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Abstract

Brain-computer interface (BCI) technology aims to help individuals with disability to control assistive devices and reanimate
paralyzed limbs. Our study investigated the feasibility of an electrocorticography (ECoG)-based BCI system in an individual
with tetraplegia caused by C4 level spinal cord injury. ECoG signals were recorded with a high-density 32-electrode grid
over the hand and arm area of the left sensorimotor cortex. The participant was able to voluntarily activate his sensorimotor
cortex using attempted movements, with distinct cortical activity patterns for different segments of the upper limb. Using
only brain activity, the participant achieved robust control of 3D cursor movement. The ECoG grid was explanted 28 days
post-implantation with no adverse effect. This study demonstrates that ECoG signals recorded from the sensorimotor cortex
can be used for real-time device control in paralyzed individuals.
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Introduction

Brain-computer interface (BCI) technology aims to establish a

direct link for transmitting information between the brain and

external devices [1–4]. It has the potential to improve the quality

of life for individuals with disability as it may offer a natural and

rich control interface for assistive devices [5–11]. Key criteria to

realize a clinically-viable BCI device include the ability to record

neural activity with high spatial and temporal resolution, reliability

for long-term use with substantial functional benefit, minimal

invasiveness, and the potential to operate autonomously. Electro-

corticography (ECoG) measures cortical field potentials using

electrodes placed on the surface of the brain, and used carefully,

can satisfy each of these criteria [12–14]. Work with patients

undergoing clinical brain mapping, e.g. for seizure or pain

treatment, has demonstrated that BCI control signals can be

extracted from ECoG [7,12,15–20]. The current study investigat-

ed the feasibility of an ECoG-based BCI system in an individual

with tetraplegia caused by spinal cord injury. A high-density

ECoG grid was implanted subdurally over this individual’s

sensorimotor cortex for 28 days, during which the individual

was trained to control 2D and 3D cursor movement using ECoG

signals.

Materials and Methods

Ethics Statement
This study was approved by the Institutional Review Board at

the University of Pittsburgh and followed all guidelines for human

subject research. Written informed consent was obtained before

initiating any research procedures (Text S1, Supplementary Note

1). The individuals in this manuscript have given written informed

consent (as outlined in PLOS consent form) to publish these case

details and videos.

Study Participant
The participant was a 30-year-old right-handed male with

tetraplegia caused by a complete C4 level spinal cord injury [21]
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seven years prior to the experiment. The participant had no

volitional arm or hand movement.

High-Density ECoG Grid
The custom ECoG grid (PMT Corp, Chanhassen, MN USA)

was composed of a silicone sheet (2 cm64 cm in size, 1 mm thick)

and 32 platinum disc electrodes with 28 recording electrodes

facing the brain and 4 ground and reference electrodes facing the

dura (Fig. 1A). Electrodes were either 2 or 3 mm in diameter and

were spaced 4 mm apart. Platinum lead wires from all electrodes

formed two 60 cm long leads with 32 standard ring connectors for

ECoG recording.

Presurgical and Surgical Procedures
Six weeks prior to the implantation surgery, functional magnetic

resonance imaging (fMRI) was conducted while the participant

watched videos of hand and arm movement and attempted the

same movement in order to localize the left sensorimotor cortex

Figure 1. High-density ECoG grid location and ECoG signal modulation during motor screening tasks. (a) Layout of the recording (gray,
brain-facing), reference (red, dura-facing), and ground (green, dura-facing) electrodes. (b) ECoG electrode location mapped to a 3D rendering of the
participant’s brain. Red dots represent ECoG electrodes, and Electrodes 1 and 32 are labeled to indicate grid orientation. The black arrow indicates the
central sulcus (CS) of the left hemisphere. (c) Modulation of ECoG signals by attempted hand opening/closing (left column) and elbow flexion/
extension (right column) for Channel 4 (top row) and Channel 7 (bottom row). These four time-frequency plots show data averaged over 24 trials.
Black sinusoidal curves overlaid on all plots represent the normalized instructed joint angles. Time 0 is the onset of visual cues (hand fully-open,
elbow fully-extended). Color represents pseudo z-scores, indicating changes from baseline condition, and color axes of all plots have the same range.
Red and blue colors indicate increases and decreases in spectral power, respectively. High-gamma band (70–110 Hz) powers increased for Channels 4
and 7 during attempted hand and elbow movements, respectively. Also, for both channels, the high-gamma band power differed between
attempted hand and elbow movements. (d) Cortical activity patterns across all 28 recording electrodes during attempted hand and elbow
movements represented by 70–110 Hz band power over the 10-second movement time averaged across 24 trials. The color bars represent pseudo z-
scores. Cortical activity patterns differed between hand and elbow movements.
doi:10.1371/journal.pone.0055344.g001
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and guide the grid placement. The participant also went through

standard presurgical screening including physical examination,

blood and urine analysis, and chest x-ray. On Day 0 (August 25,

2011), the ECoG grid was implanted subdurally over the hand and

arm areas of left sensorimotor cortex (Fig. 1B) (Text S1,

Supplementary Note 2). Two leads of the ECoG grid were

tunneled subcutaneously to the chest to pass through the skin

below the left clavicle. A sterile dressing covered the exit site, and

the leads were physically connected to the neural recording system

during experiment sessions. The participant returned home after

an overnight hospital stay, with testing commencing on Day 2

post-op. On Day 28, the grid was explanted following the U.S.

Food and Drug Administration regulation. Electrode locations on

the subject’s brain surface were determined using post-operative

head x-ray and computed tomography (CT) images along with

coordinates of exposed electrodes recorded by the surgical

navigation system (Brainlab AG, Feldkirchen, Germany) during

the grid implantation surgery (Text S1, Supplementary Note 3)

[22,23].

Motor Screening and BCI Tasks
Over the 28-day period, the study testing occurred at the

participant’s home (12 days) and the research lab (9 days), and the

participant had six days to rest and conduct personal activities.

The participant performed multiple motor screening and BCI

tasks (Fig. S1). First, during the motor screening task, the

participant observed right hand and arm movements of a virtual

character on an LCD screen and simultaneously attempted the

same movement. Second, the spectral power in the 70–110 Hz

frequency band of each ECoG electrode was shown in real-time to

the participant, allowing the researchers and participant to find

specific attempted movements that consistently elicited distinct

patterns of cortical activity across the grid. Third, the participant

controlled a cursor in a virtual environment in real-time using

ECoG signals performing two- and three-dimensional (2D and

3D) center-out tasks [8,24]. The timeout periods were 5 and

7 seconds for the 2D and 3D tasks, respectively, and a trial was

considered successful once the cursor touched the target. The

cursor center was constrained within the workspace boundary.

The virtual environment used a Cartesian coordinate system

where the x-axis pointed to the subject’s right, the y-axis pointed

upward, and the z-axis pointed toward the subject. On Day 27, the

participant attempted to control 3D movement of a dexterous

prosthetic arm (The Applied Physics Laboratory, Laurel, MD,

USA) _ENREF_43 [25] to reach for objects and other individuals’

hands. This was intended only as a brief demonstration since a

more extensive study was precluded by the limited duration of the

protocol.

Neural Signal Decoding and BCI Control Schemes
Twenty-eight channels of ECoG signals were recorded with the

g.USBamp biosignal amplifier (Guger Technologies, Austria).

Craniux, LabVIEW-based open-source BCI software developed in

our laboratory, was used for signal processing, neural decoding,

and experiment control [26]. The g.USBamp sampled raw ECoG

signals at 1200 Hz and sent a block of real-time ECoG data to the

Craniux software every 33 ms, leading to a system update rate of

30 Hz. For convenience of discussion, we define an ECoG signal

feature as the power of one 10 Hz wide frequency band from one

channel. The Craniux software calculated the power in twenty

10 Hz wide frequency bands between 0 to 200 Hz for each of 28

channels in real-time using 25th order auto-regressive (AR)

estimation [27] over a 300 ms window every 33 ms. For each

channel, the spectral power for each frequency band was then log-

transformed and converted to a pseudo z-score (i.e. instantaneous

feature activity) using the mean and standard deviation of the same

band’s log-transformed power during the baseline resting condi-

tion [28,29]. Real-time BCI control used 448 ECoG signal

features (sixteen 10 Hz wide bands between 40–200 Hz) encom-

passing the gamma and high-gamma bands across 28 channels.

The neural decoder of the BCI system transformed instanta-

neous feature activities (f) into 2D or 3D cursor velocity control

signals (v̂v) in real-time based on Equation 1. The decoding weights

(W) were calculated using the optimal linear estimator (OLE)

algorithm [30,31] based on Equation 2 (Text S1, Supplementary

Note 5):

v̂v~fW ð1Þ

W~FzV ð2Þ

where V and F are matrices representing the desired cursor

movement direction and associated feature activities. The desired

cursor movement direction is the unit vector pointing from the

cursor to the target. The superscript ‘‘+’’ denotes the pseudo-

inverse of a matrix.

In order for the participant to systematically modulate cortical

activity for BCI control, the participant was instructed to associate

attempted movement with desired cursor movement direction

(Fig. S2). For controlling 2D cursor movement within the x-y

plane, the participant associated four attempted flexion/extension

movement patterns with four cursor movement directions: thumb

(left), elbow (right), both thumb and elbow (up), and no thumb or

elbow movement (down) (Text S1, Supplementary Note 6).

Additionally, for the 3D task, attempted wrist flexion and

extension were used to move the cursor in the positive z-direction,

and the cursor moved in the negative z-direction when there was

no attempted wrist movement. By instructing the participant to

associate desired cursor movement direction with attempted

thumb, elbow, and wrist movements, we aimed to link desired

cursor movement direction to ECoG signal modulation, which

would enable the OLE decoder to directly extract cursor velocity

control signals from ECoG (Fig. S2 and Equations 1 and 2).

This control scheme enabled cursor movement in arbitrary

directions, at variable velocity in all three dimensions simulta-

neously (Text S1, Supplementary Note 6).

This study used a ‘‘turn-taking adaptation’’ scheme (Fig. S2)

where the adapting agent was alternated between the human

subject and the neural decoder of the BCI system (Text S1,

Supplementary Note 7). During the human adaptation period, the

neural decoding weights were held constant while the participant

adjusted his attempted movements and control strategy based on

real-time feedback of brain-controlled cursor movement to

improve control accuracy, i.e. ‘‘the subject learns the decoder’’.

During the computer adaptation period, the participant was

instructed to perform the same attempted movements repetitively

without correcting for errors in the brain-controlled cursor

movement. Meanwhile, neural decoding weights were updated

periodically, i.e. ‘‘the decoder learns the subject’’ [32]. Further-

more, the transition from 2D to 3D control was conducted by

gradually blending decoding weights calculated for the 3D task

into the existing 2D decoding weights using the turn-taking

adaptation scheme. Finally, computer assist was used to facilitate

brain control training. The assistance attenuated the component of

the cursor control signal perpendicular to the vector from the

cursor to the target by an experimenter-controlled percentage [9].

Electrocorticographic Brain Interface
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At 100% computer assist, the cursor will stay on a straight

trajectory from the center of the screen toward the target. At 0%

computer assist, there will be no constraint on cursor movement in

any direction. Such computer assist was used to reduce task

difficulty during initial BCI training.

Characterization of Brain-Controlled Cursor Movement
The distance ratio was calculated as the actual trajectory length

divided by the length of an ideal straight-line path [33]. Movement

error was calculated as the average perpendicular distance

between the cursor and the ideal straight-line path normalized

by the distance between the center and the peripheral targets [33].

Additional metrics were time to target and percent time at the

boundary, i.e. the number of time points when the cursor center

was touching the workspace boundary divided by the total number

of time points during a certain number of brain control trials. The

chance success rate was determined by reconstructing cursor

movement from recorded ECoG signals and randomly-shuffled

decoding weights; this process was repeated 10,000 times. The 3D

task was performed in 80-trial blocks with resting between blocks;

data from the last block were used to characterize the final 3D

cursor control performance.

Results

Cortical Activity during Motor Screening
ECoG signals recorded from the left sensorimotor cortex

demonstrated modulation when the participant observed and

simultaneously attempted right hand and arm movement even

though the participant was unable to generate overt movements.

The most prominent modulation patterns were an increase in

power for the gamma and high-gamma bands and a decrease in

power for the sensorimotor rhythm (10–30 Hz), both tightly

coupled in time with the movement (Fig. 1C). Attempted

movements of hand and elbow elicited distinct cortical activity

patterns, with the centers of activation being lateral for attempted

hand movement and medial for attempted elbow movement on

the ECoG grid (Fig. 1D).

Cortical Control of 2D Cursor Movement
Figure 2 shows the success rate and computer assist level over

11 days of consistent BCI training (Days 15 to 25). Using the

turn-taking adaptation scheme, the participant learned to control

2D cursor movement within a week, achieving a success rate of

87% over 176 trials in the last 2D cursor control session (Movies
S1 and S2; Chance success rate: 8%). Figure S3 shows the

evolution of neural decoding weights over multiple decoder

adaptation sessions. While decoding weights were adapted for

optimal performance on Days 19, 20, and 24, decoding weights

used for real-time BCI control were relatively constant between

sessions. Figure 3A shows the time-frequency plots of one sample

ECoG channel (Channel 4) with strong high-gamma band power

increase for the left, upper-left, and top targets. This pattern was as

expected since the high-gamma band of this channel increased in

power for attempted thumb movement (Fig. 1C) and we

instructed the participant to attempt thumb movement to drive

the cursor leftward and upward. ECoG signal modulation by

desired cursor movement direction enabled the OLE decoder to

extract cursor velocity control signals from ECoG feature

activities. Figure 3B shows trajectories of brain-controlled 2D

cursor movement. The distance ratio was 1.5360.66 (mean 6

standard deviation), and the movement error was 0.1760.14. The

cursor’s percent time at the boundary was 0%. The time to target

was 2.0560.92 sec for successful trials.

Transition from 2D to 3D Control
Three-dimensional brain control was built upon 2D control

using the following two techniques: 1) For the participant, the

existing association between attempted movement and 2D cursor

movement direction previously learned was preserved while a

third attempted movement, wrist flexion/extension, was added to

control cursor movement along the z-axis; 2) For the neural

decoder, existing decoding weights for the first two dimensions

were also preserved, allowing the decoding weights for the third

dimension to be gradually blended into the existing set of 2D

weights (Fig. S3). The participant started with a success rate of

approximately 10%, and reached a success rate of 48% after two

rounds of neural decoder adaptation spanning two days. Then,

with fixed neural decoding weights, the participant rapidly

improved his performance, achieving a final success rate of 80%

for 3D cursor control (Fig. 3C–F; Movies S3 and S4; Chance

success rate: 0.4%). The distance ratio and movement error were

2.8561.25 and 0.4060.28, respectively, and the cursor’s percent

time at the boundary was 2% for the last block of 80 trials. The

Figure 2. BCI control performance across days. BCI control success rate and computer assist level over time. Success rates are shown for 16-trial
blocks of brain control. Alternating white and light-purple zones mark individual days, while vertical green lines mark the occurrence of neural
decoder adaptation. Days 16, 22, and 23 were planned days off.
doi:10.1371/journal.pone.0055344.g002
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time to target for the successful trials was 2.9461.16 sec. On Day

27, the participant controlled 3D movement of a prosthetic arm

successfully hitting physical targets (Movies S5 and S6) without

computer assist, and he commented that this was the first time that

he reached out to another individual in seven years.

Discussion

ECoG has a spatial scale in-between that of electroencepha-

lography (EEG) and intracortical microelectrode recording, and it

has been suggested that ECoG might offer a good balance

between spatiotemporal resolution, invasiveness and signal stabil-

ity for brain-computer interface applications [3,4,7,13]. The

current study investigated the feasibility of an ECoG-based BCI

in an individual with tetraplegia caused by a complete cervical

spinal cord injury seven years prior to grid implantation, and there

are two main findings. First, the participant activated neuronal

ensembles in the motor and somatosensory cortices with a

coordinated spatiotemporal pattern during attempted movement.

Spatially, the somatotopic organization was generally preserved, in

agreement with previous fMRI studies in individuals with chronic

spinal cord injury [34,35]. Temporally, high-gamma band activity,

which presumably represents local neuronal population activity

[36,37], is tightly coupled to attempted arm and hand movement,

similar to previous reports of motor cortical neuronal activity

recorded with intracortical microelectrode arrays in individuals

with tetraplegia [5,38,39]. Second, the participant was able to

volitionally modulate sensorimotor cortical activity to achieve

high-fidelity real-time BCI control of 2D and 3D cursor

movement. Previous studies have demonstrated the feasibility of

ECoG-based BCI in able-bodied individuals undergoing presur-

gical brain mapping [7,12,40]. The key feature of the current

study is that an individual with chronic paralysis was able to

Figure 3. ECoG signal modulation and brain-controlled cursor movement trajectories during 2D (176 trials) and 3D (80 trials)
cursor movements. (a) Time-frequency plots of Channel 4 for eight targets during 2D cursor movement. Time 0 represents target onset, and the
color represents change from baseline. (b) Cursor trajectories averaged over successful trials (center plot) and individual trajectories of all trials during
2D cursor movement. (c, d) Cursor trajectories averaged over successful trials for the front and back targets, respectively, for 3D cursor movement. (e,
f) The 95% confidence intervals of cursor trajectories of all trials for the front and back targets, respectively, for 3D cursor movement. For all trajectory
plots in this figure, the circles/spheres show the effective target size, i.e. their radii equal the sum of radii of the target and cursor balls. The unit of the
x, y, and z-axes is in percentage of the workspace.
doi:10.1371/journal.pone.0055344.g003
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achieve reliable BCI control in a very short period after ECoG

grid implantation.

We believe that several factors critically contributed to the

achievement of 2D and 3D cursor control in the current study.

First, we used a high-density ECoG grid (Fig. 1A), which offered

better spatial resolution than traditional ECoG grids [17,41].

Second, the current study utilized an online decoder which, given

a large set of ECoG signal features, determined the optimal

weighting of each feature [16,42,43]. This is different from earlier

ECoG-based BCI studies where real-time BCI control used only a

small number of signal features [4,7]. Third, our participant

progressed very rapidly from 2D to 3D control (Fig. 2) because of

the unique BCI training scheme, which gradually blended in

control for the third dimension while maintaining control for the

first two dimensions (Fig. S3). This is a potentially useful scheme

for incrementally building up control of devices with high degrees

of freedom. Fourth, we used the turn-taking adaptation scheme,

which alternated the adapting agent between the human subject

and the neural decoder for each testing block (,80 trials) (Fig.
S2). While one agent was adapting, the other was kept fixed,

providing the adapting agent enough time and data to learn its

counterpart’s behavior. This scheme helped the human subject

and the neural decoder quickly converge to an effective set of

decoding weights. Last, every day, the BCI experiment started

with the previous day’s final decoding weights. This scheme is

different from previous intracortical microelectrode studies where

decoding weights were re-calibrated daily due to changes in the

neuronal population. Our scheme likely facilitated incremental

learning by the participant from day to day [44].

The current study observed significant high-gamma band

activation at the post-central gyrus, with ECoG signals recorded

from this area contributing substantially to BCI control as evident

in the decoding weights shown in Figure S3. Activation of both

pre and post-central gyri is often observed in individuals with

chronic spinal cord injury during attempted movement [34,35,45]

and in able-bodied individuals during motor imagery in the

absence of overt movement [40,46–48]. Such somatosensory

cortical activity may represent efferent copies of motor control

signals [46,49,50], or reflect engagement of sensory imagery [45].

The current study was limited by its short duration, the fact that

a single participant was tested, and the relatively arbitrary

association between attempted movement and desired cursor

movement direction. It is worth investigating BCI control schemes

based on natural neural representation of intended movement in

ECoG signals [16,42,43]. Furthermore, it is possible that better

grid placement maximizing coverage of the motor cortex could

have improved performance. Nevertheless, we have demonstrated

that the somatosensory cortex can be used to generate BCI control

signals, an intriguing finding worthy of further study [51]. Finally,

the current study did not measure head and neck electromyog-

raphy (EMG). However, we are confident that EMG did not

contribute to BCI control because the control signals were derived

from high-gamma band activities that were typically over the 40–

180 Hz range, temporally associated with a decrease in sensori-

motor rhythm, and spatially consistent with the somatotopic

organization of motor cortex (Fig. 1). This agrees with movement-

related neurophysiological responses reported by previous studies

[52–54].

This study demonstrated that an individual with tetraplegia

could reliably operate an ECoG-based BCI system to control 3D

cursor movement. The promise of this technology lies in the

likelihood that the recorded signals will remain robust over the

long-term [16,55,56] with relatively low hardware and software

requirements. Further development of decoding algorithms, BCI

user training approaches, and fully-implantable devices with

telemetry [57] will allow for longer studies with more participants,

which will facilitate the translation of this technology to clinical

use.

Supporting Information

Text S1 Supplementary notes and references.
(PDF)

Figure S1 Overall progression of the BCI experiments.
(TIFF)

Figure S2 BCI control and neural decoder training
schemes. (a) The participant was instructed to associate desired

cursor movement direction with attempted hand, wrist and/or

elbow movement to generate cortical activity modulated by

desired cursor movement direction. An OLE decoder was trained

to directly predict desired cursor velocity signals from cortical

activity. (b) Flow of a typical BCI experiment session and the turn-

taking adaptation scheme. There were 16 trials per block. Each

experiment session always started with the last set of decoding

weights used in the previous session.

(TIFF)

Figure S3 Evolution of neural decoding weights over
seven decoder adaptation sessions as represented by the
vertical green lines in Figure 2. This includes the addition of

decoding weights for the third dimension starting from the 5th

adaptation session. The decoding weight plots are arranged

according to the electrode layout on the ECoG grid (Fig. 1A). For

each plot, the top, middle, and bottom panels show weights of 40–

200 Hz bands for the x (right), y (up), and z (toward the subject)

dimensions. Within each panel/dimension, weights for the 40-Hz

band are at the top, and weights for the 200-Hz band are at the

bottom. The dashed lines separate the plots into seven neural

decoder adaptation sessions, with each session containing five

blocks of neural decoder adaptation. The final decoding weights

were generally consistent with what would be expected based on

cortical activity patterns during the motor screening task and the

association between attempted movements and desired cursor

movement directions. For example, ECoG signal features from

electrodes located above the hand area, such as Channels 4 and 5,

had negative weights for cursor movement along the x-axis,

meaning that when these features were active they would drive the

cursor to the left.

(TIFF)

Movie S1 Brain control of 2D cursor movement. This

movie was recorded when the participant controlled 2D cursor

movement using ECoG signals in our research lab. It shows a

block of 16 consecutive trials, and the participant hit all 16 targets

successfully. Re-published with permission from UPMC (Univer-

sity of Pittsburgh Medical Center).

(MP4)

Movie S2 Brain control of 2D cursor movement (recon-
structed). This movie is a replay of brain-controlled 2D cursor

movement reconstructed from the saved cursor position data for

the 16 trials shown in Movie S1.

(MP4)

Movie S3 Brain control of 3D cursor movement. This

movie was recorded when the participant controlled 3D cursor

movement using ECoG signals in our research lab. It shows a

block of 16 consecutive trials, and the participant hit 15 out of 16

targets successfully. The 3D virtual environment was rendered on

a 3D LCD TV, and the participant wore a pair of 3D glasses to
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view the 3D scene. Re-published with permission from UPMC

(University of Pittsburgh Medical Center).

(MP4)

Movie S4 Brain control of 3D cursor movement (recon-
structed). This movie is a replay of brain-controlled 3D cursor

movement reconstructed from the saved cursor position data for

the 16 trials shown in Movie S3.

(MP4)

Movie S5 Brain control of 3D prosthetic arm movement
(hitting targets). This movie was recorded when the participant

controlled the 3D movement of a prosthetic arm to hit physical

targets in our research lab.

(MP4)

Movie S6 Brain control of 3D prosthetic arm movement
(touching hands). This movie was recorded when the

participant controlled the 3D movement of a prosthetic arm to

touch hands with another individual in our research lab. Re-

published with permission from UPMC (University of Pittsburgh

Medical Center).

(MP4)
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