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Abstract

Genetic variants that associate with DNA methylation at CpG sites (methylation quantitative trait loci, meQTLs) offer a
potential biological mechanism of action for disease associated SNPs. We investigated whether meQTLs exist in abdominal
subcutaneous adipose tissue (SAT) and if CpG methylation associates with metabolic syndrome (MetSyn) phenotypes. We
profiled 27,718 genomic regions in abdominal SAT samples of 38 unrelated individuals using differential methylation
hybridization (DMH) together with genotypes at 5,227,243 SNPs and expression of 17,209 mRNA transcripts. Validation and
replication of significant meQTLs was pursued in an independent cohort of 181 female twins. We find that, at 5% false
discovery rate, methylation levels of 149 DMH regions associate with at least one SNP in a 6500 kilobase cis-region in our
primary study. We sought to validate 19 of these in the replication study and find that five of these significantly associate
with the corresponding meQTL SNPs from the primary study. We find that none of the 149 meQTL top SNPs is a significant
expression quantitative trait locus in our expression data, but we observed association between expression levels of two
mRNA transcripts and cis-methylation status. Our results indicate that DNA CpG methylation in abdominal SAT is partly
under genetic control. This study provides a starting point for future investigations of DNA methylation in adipose tissue.
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Introduction

There is growing interest in the role of epigenetic factors in

predisposition to common, and especially metabolic, diseases.

Epigenetic effects are mitotically heritable alterations in gene

expression that occur without alterations in the DNA sequence [1],

but rather through molecular alterations such as histone modifi-

cations and DNA methylation.

These epigenetic marks are generally not inherited across

generations [2], but DNA sequence variants that associate with

methylation, known as methylation quantitative trait loci

(meQTLs), have been found throughout the genome for a number

of tissues [3–6]. Genetic effects on methylation thus provide a

mechanism by which methylation patterns can be transmitted

across generations.

Many studies on CpG methylation have been carried out in

blood [7–9], but as methylation is highly tissue-specific [10], such

study designs may not be relevant for metabolic traits. With

epigenetic studies, tissue availability is generally a problem, but
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abdominal subcutaneous adipose tissue (SAT) represents one

metabolically active tissue that is accessible and of relevance to

obesity-related diseases [11]. In this study, we were interested in

finding genetic variation that influences methylation status in

abdominal SAT and in relating this to metabolic phenotypes, most

particularly the cluster of obesity-related phenotypes described as

metabolic syndrome (MetSyn) [12].

Materials and Methods

Samples and Phenotypes
We collected abdominal fat biopsies from the Oxford Biobank

[13]. As part of MolPAGE the MolOBB case/control study for

MetSyn (as defined by the International Diabetes Federation

[IDF] [12]) involves 20 cases (10 male, 10 female) and 20 controls

(10 male, 10 female). We excluded one male case and one male

control from the analysis due to non-European descent and

missing phenotype data, respectively, leaving 19 MetSyn case and

19 control samples for analysis (Table 1). The full dataset of 38

samples was included in the meQTL analysis. The study was

approved by the National Research Ethics Service, Oxfordshire

REC C (REC reference: 08/H0606/107) and informed consent in

writing was collected from all participants.

Differential Methylation Hybridisation Data – Primary
Cohort

We extracted DNA from abdominal SAT samples and

determined the methylation status of 51,195 genome-wide probe

set regions using Differential Methylation Hybridisation (DMH,

Epigenomics AG, Germany). This method measures the quantity

of methylated DNA after a methylation sensitive restriction digest

by hybridisation onto a custom microarray (Supplementary
Information S1). Validation by bisulphite sequencing and

reproducibility of the DMH method have been confirmed in a

previous study [14]. The DMH probe sets on the array cover 430

genes that are reported to be differentially methylated,

13,500 CpG-rich promoter regions and 13,650 CpG-rich regions

within gene bodies across the genome [15].

Each biological sample was analysed in duplicate by hybridisa-

tion onto two DMH microarrays, which were randomized across

three batches. Intensity values of each probe were averaged over

the two duplicate chips per sample. A methylation score for each

DMH region was calculated as the difference between the median

log2-transformed probe intensities for each probe set and the

median log2-transformed chip-internal signal control probe

intensities [15]. Two additional chips containing 0% and 100%

methylated DNA [15] were also analysed and used to calibrate the

methylation score value to the 0% and 100% methylated DNA

(range -1.20–2.75), applying methodology previously outlined

[16]. Subsequently, we quantile-normalised the methylation score

across individuals and excluded any DMH probe sets that

contained SNPs with minor allele frequency (MAF) .5% in the

1000 Genotypes CEU Interim 2010 data [17]. This reduces allele

bias introduced by the hybridisation step, but avoids exclusion of

probe sets based on rare variants potentially not present in the

sample.

CpG Methylation Data - Replication cohort
The replication cohort consists of subcutaneous adipose samples

from 181 female individuals (Table 2) from the MuTHER study

[18,19]. All subjects were recruited from the TwinsUK resource

[20] previously shown to be comparable to population singletons

in terms of disease-related and lifestyle characteristics [21]. The

included adipose samples were randomised and genomic DNA

was isolated using the NORGEN purification kit (Norgen Biotek

Corporation, Canada) and quantified using picogreen. After a

second round of randomisation, 750 ng of each DNA sample was

taken for bisulphite conversion using the EZ-96 DNA Methylation

Kit (Zymo Research) according to the protocol provided by the

manufacturer. Methylation profiling of the bisulphite-converted

samples was performed using the Illumina Infinium Human-

Methylation27 BeadChip (Illumina 27k) that assays DNA meth-

ylation levels at 27,578 different CpG sites. The BeadChips were

scanned using the IlluminaHiScan SQ scanner and raw data were

imported to the BeadStudio 3.2 software (methylation module),

which was used to extract the image intensities. The methylation

Table 1. Participant characteristics (Primary Study).

Participant characteristics All cases All Controls Male cases Female cases Male controls Female controls

Sample size (N) 19 19 9 10 9 10

Age (years) 4965 4965 4863 5066 4765 5165

BMI 32.465.6 26.664.5 32.964.9 31.966.4 2562.6 2865.5

Waist (cm) 107613 9069 112614 103612 8966 90611

Hip (cm) 113611 10468 113610 113612 10064 106610

HDL (mmol/l) 1.0360.26 1.5460.25 0.8560.13 1.1960.25 1.3660.21 1.6860.18

TG (mmol/l) 2.361.6 1.160.3 2.661.8 1.961.3 0.960.2 1.260.3

Glucose (mmol/l) 5.660.5 5.160.3 5.760.5 5.660.5 5.260.4 560.3

Values are means 6 standard deviation for each quantitative trait.
doi:10.1371/journal.pone.0055923.t001

Table 2. Participant characteristics (Replication Study).

Participant characteristics

Sample size (N) 181

Age (years) 61.167.6

BMI 26.464.5

Weight (kg) 68.9612.6

HDL (mmol/l) 1.960.5

TG (mmol/l) 1.260.6

Glucose (mmol/l) 5.160.7

Values are means 6 standard deviation for each quantitative trait.
doi:10.1371/journal.pone.0055923.t002

Adipose Tissue Methylation Quantitative Trait Loci
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score for each CpG was represented as a beta value (generated by

the BeadStudio software) corresponding to the ratio of the

intensity of the methylated bead type to the combined locus

intensity and range from 0 (unmethylated) to 1 (fully methylated)

on a continuous scale, which were filtered for quality (Supple-
mentary Information S1).

Genotype Data – Primary Cohort
302,765 genetic markers from the 38 individuals were

genotyped using the Illumina 317k BeadChip platform (Illumina

Inc., USA) and filtered for (i) Hardy-Weinberg p-value #5.7x1027

and (ii) minor allele frequency (MAF) .1% and genotype rate

.99%, or .95% if MAF .5%. We imputed 11,116,176 SNPs

using IMPUTE (v2.1.2) [22] and the 1000 Genomes Interim 2010

haplotypes as a reference panel [17]. Quality control was carried

Figure 1. Patterns of CpG Methylation in abdominal SAT. A: DMH data show a bimodal pattern consistent with hypo- and hypermethylation.
B: CpG sites close to TSS’s on the X chromosome are hemimethylated in females. C: CpG sites close to TSS’s of Imprinted Genes are hemimethylated
D: Lower methylation is observed around TSS’s (black line shows 300 bp sliding window median methylation score).
doi:10.1371/journal.pone.0055923.g001

Adipose Tissue Methylation Quantitative Trait Loci
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out by applying a filter for effective minor allele count .5% (2 *

MAF * IMPUTE Info Score *38.5 [23,24], resulting in

5,227,243 SNPs used for subsequent analyses. This corresponds

to a minor allele count of 5. The IMPUTE Info Score multiplied

by the sample size is the effective sample size, which is reduced by

high genotype uncertainty [22].

Genotype Data – Replication Cohort
Genotyping of the 181 replication samples was performed as

part of the TwinsUK dataset (N , 6000) with a combination of

Illumina arrays (HumanHap300, HumanHap610Q, 1M-Duo and

1.2MDuo 1M). Intensity data for each of the three arrays were

pooled separately (with 1M-Duo and 1.2MDuo 1M pooled

together) and the Illumina calling algorithm assigned genotypes.

No calls were assigned if the maximum posterior probability was

less than 0.95.

After quality control (Supplementary Information S1)

imputation was performed using the IMPUTE software package

(v2.1.1.10) using two reference panels, P0 (1000 Genomes

haplotypes, 2011 Phase I (interim) release, EUR) and P1 (the

combined HumanHap610k and 1M reduced to 610 k SNP

content) [17]. The SNP positions were mapped from b36 to b37

according the UCSC Feb. 2009 (GRCh37/hg19) assembly. Post-

imputation, SNPs were filtered at a MAF .5% and IMPUTE info

value of .0.8.

mRNA Expression Data – Primary Cohort
We profiled mRNA expression on the Affymetrix human

GeneChip HGU133 Plus 2.0 array (Affymetrix, USA), covering

the transcription level of 17,209 Ensembl-annotated genes in 31 of

the 38 abdominal SAT samples with data for methylation and

genotypes. Using a custom chip definition file as described by Dai

et al. [25], we grouped probes into probe sets corresponding to

Ensembl annotated genes. In our subsequent analyses, we

quantified mRNA expression as the robust multi-array average

(RMA) without background correction, which is a summary

measure of quantile-normalised, log2-transformed probe intensities

[26].

Phenotype Association
To test for association of DNA methylation with MetSyn, we

applied linear models with the limma R package [27] using the

Methylation score [16] of the 27,718 DMH probe sets that passed

filtering as the response and case/control status (adjusting for age

and gender) as the predictor variable. Similarly, we tested for

association of either BMI or age with DMH methylation score as

the response adjusting BMI for age and gender, and age for BMI

and gender. Lastly, we analysed association of gender with

methylation score for the autosomes only, adjusting for BMI and

age. For each phenotype, a 95% confidence interval was

Figure 2. Flowchart showing the analysis pipeline. Top: Association of DMH Methylation Score with phenotypes. Bottom: Primary cis-meQTL
association study, followed by replication study. Left: Association of DMH probe sets with significant meQTLs with mRNA expression. Right: Text
mining of meQTLs significant in the primary study.
doi:10.1371/journal.pone.0055923.g002
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calculated by performing 1000 permutations of the methylation

scores.

Cis-meQTL Association – Primary Study
We carried out a cis-meQTL association analysis using 29,441

filtered DMH regions, where we tested SNPs in a 6500 kb region

around the probe set for association in a linear additive model

using PLINK [28] (Supplementary Information S1). We

accounted for genotype uncertainties by using an allelic dosage

model [28], adjusting for age, gender and case/control status for

MetSyn [4,5]. We corrected for multiple testing using the qvalue

package in R [29] and applied a false discovery rate (FDR)

threshold of 5%.

Cis-meQTL Association – Replication Study
To replicate any cis-meQTL findings from the DMH primary

cohort, we first assessed how many probes on the Illumina 27 k

array were located within a 1 kb distance of DMH probe sets with

significant meQTLs in the primary DMH cohort. This distance

was chosen because of the high correlation of CpG methylation

within 1 kb observed in previous studies [4,10]. Of the 149 DMH

probe sets with meQTL, 27 had Illumina 27 k within 1 kb, and for

19 of these probes there were also SNP genotype data for the lead

SNP or a SNP in high linkage disequilibrium (LD, r2.0.8) with

the lead SNP. First, to test for replication, we used a one-tailed t-

test in the direction of the original association, using a Gaussian

null distribution as an approximation to the true null distribution

(a t-distribution with 176 degrees of freedom). Second, to test for

any additional associations of the 19 probes with cis-SNPs (MAF

.5%, info .0.8) in a 6500 kb region we applied a linear mixed

effects model in R [29], using the lmer() function in the lme4

package, fitted by maximum-likelihood. The models were adjusted

for both fixed (age, batch, concentration after bisulphite conver-

sion (BSC) and BSC efficiency) and random effects (family

relationship and zygosity). A likelihood ratio test was applied to

assess the significance of the SNP effect. The p-value of the SNP

effect in each model was calculated from the Chi-square

distribution with 1 degree of freedom using -2 log(likelihood ratio)

as the test statistic.

mRNA Expression Association
Subsequently, to assess the effect of CpG methylation on

mRNA expression, we matched each DMH probe set that was

significantly associated with a meQTL SNP at the 5% FDR level

with the mRNA transcript of which the transcription start site

(TSS) was closest in distance. The rationale for this approach is

that CpG methylation represses transcription at gene promoters

[4]. We fitted a linear model with expression level as the response

variable and DMH probe set methylation score as the predictor,

adjusting for age, gender and MetSyn case/control status. A

similar analysis was carried out on all 27,718 DMH probe sets.

We tested the meQTL SNPs for cis-eQTL association with

transcripts previously matched to the DMH regions under genetic

control. Analogous to the meQTL analysis, we used a linear

additive model with allelic dosage as a predictor, while adjusting

for age, gender and case/control status for MetSyn. We applied an

FDR threshold of 5% to all analyses.

Text Mining and Pathway Analysis
First, we used DAPPLE [30] to investigate protein-protein

interactions between the gene products of genes with meQTLs. As

an input, we used the 149 meQTL SNPs and the default settings of

1,000 permutations and a common interactor binding degree cut-

off of 2. By default, the gene regulatory region is defined as 50 kb

up- and downstream of each transcript [30].

Second, for the gene pathway analysis, we assigned each

meQTL SNP to an Ensembl-annotated gene with closest TSS.

This was used as input for a gene set enrichment analysis (GSEA)

using MAGENTA [31]. The software calculates gene scores from

GWAS SNP p-values [31]. We used the default settings of gene

Figure 3. Genome-wide meQTL analysis. A: Cis-meQTL quantile-quantile plot showing enrichment of association signal. Grey bands correspond
to 95% confidence intervals. B: Significant meQTL are located close to CpG sites.
doi:10.1371/journal.pone.0055923.g003
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boundaries 110 kb upstream and 40 kb downstream of each gene

and 10,000 permutations were used to calculate the GSEA p-value

cut-off. We tested for enrichment of genes assigned to meQTL hits

in sets of genes highly associated with six phenotypes: (i) BMI [23],

(ii) waist-hip ratio (WHR) adjusted for BMI [24], (iii) total

cholesterol (TC), (iv) triglycerides (TG), (v) high-density lipoprotein

(HDL), and (vi) low-density lipoprotein (LDL) [32]). These trait

association data were derived from large GWAS datasets covering

over 2 million SNPs.

Third, to detect whether the meQTL hits in SAT are enriched

for associations previously found by GWAS, we carried out a

permutation test (10,000 permutations) using a rank-sum statistic,

where 149 random SNPs matched for MAF 60.05, distance to

genes 6500 kb and local recombination rate 61 cM/Mb were

chosen in each permutation.

Fourth, we tested whether those genes that overlapped cis-

meQTL probe sets were statistically over-represented at each term

in the GO database [33], relative to the number expected to occur

by chance (a hypergeometric null distribution). The resulting p-

values were adjusted at the 5% FDR level.

Results

Patterns of Abdominal SAT CpG Methylation
We first set out to investigate whether the data measured by

DMH fit with previously reported patterns of methylation [4,5]

and saw a convincing consistency with the expected patterns.

Global methylation patterns measured by DMH in our study

showed bimodality, with a ‘‘hypomethylated mode’’ at lower and a

‘‘hypermethylated mode’’ at higher methylation score (Figure 1A).

We observed a slightly higher occurrence of hypermethylation in

our study compared to what has been previously reported for the

Illumina 27 k array [4], which can be explained by the difference

in targeting of differentially methylated regions between the

microarray designs. While the Illumina 27 k array probes are

mainly located in promoter regions, the DMH array also targets a

larger number of intra- and intergenic regions: 9,253 of the 12,500

genes targeted by the DMH array also are probed by the Illumina

27 k array (74.0%) [4,5], only 3,629 probed sites directly overlap

(13.1%). As expected, we found that the CpG sites on the X

chromosome are hemimethylated (methylation score 0.3–0.7) [4]

in females (Figure 1B). Also, the CpG sites close to the TSS of

imprinted genes [34], were approximately hemimethylated

(Figure 1C) and lower methylation was observed around

transcriptional start sites (Figure 1D) [4,10].

Association of CpG Methylation with Metabolic
Syndrome and Other Phenotypes

We then investigated whether the DMH methylation score at

each probe set associated with MetSyn case/control status or BMI.

At the 5% FDR level, we found no DMH probe sets that were

significantly associated with MetSyn or BMI and the resulting p-

value distribution remained within a 95% confidence interval

generated by 1000 permutations of the methylation scores

(Figure S1A, S1B).

Additionally, we tested for association of methylation score with

age and gender, excluding sex chromosomes in the latter case. We

observed an association signal of gender with methylation score

(Figure S1C) and four autosomal DMH probe sets significantly

associated with gender at the 5% FDR level (Figure 2). No

association of methylation score with age was detected (Figure
S1D).

Genome-wide meQTL Analysis
First, we tested for cis-association of the methylation scores of

the DMH probe sets with genetic variants (Figure 2, see

Materials and Methods). Our results showed an enrichment

of low nominal p-values for SAT meQTLs (Figure 3A) and 149

meQTL sites were significant at the 5% FDR level (Table S1).

These top meQTLs show a median distance of 80.7 kb between

the DMH probe set and the lead SNP (Figure 3B, distance range

1 bp –499 kb), which is similar to the SNP- CpG distance of 81 kb

reported by Gibbs et al. in brain tissue [5], despite the different

platforms used between the studies.

Of the 149 significant DMH probe sets with meQTL SNPs, 19

have a corresponding Illumina 27 k CpG probe (that is located

within 1 kb, see Materials and Methods) and the same SNP,

or a proxy SNP (r2.0.8), available (Figure 2). We analysed these

in an independent sample of 181 abdominal SAT biopsies [19].

Five out of these 19 meQTL SNPs significantly associated with

methylation levels in this replication sample (one-tailed test at the

5% level of significance, with the direction of significance being as

identified in the primary study Table 3, S2, Figures 3, 4, 5).

The replication rate was significantly higher than expected by

chance (binomial p-value = 2.0161023). We then tested the 19

Illumina 27 k probes for associations with all SNPs within a

6500 kb cis-region. We found that only four probes for which the

primary SNP replicated associated at the 5% FDR level with other

nearby SNPs in the replication data (Table S4). In one case, the

meQTL SNP was the same in the primary and replication study.

A conditional analysis revealed that the weaker association signal

of the primary and the replication study disappeared when

adjusting for the SNP more strongly associated in either study

(Table S5). This means that in some cases, there was an

independent stronger cis-meQTL in the replication than the one

detected in the primary study, where the difference was potentially

caused by heterogeneity between the two sample populations or

stochastic effects. In all cases the top SNP from the replication

study was also significantly associated with methylation in the

primary data (Table S5), which supports the replication.

Further, we investigated whether the meQTLs found in our

study are also meQTLs reported in other tissues (i.e. LCLs or

brain tissue) [4,5]. We could investigate 27 of our 149 probe set-

SNP tests, but we do not find any overlap between our meQTL

associations found and the results from the HapMap LCLs [4].

Amongst the significant meQTLs reported by Gibbs et al. in brain

tissue [5], we saw two of 887 probes (cg24893837 [ARSB],

cg25681177 [GAPDHS]) that associate with the same SNP in our

data (FDR ,5%). One additional probe (cg04007936 [CARHSP1])

was also under significant genetic regulation although the SNP

associated is independent (r2,0.1) of the lead SNP found in our

study. In the latter case, this could indicate a general tendency to

genetic control of methylation in this region or tissue specific

differences.

Association of mRNA Expression with CpG Methylation
We then investigated the association of DMH methylation

scores with cis-mRNA expression of the transcript with the closest

TSS. Firstly, when taking all 27,718 DMH probe sets into account

no associations remained significant at the 5% FDR level (Figure

Figure 4. Boxplots showing methylation level plotted against genotype for the 5 replicated meQTLs in both the primary study (left
panels) and replication study (right panels). All SNPs passed quality control filtering and association with methylation levels in both data sets.
doi:10.1371/journal.pone.0055923.g004
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S2A). We then considered only those 149 probe sets for which

meQTLs existed and observed an association signal between

methylation levels at DMH probe sets and mRNA expression

(Figure S2B). In general, highly correlated associations between

DMH probe sets and nearby transcripts tended to occur when the

distance between the methylation site and TSS was short (Figure
S2C). Results indicated that expression of two out of 149 mRNA

transcripts were significantly associated with DMH methylation

score at the 5% FDR level: EpiGII2424610Q (TNFRSF11B,

Tumor necrosis factor receptor superfamily member 11B), and

EpiGII8555714Q (GOT1, Aspartate aminotransferase). Distances

between TSS and the correlating DMH probe set were 324 kb

and 13 kb, respectively. In both cases, the correlation between

DMH methylation and mRNA expression levels was negative.

To investigate whether the 149 meQTL SNPs are also eQTL

SNPs, we tested association of 149 lead meQTL SNP genotypes

with mRNA expression (Figure S2D). No associations were

significant at the 5% FDR level. Thus, we did not observe control

of gene expression by the meQTL SNPs.

Gene Enrichment Analysis
We further investigated whether there are interactions between

the protein products of the genes close to or overlapping the

meQTL SNPs (Figure 2, see Materials and Methods), which

could potentially provide clues towards shared pathways by which

the meQTLs act. We saw no enrichment in the observed direct or

indirect interactions over the interactions expected by chance

(p = 0.93 and p = 0.43) using DAPPLE [30], nor did we see an

enrichment of genetic loci found by previous genome-wide

association studies (GWAS) of the following phenotypes (i) BMI

[23] (p = 0.69), (ii) WHR adjusted for BMI [24] (p = 0.71), (iii) TC

(p = 0. 87), (iv) TG (p = 0.04), (v) HDL (p = 0.77), (vi) and LDL

[32] (p = 0.32)) in the set of 149 lead meQTL SNPs after

correction for multiple testing.

We then investigated whether the meQTLs are enriched in

genes associated with the six phenotypes (i)-(vi) above. Using

MAGENTA, we carried out a gene pathway enrichment analysis,

assigning each DMH region to a gene, similar to the mRNA

transcript assignment. For the six traits examined (see Materials
and Methods), only HDL associated genes (Table S3) had

significant enrichment in the 149 genes tested (p = 7.4061023).

Lastly, we attempted to identify any other pathways in which

the meQTLs could potentially be involved. With the FDR

controlled at 5%, there were no significantly enriched GO terms.

Data Availability
MolOBB gene expression data is available at ArrayExpress (E-

MTAB-54), MolOBB genotype data is available at the European

Genome-phenome Archive (EGAS00000000102) and MolOBB

methylation data is available at http://www.well.ox.ac.uk/ggeu/

PloSONE_Drongetal_MolOBB/.

Figure 5. –log10 P values of the 5 replicated meQTLs against genomic position, with the top SNP indexed and indicated by a
diamond. Estimated recombination rates are shown in blue, and SNP LD is given by colour as shown in the legends (LD data from 1000 Genomes
Nov 2010 CEU genotypes).
doi:10.1371/journal.pone.0055923.g005

Table 3. Replicated meQTL hits.

Primary Study

Epigenomics IDa Chrb Probe Set Positionc SNP Positiond SNP rs ID bsnp
e s. e.(bsnp)f p-valueg

EpiGII8761308Q 1 53392620–53392784 53259897 rs6684837 20.0713 0.0113 4.05E–07

EpiGII1423698Q 5 78281698–78281893 78282670 rs163125 0.1148 0.0181 3.52E–07

EpiGII3811572Q 16 8954289–8954493 8873576 rs45545237 20.7017 0.0775 1.85E–10

EpiGII4030067Q 17 80708321–80708551 80859844 rs7208393 0.1371 0.017 2.53E–09

EpiGII4424875Q 19 36024159–36024306 36024296 rs74409639 20.2649 0.0166 4.72E–17

Replication Study

Illumina IDh CpG Positioni bsnp s. e. (bsnp) one-sided p-valuej

cg27535305 53393297 0.0203 0.0031 2.91E–11

cg24893837 78282099 20.0332 0.006 1.57E–08

cg04007936 8954017 0.0352 0.007 2.47E–07

cg27574244 80709357 20.0018 0.0008 1.22E–02

cg25681177 36024439 0.0484 0.0054 2.68E–19

a) ID of probe set on DMH array,
b) chromosome.
c) genomic coordinates of probe set in build37.
d) genomic coordinates of SNP in build37.
e) coefficient of SNP effect.
f) standard error for the SNP effect.
g) p-value for the SNP effect.
h) ID of probe on Illumina 27k array,
i) genomic coordinates of CpG probed in build37.
j) one-sided p-value for the SNP effect in the direction of the original association.
doi:10.1371/journal.pone.0055923.t003
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Discussion

Epigenetic marks, especially DNA methylation, play an

important role in cellular differentiation and gene regulation

in adipose tissue [10]. Moreover, genetic variants that influence

DNA methylation may not only be a carrier for the inheritance

of epigenetic marks [2], but also provide a biological mechanism

by which SNPs act that have previously been shown to associate

with disease phenotypes and/or downstream mRNA expression

[4].

We first investigated whether DMH methylation associated with

MetSyn status, BMI, age or gender. We find no associations of

DMH methylation with MetSyn case control status or BMI.

Changes in DNA methylation associated with BMI have been

previously reported in a longitudinal study [35], but these effects

might not have been observed in our study due to lower sample

size. While we observed an association between methylation and

gender, we find no association between methylation and age

(Figure S1D), which is in line with a previous report [10]. The

relatively modest sample size and narrow age distribution (SD = 5

years, Table 1) may impact power to detect age-related effects,

which have been reported in the literature [4,10,36]. However,

our main objective of this study was meQTL analysis, where effect

sizes are expected to be larger, and where we are better powered

to detect significant associations (Supplementary Information
S1), as our results also indicate.

The results of our meQTL study indicate that there are a

number of cis-meQTLs in abdominal SAT. Moreover, we

observe that most cis-meQTLs act over a much shorter distance

than the arbitrarily defined cis window of 6500 kb. In our

replication study we attempted to replicate 19 out of 149

significant meQTL signals and find that five out of 19 DMH

probe sets that reached significance in the primary study are also

found to be significantly associated and directionally consistent in

the replication study. The associations of methylation with SNPs

in these five regions are consistent throughout the datasets, as

each top cis-meQTL SNP within a 6500 kb region also is an

meQTL in the other data set (Table S5). As methylation was

measured on a different platform, the replication study also

provided validation of the DMH method used in the primary

study. There are three main aspects between the two platforms

that may have an effect on the replication rate: (i) targeting of

single vs. multiple CpGs, (ii) imperfect correlation between the

DMH probe sets and Illumina 27k probes (within 1 kb) used as

methylation proxies and (iii) methodological differences between

the two assay techniques. Different genotyping scaffolds have

been used and we use very stringent quality control measures pre-

imputation, which means that even though different chips are

used, the filtering on the minor allele count we do only allow high

quality data, and variants with low allele frequency will be filtered

out (Supplementary Information S1).

Importantly, in a recent report investing imputation accuracies

using different methods and sizes of European reference panels, it

was shown that for common variants with a minor allele frequency

.5% the imputation accuracy performs similarly well [37]. Given

this we feel confident that our association results, both on direct

genotypes as well as the imputation, are as robust as they can be to

genotype errors. However, the fact that methylation associates

with genetic variants consistently across the two studies despite

these differences suggests that in these regions there is indeed

genetic control of methylation in SAT.

No significant associations of the 149 meQTL SNPs with

expression of cis-mRNA transcripts are found, but association

cannot be ruled out due to the relatively low statistical power in

this study. Using similar assumption as above, and adjusting for

149 tests, we have 80% power to detect SNP-mRNA associations

explaining 41% of variation in expression (Supplementary
Information S1). Again, we are limited by the small sample size

to detect associations of this magnitude.

Despite the current understanding that promoter methylation

acts as a suppressor of mRNA translation, the observation that

many meQTLs do not influence mRNA expression is consistent

with the study in brain tissues by Gibbs et al. [5]. Bell et al. [4], on

the other hand observe a significant enrichment for eQTLs in the

meQTL results. This shows that there is still a need for future

studies to investigate the downstream biological effects of

methylation and the role of meQTLs. Our results show a

significant enrichment for meQTLs found in brain tissue [5], but

not for those in HapMap LCLs [4], potentially due to the lower

power in the latter study. Limited overlap between the DMH

probe sets and the Illumina 27k microarray used in these studies,

as well as tissue-specific differences, may explain the low overlap

between the study results. Further research could reveal the true

degree of meQTL tissue specificity by using larger sample sizes

and consistent assay techniques.

We find that two cis-mRNA’s significantly associated with

meQTL DMH probe sets, encode for protein products that have

previously been implicated in type 2 diabetes and MetSyn.

TNFRSF11B, also known as RANKL, was previously characterized

as an extracellular negative regulator of osteoprotegrin, which acts

as a decoy receptor when secreted [38]. A number of studies have

found that both osteprotegrin and this TNF-superfamily protein

have elevated serum levels in type 2 diabetes patients [39,40], and

MetSyn [41]. TNFRSF11B is normally secreted by osteoblasts [38].

GOT1, also known as AST1, is a liver transaminase that plays a

role in amino acid metabolism, the urea cycle and the Krebs cycle

[42]. The GOT1 gene promoter has been shown to be regulated by

glucocorticoids, cAMP and insulin [43]. However, a role of these

proteins in SAT has not been hypothesized or investigated

previously.

Overall, we show for the first time that meQTLs are present in

adipose tissue. This indicates a direct genetic influence on DNA

methylation and also an indirect influence on the general

molecular phenotype of adipose tissue. Defining the genetic

influence on both gene expression and CpG methylation in

abdominal adipose tissue can help towards characterising this type

of tissue and understanding molecular pathways associated with

obesity.

Supporting Information

Figure S1 Association of CpG methylation with meta-
bolic syndrome and other phenotypes. A: Association of

methylation score with metabolic syndrome case/control status

(linear regression). B: Association of methylation score with BMI.

C: Association of methylation score with gender, chromosomes 1–

22 only D: Association of methylation score with age. Grey bands

correspond to 95% confidence intervals calculated by 1000

permutations of sample labels.

(TIF)

Figure S2 Association of mRNA expression with CpG
methylation. A: Analysis of 27,718 DMH probes for association

with downstream transcripts expression levels B: Analysis of 149

DMH probes with meQTLs for association with downstream

transcripts expression levels. C: -log10(p) values plotted against

DMH probe set-TSS distance. D: Analysis 149 meQTL SNPs (top

hit for each probe) for association with mRNA transcript
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expression levels. Grey bands correspond to 95% confidence

intervals.

(TIF)

Table S1 Full list of significant SNP-DMH probe set pairs.

(XLS)

Table S2 All primary meQTL hits tested for replication.

(XLS)

Table S3 Gene set enrichment analysis results.

(XLS)

Table S4 500 kb cis-meQTL analysis of 19 probes in the

replication study.

(XLS)

Table S5 Conditional analysis between top meQTL SNPs found

in the primary and replication study.

(XLS)

Supplementary Information S1 Supplementary methods
and power calculations.

(PDF)
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