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Abstract

Studying illusions provides insight into the way the brain processes information. The Müller-Lyer Illusion (MLI) is a classical
geometrical illusion of size, in which perceived line length is decreased by arrowheads and increased by arrowtails. Many
theories have been put forward to explain the MLI, such as misapplied size constancy scaling, the statistics of image-source
relationships and the filtering properties of signal processing in primary visual areas. Artificial models of the ventral visual
processing stream allow us to isolate factors hypothesised to cause the illusion and test how these affect classification
performance. We trained a feed-forward feature hierarchical model, HMAX, to perform a dual category line length judgment
task (short versus long) with over 90% accuracy. We then tested the system in its ability to judge relative line lengths for
images in a control set versus images that induce the MLI in humans. Results from the computational model show an overall
illusory effect similar to that experienced by human subjects. No natural images were used for training, implying that
misapplied size constancy and image-source statistics are not necessary factors for generating the illusion. A post-hoc
analysis of response weights within a representative trained network ruled out the possibility that the illusion is caused by
a reliance on information at low spatial frequencies. Our results suggest that the MLI can be produced using only feed-
forward, neurophysiological connections.
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Introduction

Visual illusions have the potential to offer great insight into our

visual perception. Illusions have been extensively studied by

psychologists, as a method of deducing the assumptions that the

brain makes and how we process visual information. One classical

illusion known to induce misjudgement, is the Müller-Lyer Illusion

(MLI). In the MLI, the perceived length of a line is affected by

arrowheads or arrowtails placed at the ends of the line [1].

Specifically, the line appears elongated in the arrowtails and

contracted with arrowheads (see Fig. 1A). Behavioural studies have

shown that the strength of the illusion is correlated with factors

including shaft length [2,3], fin angle [4] and inspection time [5,6].

Although many theories have been put forward to explain the

MLI (reviewed in [7]), there is ongoing debate as to the source of

the MLI. Originally, the illusion was explained as a combination

of two opposing factors: ‘confluxion’ and ‘contrast’ [8,9]. These

terms were later interpreted into more modern concepts of lateral

inhibition and contour repulsion [10]. Higher weighting placed on

low spatial frequency information has also been investigated as

a possible contributing factor towards the MLI [11,12]. It is

possible that these mechanistic explanations may not provide a full

explanation of the illusion and we may need to look beyond

explanations that purely involve bottom-up neural computation.

Gregory was the first researcher to suggest that the images in our

environment could influence our perception of the MLI and

introduced another type of explanation based on misapplied size

constancy scaling. Size constancy scaling refers to our visual

system’s ability to perceive an object as being of a constant size,

even though changes in viewing distance change the size of its

retinal image. To deduce the real-world size of an object, we take

into account the perceived distance when scaling the retinal image

size. When the depth of an image is misperceived, the scaled size

judgement will also be erroneous. Gregory proposed that implicit

depth cues in the arrowtails image imply that this object is more

distant than the arrowheads image, such that their identical retinal

sizes produce unequal perceived sizes [13].

Explaining the illusion has proven difficult because the effect

persists even when the wings of the illusory figure are replaced

with other terminating shapes, such as circles or squares (Fig. 1B).

Even without the shaft (Fig. 1C), the perceptual effect remains.

These variants demonstrate the persistence of line length mis-

judgment and rule out simple explanations for the cause of the

illusion.

Although there is disagreement on what causes the MLI, there is

some consensus on where the illusion occurs in the brain. It is

commonly accepted that visual information is processed via two

pathways [14]: the ventral stream or ‘what’ pathway, which

extends from striate cortex to infero-temporal lobe and the dorsal

stream or ‘where’ pathway, which extends from occipital to
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parietal cortex. A recent fMRI study shows increased blood

oxygen level-dependant signal strength in the Lateral Occipital

Cortex (LOC) when participants viewed the MLI versus a control

image [15]. An MEG study has demonstrated results consistent

with the previous fMRI data, showing strong activation along the

ventral visual pathway in lateral occipital areas and the inferior

temporal cortex [16]. Therefore, there is much evidence that the

ventral stream plays a dominant role in processing the MLI. We

hypothesised that as the MLI occurs within the ventral stream of

visual processing, then a model that imitates the structure and

functionality of this region should be able to demonstrate this

perceptual effect.

Currently, a number of biologically plausible image recognition

models exist that computationally mimic visual cortex. To date,

the majority of these have been concerned with correct object

identification or classification. In this paper we apply these models

to a task known to produce an illusion in human observers. Here,

we seek to demonstrate a similarity to human perception, not

simply by reproducing a poor level of overall performance, but

further by producing a specific predictable pattern of errors. We

highlight several advantages for researchers from different fields

who adopt this novel approach of mimicking visual ‘errors’ in

computational object recognition models. For perceptual psychol-

ogists, a model that imitates illusory perception would allow for the

isolation and testing of factors thought to contribute to an illusion.

Errors of perception have been extremely informative in

demonstrating how the human brain works. Working with

a computational model opens up possibilities for conducting

experiments that are difficult, if not impossible, to do in humans.

These types of experiments include parameter changes (such as the

level of inhibition), the modification of learning stimuli and

exploration of the effect caused by artificial lesions. For the

computer scientist, classification that matches human error

patterns increases the biological psychological plausibility of

a model. Identifying illusions can enable computers to reject

interpretations of the world that yield impossible objects or

paradoxes. Classification experiments may also reveal elements of

neural information processing that have yet to be uncovered and

lead to improved object recognition and categorisation. Thus, we

can use models to test explanations of well-studied geometrical

illusions from a new perspective.

This paper outlines a set of experiments conducted in HMAX,

a well-established, biologically plausible model of object recogni-

tion [17]. The main goal is to analyse performance of the model in

judging relative line lengths for control stimuli versus Müller-Lyer

stimuli. Essentially, we want to assess whether a feed-forward

object recognition model, with no exposure to natural images, can

‘perceive’ the MLI. We found a consistent pattern of errors that

demonstrated a Müller-Lyer effect in HMAX after training on

a non-natural set of images.

Methods

Our experiments required a model that was biologically plausible,

in that it could be functionally mapped to the human visual ventral

stream. A number of models currently exist which have been

inspired by neurophysiology, pioneered by systems such as the

Neocognitron [18] and convolutional networks [19,20]. From

these biologically plausible options, we selected the model that has

demonstrated much evidence consistent with neurological and

psychological data. The HMAX model, with features inspired by

visual cortex [17] has not only shown results congruent with

psychological and neurological experiments, but it has also made

correct predictions of biological phenomena [21]. We selected

a version of the HMAX model that exclusively models the ventral

visual stream and has successfully demonstrated mutli-class

categorisation [22].

The five-layer architecture setup is similar to that described in

[22], where input to the network is fed through an image layer and

then processing flows sequentially through the other four layers.

These layers alternate in their primary functionality, dedicated to

either template matching or convolution. The behaviour of these

artificial cells is said to model the Simple (‘S’) and Complex (‘C’)

neuronal functionality discovered by Hubel and Wiesel in cat

striate cortex [23]. Simple cells demonstrate higher levels of

activation in response to a specific, preferred stimulus, whereas

Complex cells demonstrate invariance through high response

levels across varied but related inputs. Figure 2 illustrates the set of

layers within the model which are described in further detail

below.

HMAX Layer Descriptions
Image Layer. Input to the model is fed via the image layer,

which receives a 2566256 pixel greyscale image. An image

pyramid with 10 levels is constructed using bicubic interpolation,

with each level 21=4 smaller than the previous. We therefore have

the image duplicated at scales of 2156215, 1816181, 1526152,

1286128, 1086108, 91691, 76676, 64664 and 54654 pixels.

This forms a multi-scale representation of the input image.

S1 Layer (Gabor filter). Output from the image layer is

received by the S1 layer, which employs Gabor filters at every

position and scale. Twelve orientations are used for the Gabor

filters which are 11611 in size and are applied to all levels of the

4D pyramid, before the results are normalised.

C1 Layer (Local invariance using hard MAX). This layer
pools the response of nearby S1 units to create position and scale

invariance at a local level. The range of a C1 unit forms the shape

Figure 1. The ML illusion in various forms. A: The classical four-wing form illustrates the perceptual effect of the top line appearing shorter than
the bottom line, even though the lines are of equal length. B: Terminating circles still induce a perceptual effect of line length misjudgement. C: The
effect persists even when shafts are removed from the original figure.
doi:10.1371/journal.pone.0056126.g001
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of a pyramid spanning an area 10610 units across the base with

a height of 2 levels. The response RC of a C unit is the maximum

value of all S units X1 to Xn that fall within the filter range. This

max filter achieves subsampling by moving around each S1

orientation pyramid in steps of five with an overlap of 2 positions

and scales. The resultant C1 output is a convolved and

compressed representation of S1 units. Note that the max function

is not applied over different orientations, hence the C1 layer

maintains a 4D pyramid structure.

S2 Layer (Learned intermediate features). This layer

performs template matching at every position and scale in the C1

layer. A patch of C1 units centered at each position and scale is

compared with a prototype patch d. These prototypes are

randomly sampled from the C1 layers of the training images in

the initial feature learning stage. After feature learning is complete,

each of these prototypes can now be seen as an additional

convolution filter which is run over C1.

C2 Layer (Global invariance using hard MAX). This

layer constructs a d{dimensional vector, where each element is

the maximum response to one of the model’s d prototype patches

anywhere within the image. All orientation information is

collapsed into one representation. At this stage of the model, all

position and scale information has been removed, so it is now

a ‘bag of features’.

SVM Layer (Decision making module). Finally, classifi-
cation of the image is performed using an all-pairs linear SVM. C2

vectors are normalised before being fed into the classifier. The

majority-voting method is used to assign test images to categories.

Task Description
The task in these experiments was to perform a two choice

category task on a set of images. This task mimics a psychophysical

yes-no length discrimination procedure. The classifier had to

decide whether the top line in a given image was longer (L) or

shorter (S) than the bottom line. Examples of images from each

category are illustrated in Fig. 3. All images fed into the model

were 2566256 pixels in size, with black lines drawn using a 262

pixel pen on a white background. For the L condition, the top line

had randomised line length between 120 and 240 pixels. For the S

condition, the bottom line length was randomised also between

120 and 240 pixels. The comparator line length was randomised

to be between 2 and 62 pixels shorter than the top (or bottom) line

for the L (or S) condition. The vertical position of the top line was

randomised between 48 and 108 pixels from the top of the image

while bottom line’s vertical position was randomly placed between

148 and 208 pixels. This forced the machine learner to rely on

invariant properties rather than on absolute positional information

for classification.

Experimental Setup
We ran each experiment in two stages: a training stage and a test

stage. The model consisted of interleaved S and C layers, with

a support vector machine (SVM) on top to perform final

classification (see Methods Section for details). For the training

period, we exposed the network to a set of 450 images to learn

features at different positions and scales. Features were only learnt

in the S2 and C2 cell layers; S1 and C1 have a fixed set of features

(refer to Methods Section). Once the C2 vectors were built for the

training set, the SVM was trained to perform the L/S classification

task. For the test phase, C2 vectors were built for the test set of

images which were then classified using the SVM.

Cross Fin (XF) images (Fig. 3 Column 1) were used for training,

since they contain features present in both control and test stimuli

and they do not induce any illusory effects. Fin lengths were

randomised between 15 and 40 pixels (measured from the end of

the shaft to the tip of the fin). Fin angles were randomised between

10 and 90 degrees for both top and bottom lines. This was to

prevent the classifier from relying on the end positions of fins or on

bounding box information to make a length judgment. Essentially,

we wanted to confirm that the machine learner was making its

decision based only on the length of the inside lines (shafts) while

also allowing it to be exposed to other irrelevant features.

Results

Experiment I: Control
The first experiment we ran was to ensure that the classifier was

able to distinguish long from short images at an acceptable level of

accuracy and precision for a set of control stimuli. The control

stimuli we used are illustrated in Fig. 3 Column 2, where the top

line has arrows pointing to the left and the bottom line has arrows

pointing to the right. Fin angles were randomised between 10 and

70 degrees. We selected these control stimuli (annotated LR)

because they contain the same number of features as those present

in our illusion test stimuli.

As expected, performance results for the experiment were

affected by the size of the network. We varied the number of S2

units (corresponding to the number of learned features) and

measured the accuracy of classification as the average of

performance (% correct) in each of 10 runs with 150 test images

Figure 2. HMAX Model architecture. Information flows unidirectionally through the hierarchical layers. Input to the system is a 2566256
greyscale image and the output is a classification of the image as LONG or SHORT. The input image is first transformed onto multiple scales via the
Image Layer. The following four layers alternate in their functionality, dedicated to template matching (S layers) or feature pooling (C layers). The final
SVM layer performs binary classification.
doi:10.1371/journal.pone.0056126.g002
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per category. Figure 4 illustrates these results, with error bars

marking standard error of the mean between runs. When the

network size reached 1000 S2 cells, performance exceeded 90%.

With network sizes larger than 1000, performance did not

substantially improve. We therefore chose to use this network size

for all subsequent experiments so as to achieve high accuracy while

minimising computational expense. For our following experi-

ments, the critical comparison was between our control and

illusion conditions.

With a network size of 1000 S2 cells, we achieved an overall

accuracy of 90.3% for our control. We noticed a slight bias

between our LONG category (89.2%) and our SHORT category

(91.47%), however this was not statistically significant (using a two-

tailed paired t-test, p.0.05).

Experiment II: Illusion Effect
The second experiment compared the results from the control

experiment against those obtained using illusory Müller-Lyer (ML)

Figure 3. Images presented to the model, categorised as LONG (top row) or SHORT (bottom row). Column 1: Cross Fin (XF) images are
used for training in all experiments. Column 2: Control (LR) images are used to test accuracy levels for a standard stimulus. Column 3: Illusion (ML)
images are used to test performance levels for images that induce human perceptual error.
doi:10.1371/journal.pone.0056126.g003

Figure 4. Experiment I: Control Results. Accuracy for the control condition versus the network size of S2 units. Values shown are the average of
10 runs. Error bars show standard error of the mean.
doi:10.1371/journal.pone.0056126.g004
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images. The ML images we tested are shown in Figure 2 Column

3, where the top line always has arrowtails and the bottom line

always has arrowheads. The fin length and fin angle were varied in

the same way as for the control images. If the top line always has

arrowtails for every single test image, the top line will appear

perceptually elongated. The bottom line always having arrow-

heads will appear contracted. For a human observer, this means

that when the two lines are objectively of equal length, the top line

will appear longer. When humans are presented with any of these

ML images, they will therefore classify them as ‘long’ on more

occasions than when control images are used.

If the model is not susceptible to the illusion, accuracy levels

should be similar to those shown in Experiment I. However, if the

model is susceptible to the illusion, then we should expect to see

two effects. Firstly, for the LONG category, we would expect to see

the model classifying these above the accuracy level in the control

condition (89.2%). Secondly, for the SHORT category, we expect

to see the classifier perform worse than the control condition

(91.47%). Because of the consistent configuration of the test

images, the machine learner would classify images as ‘long’ more

often than the control condition. This would cause it to

overclassify for the LONG category and underclassify in the

SHORT category.

Figure 5 shows the accuracy (in terms of % correct) of ML

image classification plotted alongside the control condition from

Experiment I. Values displayed are the average of 10 runs for 150

test images per category and error bars indicate standard error. S2

network size was set to 1000 as in the control condition. As we can

see from the figure, the ML condition shows classification accuracy

above the control condition for the LONG category, however this

difference was only trending towards significance (using a two-

sample, equal variance t-test, p = 0.0674). The inverse effect is

shown in the SHORT category, where the ML condition performs

under the classification accuracy of the control condition. The

difference between the ML and Control conditions for the

SHORT category was significant (using a two-sample, equal

variance t-test, p = 0.000027). This indicates that the model is

indeed susceptible to the MLI.

Experiment III: Illusion Strength Affected by Angle
The results shown in Experiment II demonstrate errors

consistent with an illusory effect; however they do not provide

a detailed picture of classification performance using HMAX for

control versus illusory data. We can obtain a better picture of the

illusory effect within HMAX by measuring classification across

incremental line length differences. By plotting classification results

as a psychometric function, we are able to extract information

such as the Point of Subjective Equality (PSE), for the illusory

stimulus. Furthermore, we can separate out factors known to affect

the strength of the illusion, such as the fin angle size or fin length,

and observe consequent changes in the PSE.

Figure 6 shows results for the control condition versus illusion

conditions with three separate fin angles, plotted as psychometric

functions. Looking along the x-axis, negative values on the left

indicate the SHORT category, and positive values on the right

represent the LONG category. The y-axis indicates the percentage

of images classified as LONG. If a classifier was always able to

correctly identify the line length categories, we would see a sharp

step function that takes the value of 0% on the left and 100% on

the right, with a sharp transition at a line length difference of zero.

Instead, what we see is a series of sigmoid functions indicating that

when line length difference is large (in either negative or positive

direction), it is easier for the system make a correct classification

judgement. Sigmoid curves such as these are typical when

mapping human psychophysical responses.

We first plotted the control condition with all angles collapsed.

When there were large differences in line lengths (60 pixels),

HMAX was able to categorise near ceiling for both the LONG

category (far right) and the SHORT category (far left). When

classification was at 50%, indicating that the top and bottom lines

were judged to be the same length (i.e. the PSE), the line length

difference was zero, indicating no bias. However, ML figures with

40 degree fins showed a PSE of 212.5 pixels. This indicates that

with 40 degree fins, the top line must be 12.5 pixels shorter for

HMAX to regard the two lines to be of equal length. Illusory lines

with 20 degree angle fins demonstrated a much smaller PSE of

241 pixels. Considering human data, 20 degree angle fins would

create an illusory bias of 26% [24]. For our lines of 120 to 240

pixels, this would create an average PSE of 46.8 pixels. Therefore

the PSE for 20 degree angle fins in HMAX is relatively congruent

with human data. Illusory lines with 60 degree angle fins no longer

demonstrated an illusory effect, indicated by a PSE of zero.

Human data for the Müller-Lyer Illusion shows smaller effects

as the angle becomes larger [24], which was also demonstrated by

HMAX. For 20 degree data, HMAX performance matched

human performance closely. However, as fin angles were

increased, the illusory effect tapered off earlier in HMAX

compared with human data. The 40 degree data showed a smaller

effect than expected, while the 60 degree data show no effect at all,

whereas humans are known to experience a Müller-Lyer effect

with angles up to 80 degrees [18]. So although we observed an

overall illusory effect and a degradation of illusory strength with an

increase in fin angles, the illusory effect decreased faster for

HMAX compared to humans.

Discussion

In this paper, we devised a set of experiments to measure the

classification performance for an ML stimulus versus a control, in

a biologically plausible model of object recognition. The task was

to classify images as SHORT or LONG based on the relative

lengths of top and bottom lines in an image. We trained the model

using a set of cross fin images that do not induce any illusion in

humans and that contain all features present in test stimuli. In

Experiment I, we explored different network sizes to achieve an

overall classification accuracy level of 90% for our control

condition. We then compared these results to an illusory stimulus

in Experiment II, where we observed a respective increase and

decrease in classification accuracy for the long and short

conditions. This indicates that, as for human observers, this

computational model of object recognition shows skewed perfor-

mance levels when judging relative line lengths for Müller-Lyer

stimuli. In Experiment III, we further investigated the strength of

the illusion within the model by manipulating fin angle. We

observed a smaller PSE for illusory stimuli with more acute fin

angles, indicating a larger illusory effect. As fin angles increased,

the PSE increased. This suggests that the HMAX computational

model of object recognition is able to emulate the human MLI in

two ways: 1) by demonstrating an overall bias in line length

classification with illusory stimuli and 2) by demonstrating a larger

Müller-Lyer effect with more acute fin angles.

Although HMAX is able to demonstrate an illusory effect,

however, our results are not identical to patterns seen in human

data. In particular, one possible reason for this is that even though

HMAX is a biologically plausible model, it does omit a number of

features present in the human visual system, most notably the

notion of feedback or recurrent connections. Because HMAX is

The Müller-Lyer Illusion in Artificial Vision
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Figure 5. Experiment II: Control vs. Illusion Results. Accuracy (in terms of % correct) for the control versus ML images. Values shown are the
average of 10 runs. Error bars indicate standard error of the mean.
doi:10.1371/journal.pone.0056126.g005

Figure 6. Experiment III: Illusion Strength Affected by Angle. Results here are plotted as psychometric curves with values on the left
representing the SHORT condition, and values on the right representing the LONG condition. The control condition with all angles collapsed shows
no bias. For illusory lines with 40 degree fins we see a PSE of approximately 12 pixels. Illusory lines with 20 degree fins show a larger PSE, congruent
with human data. Illusory lines with 60 degree fins no longer demonstrate an illusory effect, indicated by intersection of the curve through 50% when
the line length difference is zero.
doi:10.1371/journal.pone.0056126.g006
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fundamentally a feed-forward model, to make a fair comparison

between the illusion in HMAX and the illusion in humans, results

from the model should be compared with human results obtained

using a backward masking paradigm or repetitive transcranial

magnetic stimulation (rTMS). Human psychophysical experiments

performed on the MLI have, to date, not included methods that

eliminate feedback processing, such as backward masking or

rTMS. We plan to run further experiments using backward

masking in human subjects to allow for this comparison.

Careful consideration was applied to selecting our control test

stimuli. We ruled out the use of straight fin images (having wings

orthogonal to the shaft) because they contain a smaller number of

features compared to ML stimuli. We also ruled out the possibility

of using different combinations of terminating fins because the

Müller-Lyer illusion exists in many forms. We discovered that the

best control stimuli were a combination of left and right

arrowheads. These control images not only contain the same

number of features as the ML stimuli, but also allow us to directly

compare accuracy levels with varying fin angles and fin lengths.

Misclassification of the ML images, as shown in Figure 5,

indicates that this computational model is susceptible to perceptual

errors similar to those experienced by humans. These experimen-

tal results add to the plausibility of models that adopt a simple-

complex architecture. Not only is the HMAX model able to

achieve accuracy levels on par with humans in performing rapid

object categorisation [25], we now show that this model can mimic

aspects of human performance in misclassifying illusory stimuli.

The other significant and perhaps most surprising finding from

these experiments is that the illusion was generated in a model that

includes only feed-forward processing. No feedback connections

are present in the HMAX model, and apart from initial feature

training in the learning stage of the model, weights and

connections are fixed during normal operation. Information in

the system flows in one direction, from the initial image layer

through simple and complex layers to the SVM. This implies that

ML line length misjudgement can occur from feedforward

connections alone.

However, because we do not see the MLI in its full extent under

all angle conditions, this implies that, in humans, there may be

other contributing factors. The gap between model and human

data could be due to shortcomings within the model, such as, for

example, the lack of recurrent connections. Another possibility for

the mismatch between human and model data is the use of

constrained training images, consisting entirely of thin black lines

on a white background. Including natural scenes as part of the

training set, for example, may improve the match with human

data. Each of these points could be addressed separately by testing

other models or by training HMAX with other image sets. Our

results provide a baseline for further comparisons and the analysis

of other potential explanations of the MLI.

The images used for training the model allow us to further assess

proposed explanations of the MLI. The image set we used for

training was inherently two dimensional in nature, consisting only

of straight black lines on a white background (see XF images in

Figure 3). In order to verify Gregory’s misapplied size constancy

scaling theory [13], we would need to train the model on images

taken of 3D scenes. Gregory argues that illusory figures are ‘flat

projections of typical views of objects lying in three-dimensional

space’ [13]. Given that our model exhibited an illusory effect

without training on any 3D images, we can be confident that

misapplied size constancy scaling is not a necessary factor in

causing the MLI in our model, and to the extent that this model

mimics human visual processing of ML figures, it may not be

necessary to explain the behaviour of human subjects. Our

training image set further suggests that the ML illusion can occur

in the absence of statistics of image-source relationships. Howe

and Purves [26] propose that the ML illusion is caused by the

‘‘statistical relationship between retinal images and their real-

world sources’’. For our experiments, we did not train HMAX on

any natural images and maintained a consistent number of

features across our training images. Our results suggest that the

Müller-Lyer illusion can be caused even without information

embedded in natural images.

Ginsburg suggested that in human observers, the MLI is caused

primarily by stronger weighting of low spatial frequency in-

formation [12], later supported by results from Carrasco [11].

When Müller-Lyer figures are low pass filtered, a physical

difference manifests, elongating the wings-out figure (see

Figure 7). If HMAX were to give stronger weighting to

information flowing from units representing larger spatial scales,

this would be expected to produce a similar effect. To investigate

this possibility, we conducted a post-hoc analysis on one of the

trained networks. We first extracted how information is weighted

within the SVM layer of the model and then mapped these weights

to spatial frequencies. Within the HMAX model, there is a direct

relationship between spatial frequency information and receptive

field size [27]. We were able to graph the bounding box sizes of the

top 20 most influential features used by the SVM in order to make

a classification decision (out of 1000 available). Figure 8 shows that

the majority of highly weighted features fed into the SVM contain

high spatial frequency information. This is inconsistent with the

potential explanation that low spatial frequency information is

highly influential in driving the MLI in humans. We can therefore

rule out the possibility that the illusion in the network is caused by

stronger weighting of low spatial frequency information.

We have demonstrated that a Müller-Lyer effect can arise in an

artificial model of neural information processing. This provides an

opportunity to test the extent to which hypothesised underlying

neural mechanisms contribute to the illusion. For instance, lateral

inhibition has been proposed as an explanation for the MLI [10].

We initially explored how changing lateral inhibition levels within

the HMAX architecture affects classification performance, but

altering lateral inhibition levels affected the accuracy of classifi-

cation of control stimuli, which was maximal at the default

parameter settings. Since we measured the Müller-Lyer effect by

comparing classification performance for illusory images against

control images, we therefore decided to keep the default lateral

inhibition levels where the control accuracy was highest. It may be

useful to further examine of the role of lateral inhibition in the

future. Other possibilities include the isolation of information at

different orientations to assess their relative contributions to the

size of the illusion. Although beyond the scope of the current

study, these have the potential to be useful tests of contributing

mechanisms.

To date, there have been relatively few studies where artificial

neural networks or computer models have been used to explore

visual illusions [7,28,29]. In some cases, these artificial neural

networks were not built in order to mimic neural computation, but

rather to demonstrate statistical correlations in input data [29].

The model used in [29] consisted of only one hidden layer with

four homogenous neurons, which few would consider to be even

a crude representation of visual cortex. The work presented in [28]

used a network with three hidden layers of ‘orientational neurons’,

‘rotation neurons’ and ‘line unifying neurons’. This network could

roughly correspond to one layer of simple cells that provide

orientation filters and one layer of complex cells that provide

convolution. However, this study did not present any quantitative

data and did not clearly state details of their method, such as the

The Müller-Lyer Illusion in Artificial Vision

PLOS ONE | www.plosone.org 7 February 2013 | Volume 8 | Issue 2 | e56126



size or connectivity of their network. In [7], Bertulis and Bulatov

created a computer model to replicate the spatial filtering

properties of simple cells and convolution of complex cells in

visual cortex. They compared human and model data for the

Müller-Lyer Illusion, however their model centred only on filtering

properties of neurons. In contrast, our study employs machine

learning techniques to train the model on multiple images before

running a classification task and comparing the task of interest to

a control. Our study allows us to separate out the inner workings

of a model from the input fed into it, in the form of training

images. So although studies exist that model visual illusions within

artificial neural networks, we believe that the current study

represents a significant advance, being the first to model a visual

illusion in a ‘biologically plausible’ artificial neural network.

That HMAX is capable of object classification, the task for

which it was originally developed, may be considered impressive,

given the relative simplicity of the model, which includes no

feedback. However, in the current study we have presented

evidence that the model is able to predict human-like performance

in a completely unrelated task: that involving the discrimination of

Figure 7. An image of the Müller-Lyer Illusion high and low pass filtered. A: the original image B: The image high pass filtered at 5 cycles per
image. C: The image low pass filtered at 5 cycles per image.
doi:10.1371/journal.pone.0056126.g007

Figure 8. The twenty most influential features used by the SVM layer in a representative trained network, ordered by bounding
box size. A post-hoc analysis of a trained network showed the 20 most influential features used to make a classification decision out of 1000
available. Stronger weighting is placed on features that have small bounding boxes and hence contain high spatial frequency information.
doi:10.1371/journal.pone.0056126.g008
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line length. Further, the correspondence of performance between

man and machine represents not just degrees of classification

accuracy, but also captures the pattern of errors that are made as

a function of difference in line length and fin angle, and produces

evidence of an illusion. These were emergent properties, rather

than the model being deliberately constructed to produce these

features. This might raise questions as to other visual phenomena

that HMAX may be capable of accounting for, and also raises the

possibility that HMAX may be capable of predicting other yet to

be observed phenomena. We look forward to such research being

carried out in the near future.
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