PR (1997) A neural substrate of prediction and

reward. Science 275: 1593–1599.

38. Feldman J, Kerr B, Streissguth AP (1995) Correlational analyses of procedural

and declarative learning performance. Intelligence 20: 87–114.

39. Unsworth N, Engle RW (2005) Individual differences in working memory

capacity and learning: Evidence from the serial reaction time task. Memory and
Cognition 33: 213–220.

40. Kaufman SB, DeYoung CG, Gray JR, Jiménez L, Brown J, et al. (2010) Implicit
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