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Abstract

‘‘Robustness’’, the network ability to maintain systematic performance in the face of intrinsic perturbations, and ‘‘response
ability’’, the network ability to respond to external stimuli or transduce them to downstream regulators, are two important
complementary system characteristics that must be considered when discussing biological system performance. However,
at present, these features cannot be measured directly for all network components in an experimental procedure. Therefore,
we present two novel systematic measurement methods – Network Robustness Measurement (NRM) and Response Ability
Measurement (RAM) – to estimate the network robustness and response ability of a gene regulatory network (GRN) or
protein-protein interaction network (PPIN) based on the dynamic network model constructed by the corresponding
microarray data. We demonstrate the efficiency of NRM and RAM in analyzing GRNs and PPINs, respectively, by considering
aging- and cancer-related datasets. When applied to an aging-related GRN, our results indicate that such a network is more
robust to intrinsic perturbations in the elderly than in the young, and is therefore less responsive to external stimuli. When
applied to a PPIN of fibroblast and HeLa cells, we observe that the network of cancer cells possesses better robustness than
that of normal cells. Moreover, the response ability of the PPIN calculated from the cancer cells is lower than that from
healthy cells. Accordingly, we propose that generalized NRM and RAM methods represent effective tools for exploring and
analyzing different systems-level dynamical properties via microarray data. Making use of such properties can facilitate
prediction and application, providing useful information on clinical strategy, drug target selection, and design specifications
of synthetic biology from a systems biology perspective.
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Introduction

Biological processes such as development, differentiation,

tumorigenesis, and aging are increasingly being described in

terms of temporal ordering of highly orchestrated transcriptional

programs [1]. Although these processes can be analyzed using

high-throughput gene expression microarray data at multiple

time points, the computational methods available only identify

which genes vary significantly, and how they vary across some

or all of the time points measured [2,3]. Despite the

technological limitations, system-level properties such as robust-

ness increasingly attracted serious scientific interest in systems

biology. Robustness – the ability to maintain continued

performance against intrinsic perturbations and uncertainty –

has long been recognized as a key property of living systems

and has been reviewed extensively elsewhere [4,5]. Moreover,

this fundamental and ubiquitously observed system-level phe-

nomenon cannot be understood by focusing on the individual

components, even though individual components of a system

may or may not be robust themselves.

The term robustness is encountered widely in very different

scientific fields, from engineering and control theory to dynamic

systems [5] and biology [6,7,8]. It is important to note that

robustness describes a relative property, not an absolute one,

because no system can maintain stability in all functions when it

encounters a perturbation. In other words, robustness is not

immutable. If a system cannot alter itself, it cannot adapt to

intrinsic perturbations or changes to its internal environment.

Most robust biological systems possess a set of certain

mechanisms to achieve this: in particular, both positive and

negative feedback control are ubiquitous. Negative feedback, the

main mechanism used to achieve a robust response to

perturbations, promotes the restoration of an initial condition

of a system. Positive feedback amplifies sensitivity to changes

and perturbations, a necessary feature for a cell that needs to

make decisions robustly [9,10]. Therefore, feedback control is

coupled with redundancy to enhance robustness. A signal

transduction system is an additional network system that can be

considered: it also plays an important role in responding to

upstream signals or transducing environmental stimuli to

downstream transcription factors in intracellular communication.

From the signal energy point of view, the network response

ability can be considered as system gain. Nevertheless, there is

still no systematic method to measure the response ability of a

network system at present.

In the last decade, with advances in experimental techniques,

many researchers have utilized high-throughput data from DNA

microarrays, yeast two-hybrid assays, co-immunoprecipitation,

and ChIP-on-chip to study many kinds of bio-molecular

networks. To this end, these kinds of data are often integrated
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to construct gene regulatory networks (GRNs) and protein-

protein interaction networks (PPINs). These molecular networks

have been demonstrated to have great potential for revealing

the basic functions and essential mechanisms of various

biological phenomena; this is accomplished by understanding

biological systems on a system-wide, holistic level rather than in

terms of their individual components [11].

Although the concept of robustness tradeoffs has been proposed

[12], few studies have quantitatively and systematically calculated

the robustness and response ability of a network system. The

qualitative notion that a biological system that is highly tolerant to

perturbations is robust is largely uncontested; yet, there is no

generally accepted approach using microarray data that can

analyze robustness quantitatively and systematically from a

systems biology perspective. Moreover, in a GRN or PPIN, each

component can transduce the effects of external stimuli down-

stream, but the response ability of the network from the global

point of view cannot be experimentally measured for all network

components. To solve this problem, we propose estimating the

response ability of a GRN or PPIN via microarray data

computations. In this study, we present a new measurement

method, the Network Robustness Measurement (NRM), to

estimate the relative robustness of a GRN or PPIN at different

time stages of biological processes and under distinct biological

conditions, checking their ability to tolerate intrinsic perturbations

and uncertainties based on Lyapunov stability theory. Moreover,

we also propose another novel measurement method, the

Response Ability Measurement (RAM), to estimate the ability of

a network system to respond to and then transduce external stimuli

to downstream regulators.

In addition, we illustrate our approaches by applying them to

two distinct network systems: a GRN and a PPIN. First, the NRM

and RAM are applied to an aging-related GRN constructed via

microarray data. We show that a GRN is more robust to intrinsic

perturbations in the elderly than in the young, and as such

possesses poor response ability to external stimuli. We then applied

these methods to PPINs of fibroblast and HeLa cells under

oxidative stress conditions. We observe that the PPIN of cancer

cells possesses better robustness than that of normal cells under

oxidative stress. Moreover, the response ability of the PPIN

calculated from the cancer cells is lower than that of the healthy

cells. Since ‘‘robustness’’ and ‘‘response ability’’ are two comple-

mentary antagonistic characteristics of a network system in the

context of system performance (i.e., a more robust system will be

less responsive, and vice versa [13]), measurements of these

systematic properties could provide verification of the system

characteristics of biological networks constructed from microarray

data. Measuring the properties of such trade-offs between the

robustness and response ability of a network system may provide

insight into systemic changes that occur under different biological

conditions. These generalized NRM and RAM methods represent

effective tools for exploring and analyzing different systems-level

dynamical properties. Making use of such properties can facilitate

not only predictions and applications in gene therapy and drug

target selection from the perspective of systems biology, but also

help calibrate design specifications of robust synthetic biological

networks for practical applications [14,15,16]. Therefore, the

proposed methods may have great potential for analyzing and

designing the next generation of synthetic GRNs or PPINs.

Materials and Methods

Since we provide test cases of measuring the robustness and

response ability of a GRN and a PPIN in the Results section, here

we will focus on how to construct dynamic system models for a

GRN and a PPIN from microarray data and other databases.

Then using these dynamic models, we will propose two methods to

measure their robustness and response ability.

Constructing a Dynamic Model for a Gene Regulatory
Network (GRN)

It is assumed that the network of genes of interest consists of Z

genes, and the time-series microarray data used for constructing

the GRN contains K time points. In order to take into account the

delayed effects of molecular trafficking and cellular signal

transduction, the GRN can be represented by the following linear

discrete-time dynamic system:

X ½tz1�~AX ½t�zHzn½t�

A~

a1,1 a1,2 � � � � � � a1,Z

a2,1 P

..

.
ai,j

..

.
P

aZ,1 aZ,Z

2
66666666664

3
77777777775

,H~

h1

h2

..

.

..

.

hZ

2
6666666664

3
7777777775

ð1Þ

where the state vector X ½t�~½x1½t�x2½t� . . . xz½t��T stands for the

discrete-time mRNA expression levels of total Z genes at times

t~1 � � �K . The system matrix A denotes the gene interactions in

the gene network: i.e., ai,j denotes the interaction from gene j to

gene i when i=j,Vi,j~1 � � �Z; the constant vector H represents

the basal level: i.e., hi denotes the basal level of the ith gene. n[t]

denotes the model residue and measurement noise. If the GRN is

nonlinear, then the linear gene network in (1) can be considered as

the linearized system at the operation point of interest and H will

be related to the location of the operation point of linearization:

e.g., for a nonlinear gene network X ½tz1�~f (X ½t�)zn½t� for

some nonlinear interaction f (X ), the linearized gene network

around equilibrium point of interest X0 can be represented as

X ½tz1�~AX ½t�zCzDf (X )zn½t�, where A~
Lf (X ½t�)
LX ½t� DX ½t�~X0

and

Df (X ) denotes the high order non-linear term. In this case,

H~CzDf (X ) represents the basal level of the linearized system

at this equilibrium point of interest. A case of a more general,

nonlinear GRN will be discussed later.

Remark 1:

The network parameters of system matrix A and basal level H of

GRN in (1) are identified by microarray data via recursive least

square estimation method [17] in Text S1.

In the following subsections, we would like to measure

robustness and response ability of a PPIN for a given biological

phenomenon. Therefore, we need to construct the rough PPIN by

data mining and then prune it using microarray data to obtain the

refined PPIN for the phenomenon.

Constructing the Rough Protein-protein Interaction
Network (PPIN)

In order to obtain a PPIN for a biological phenomenon and

investigate its network robustness and response ability, we first

need to reconstruct the rough PPIN from microarray data and

protein-protein interaction (PPI) information: in this case, our data

was taken from STRING (Search Tool for the Retrieval of

Interacting Genes/Proteins). STRING, a database of known and

Measuring Network Robustness and Response Ability
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predicted protein interactions, comprises direct (physical) and

indirect (functional) associations mined from four sources: genomic

context, high-throughput experiments, conserved co-expression

and previous knowledge. The database currently covers 5,214,234

proteins from 1,133 organisms. As a preliminary measure, we first

perform a Bonferroni correction to select those genes with

significantly differential expression (the corrected P-value = 0.01/

n, where n = 25,802 denotes the number of genes) from microarray

data for inclusion in the target pool. Bonferroni correction, one of

the strictest and most conservative multiple testing corrections,

adjusts the individual P-value for each gene to keep the overall

error rate less than or equal to the user-specified P-cutoff value

when performing a statistical test on a group of genes [18,19].

Subsequently, this target pool and the PPI database (STRING) are

integrated to indicate the possible PPIs between two selected

candidates, and the rough PPIN can then be constructed based on

the selected candidates in the protein pool and the potential PPIs

among them.

Pruning the Rough PPIN via a Dynamic Model
Modern large-scale studies of PPIs permit the development of

protein interaction networks, but all large-scale experiments and

databases to date have returned high rates of false-positives [20].

Previous evidence has clearly demonstrated that utilizing multiple

functional databases not only allows for better identification of

PPIs, but also leads to better prediction of the function of unknown

proteins [21]. The rough PPIN constructed here comprehensively

details the protein interactions possible under all kinds of biological

situations and experimental conditions. As such, these interactions

must be further narrowed down by microarray data so that they

represent only the protein interactions appropriate for the

conditions under consideration. Therefore, we use a dynamic

PPI model and model order selection method, Akaike Information

Criterion (AIC) [22], together to prune the rough PPIN using time

series microarray data, deleting false positive PPIs in our PPIN.

Here, a dynamic PPI model for a rough PPIN can be represented

as follows:

vi½tz1�~aiivi½t�z
XQ

j~1

bijvj ½t�zkizvi½t� ð2Þ

where vi½t� denotes the expression profile of the ith target

protein vi½t� in the rough PPIN at time point t; vi[t] denotes the

model residue and measurement noise; aii denotes the influence

of the ith target protein on itself at the next time point; bij

denotes the individual interactive ability of protein j in the

rough PPIN with target protein vi½t� when i=j, Vi,j~1 � � �Q and

the basal interaction ki represents unknown PPIs or other

influences such as mRNA-protein interactions or protein

synthesis. Therefore, the PPIN with dynamic protein interac-

tions in (2) can be represented by

W ½tz1�~RW ½t�zKzV ½t�

where

W ½t�~

v1½t�

v2½t�

..

.

..

.

vQ½t�

2
66666666664

3
77777777775

R~

a11 b12 � � � b1(Q{1) b1Q

b21 a22 b2Q

..

.
P

..

.

b(Q{1)1 P b(Q{1)Q

bQ1 bQ2 � � � bQ(Q{1) aQQ

2
6666666664

3
7777777775

,

K~

k1

k2

..

.

..

.

kQ

2
6666666664

3
7777777775

, V ½t�~

v1½t�

v2½t�

..

.

..

.

vQ½t�

2
66666666664

3
77777777775

ð3Þ

where R denotes the interactive matrix of the PPIN, K denotes the

basal levels of the PPIs, and V[t] denotes the modeling and

measurement errors.

Remark 2:

The protein interaction model in (2) can be used to describe any

target protein in the rough PPIN. Therefore, the whole PPIN can

be described by the protein interaction model described in (3).

In equation (2), vi½t� denotes the expression profile of the ith

target protein at time point t, which is estimated from mRNA

expression profiles through the following translational sigmoid

function [23]:

vi½t�~fi(xi½t�)~
1

1z exp½{r(xi½t�){Mi)�
ð4Þ

where r denotes the transition rate of the sigmoid function, Mi

denotes the mean mRNA expression level of the corresponding

protein i, and xi½t� represents the corresponding mRNA expression

profiles of the i-th target gene in the rough PPIN.

Remark 3:

The network parameters R and K of PPIN in (3) are also

identified by the recursive least square estimation method [17].

Further a system order detection method, i.e. Akaike Information

Criterion (AIC), is employed to detect the number Q of protein

interactions in interactive matrix R in (3), i.e. use AIC to prune the

false positive protein interactions in R (see Text S2).

Network Robustness Measurement (NRM) of a Dynamic
Network System

After constructing the dynamic models of the GRN in (1) and

the PPIN in (3) from time series microarray data by the recursive

least square estimation method as detailed above, we will measure

their network robustness based on these dynamic models. The

steady state Xs of the dynamic system in (1) is obtained as:

Measuring Network Robustness and Response Ability
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Xs~AXszH, or Xs~(I{A){1H ð5Þ

To simplify analysis of ‘‘robustness’’ of the steady state

(phenotype) of the GRN, the origin of the dynamic system is

shifted to the steady state Xs(i.e., X ½t�~ ~XX ½t�zXs), achieving the

following shifted dynamic system by subtracting equation (1) from

equation (5) [24].

~XX ½tz1�~A ~XX ½t� ð6Þ

Therefore, the robustness of the network’s steady state becomes

the robustness of the shifted network in (6) at the origin ~XX ½t�:0: In

the shifted dynamic system in (6), if the eigenvalues of A are all

inside the unit circle DZDƒ1 in the complex Z domain, then
~XX ½t�?0, and X ½t�?Xs, or approaches the steady state asymptot-

ically: that is, the phenotype will still be maintained after a small

perturbation ~XX ½t�. Since robustness of the dynamic system in (1) at

the steady state Xs is equivalent to robustness of the dynamic

system in (6) at the origin ~XX ½t�:0,the shifted dynamic system in (6)

will simplify the robustness analysis procedure of a network system

[24,25].

Remark 4:

The steady state Ws of the PPIN in (3) is obtained as:

Ws~RWszK , or Ws~(I{R){1K

The origin of the dynamic PPIN is shifted to the steady state Ws

(i.e., W ½t�~ ~WW ½t�zWs), achieving the following shifted dynamic

system [24].

~WW ½tz1�~R ~WW ½t� ð7Þ

Therefore, the robustness of the PPIN phenotype becomes the

robustness of the above shifted PPIN at the origin ~WW ½t�:0: We

then use this shifted PPIN in (7) to estimate its robustness and

response ability in the same way as the GRN in (6) by following the

same network robustness measurement (NRM) and response

ability measurement (RAM) methods. Bearing this in mind, we

only discuss the NRM and RAM of the GRN in (6). The

measurements of NRM and RAM of a PPIN follow the same

procedure.

The robustness of the shifted network in (6) is a measure of its

ability to tolerate intrinsic molecular-level perturbation [13]. If the

linear network system suffers from these kinds of perturbations,

whether due to process noise, thermal fluctuations or genetic

mutations, the interactive matrix A is perturbed as A(1zg), where

g denotes the ratio of intrinsic perturbation, and the corresponding

additional system perturbation DA~gA [13]. Then the network

system with intrinsic perturbation considerations factored in can

be represented by:

~XX tz1½ �~A(1zg) ~XX t½ � ð8Þ

A higher g value means more intrinsic perturbations, and the

larger the g value that a network can tolerate, the greater

robustness the network possesses. Since state-dependent intrinsic

perturbations can influence the stability of a network system, we

must further discuss the robustness of the perturbative network

system in (8). According to quadratic stability theory [25,26], if the

Lyapunov equation of energy function for the perturbative

network system in (8) is chosen as V ~XX t½ �
� �

~ ~XX T t½ �P ~XX t½ � for a

positive symmetric matrix P~PT
w0, then the system in (8) is

quadratically stable if DV ( ~XX t½ �)~V ~XX tz1½ �
� �

{V ~XX t½ �
� �

ƒ0: that

is, if the energy of the GRN is not increased by intrinsic

perturbations. Based on this idea, we are able to obtain the

following robust stability principle for a GRN of interest that is

subject to intrinsic perturbations.

Proposition 1: Suppose a network system suffers from intrinsic

perturbations as described in (8). The perturbative network is

robustly stable if the following inequality has a positive definite

solution P~PT
w0:

A(1zg)½ �T P A(1zg)½ �ƒP ð9Þ

Proof: See Text S3.

Remark 5:

(i) If a network system is free of intrinsic perturbations as in (6)

(i.e., g~0), the stable condition is reduced to the following

matrix inequality, AT PAƒP, which has a positive definite

solution Pw0 [13]. In order to guarantee the stability of a

perturbation-free network system, eigenvalues of the system

interaction matrix A should be inside the unit circle DZDƒ1 in

the Z complex domain: i.e., AT Av1. From (9), it can be seen

that when g is increased gradually, eigenvalues of system

interactive matrix A of the perturbation system in (8) should

be nearer the origin of the complex domain Z than those

from the perturbation-free system in (6) in order to tolerate

more intrinsic perturbation g. Some eigenvalues of system

interactive matrix A near the unit circle are more easily

perturbed outside the unit circle by intrinsic fluctuations,

making the perturbative network system unstable. Therefore,

the distance between eigenvalue locations of A to the unit

circle represents a measurement of robustness for a linear

network system.

(ii) Based on the above analysis, the robustness go of our network

system is the maximum perturbation tolerance allowed by

the network, and it can be measured by solving the following

constrained optimization:

go~ max g

subject to Pw0 and (9)
ð10Þ

i.e., the maximum perturbation ratio go tolerable by the

network system while maintaining stability. The constrained

optimization problem in (10) can be solved by increasing g
until no positive solution Pw0 exists in (9): i.e., to the highest

possible g without violating the robust stability in (9). A

positive definite solution Pw0 in (9) can be easily obtained by

using the Linear Matrix Inequality (LMI) Toolbox of Matlab.

We can solve the above constrained optimization problem to

measure the robustness of the network system simply by increasing

g until no positive definite solution Pw0 can be found in (9), and

then the maximal perturbation go tolerated by the network system

represents the robustness under intrinsic perturbations. Hence, we

Measuring Network Robustness and Response Ability
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are able to obtain the relative robustnesses of network systems we

would like to investigate under many different biological circum-

stances. When comparing go for each network, the higher the

value of go, the greater the robustness estimate for its respective

network.

Response Ability Measurement (RAM) of a Dynamic
Network System

In this subsection, we turn to how to estimate the response

ability of a network system to external stimuli after its robustness

has been calculated. Assuming a network system responds to

external stimuli U t½ �, which might include upstream regulatory

signals and external signals from factors such as carcinogens,

oxidative stress and ambient pro-inflammatory molecules, the

dynamic network (6) is then modified as follows [27].

~XX tz1½ �~A ~XX t½ �zU t½ �

Y t½ �~C ~XX t½ �
ð11Þ

where U t½ �~½u1½t�u2½t� . . . uZ½t��T represents external stimuli and

Y t½ � denotes the output signal responses of the network system of

interest. For example, if the output signal response of all genes

within the network system is analyzed, then C~I , an identity

matrix. If only the response of the last gene to U t½ � is analyzed, the

Figure 1. Flowchart of the proposed methods to estimate network robustness and response ability. This flowchart delineates the
process used to construct the gene regulatory network (GRN) and protein-protein interaction network (PPIN), and the subsequent estimation of
network robustness and response ability by the NRM and RAM methods, respectively. The flow chart on the left represents the Case 1 study analysis
of the GRN; the flow chart on the right represents the Case 2 study, where methods are applied to a PPIN. [AIC-Akaike Information Criterion].
doi:10.1371/journal.pone.0055230.g001
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matrix will be C~

0 � � � � � � 0

..

.
P

..

.

..

.
0 0

0 � � � 0 1

2
6664

3
7775: i.e., all elements of C are

zero except for the last element.

In a network system, each component may amplify or attenuate

the effect of external stimuli when communicating downstream.

The effect of input signals U t½ � on output signals Y ½t� is less than

or equal to a positive value d, if the following inequality [25,26]:

P?
t~0

Y T ½t�Y ½t�

P?
t~0

UT t½ �U t½ �
ƒd2

or
X?
t~0

Y T ½t�Y ½t�ƒd2
X?
t~0

UT t½ �U t½ �

ð12Þ

holds for all possible bounded input signals U ½t�=0 and ~XX ½0�~0.

The physical meaning attributable to (12) is that the effect of all

possible external stimuli U ½t� on Y ½t� is less than or equal to d2

from the energy point of view: i.e., d denotes the upper bound of

the effect of U ½t� on Y ½t�. If ~XX ½0�=0, then inequality (12) should

be modified as the following [25,26]:

X?
t~0

Y T ½t�Y ½t�ƒ ~XX T ½0�P ~XX ½0�zd2
X?
t~0

UT t½ �U t½ � ð13Þ

to account for the effect of ~XX ½0� on Y ½t�. do, the smallest upper

bound of d in (12), is called the ‘‘network response ability’’ of the

system to all bounded stimulus signals U ½t�. From do, we obtain a

more systematic insight into the ability of a network to respond to

external stimuli, which is useful when considering signal

transduction or intracellular communication. Via this method,

we can measure and compare network response abilities do of

various network systems under different biological conditions and

states.

Proposition 2: The response of the network system in (11) has an

upper bound d in (12), if there exists a positive definite P~PT
w0

solution to the following linear matrix inequality (LMI) [28]:

AT PAzCT C{P AT P

PA P{d2I

� �
ƒ0 ð14Þ

i.e., if the above LMI holds for some Pw0, then the effect of U t½ �
on Y ½t� must be less than or equal to d: i.e., (12) or (13) hold for the

network system in (11).

Proof: See Text S4.

Remark 6:

(i) The response ability doof a network system to external stimuli

can be obtained by minimizing its upper bound d, achieved

by solving the following constrained optimization problem:

do~ min
P

d

subject to dw0,Pw0, and (14)
ð15Þ

This constrained optimization can be solved by decreasing the

upper bound d in (12) until no Pw0 exists in (14) using Matlab

LMI toolbox [27].

(ii) do, the smallest upper bound of d in (12), is called the network

response ability of a network system to external stimuli. If

do
v1, it means external stimuli are attenuated (buffered) by

the network system; if do
w1, external stimuli are amplified.

(iii) Since the output/input signal energy ratio (i.e., the response)

in (12) or (13) is considered for all possible external stimuli,

the measure of network response ability in (14) and (15) is

dependent more on system matrix A than on the external

stimuli. This is analogous to the way a lowpass filter is

dependent more upon the characteristics of the filter than on

noise. Therefore, it is possible to measure the network

response ability of a network system from its system

characteristics without knowledge of what the external

stimuli are, with the caveat that these signals must be

bounded. The system matrix A can be estimated from time-

series microarray data as in the previous subsections.

Therefore, employing the Matlab LMI toolbox, we can use

(15) to measure network response abilities using microarray

data under different specific experimental conditions.

Extension of Network Robustness and Response ability
Measurements to Nonlinear Network Systems

Suppose the GRN or PPIN could be constructed by microarray

data for the following nonlinear network system:

X ½tz1�~f (X ½t�) ð16Þ

Suppose we are interested in the phenomenon around the

equilibrium point Xe– i.e., Xe~f (Xe) – and let ~XX ½t�~X ½t�{Xe.

Then, we get the shifted nonlinear network system as:

~XX ½tz1�~f ( ~XX ½t�zXe){f (Xe) ¼D ~ff ( ~XX ½t�) ð17Þ

In this system, ~XX ½t�:0 is the equilibrium point of interest.

Suppose the nonlinear network in (17) could be globally linearized

as described in [27] for all ~XX ½t�~X ½t�{Xe as:

L~ff ( ~XX ½t�)
LX ½t� D ~XX ½t� [V ð18Þ

where V[Rnxn denotes the system parameter set of these globally

linearized systems. Suppose V could be described by a list of its

vertices via the following convex hull:

V[Co(A0A1 � � �Am) ð19Þ

By the global linearization technique described in [27], all the

globally linearized systems in V of the nonlinear system in (16) or

(17) could be interpolated by the m linear system
~XX ½tz1�~Ai ~XX ½t�,i~1,2, � � �m at the vertices of convex hull of

the polytope:
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~XX ½tz1�~~ff ( ~XX ½t�)~
Xm

i~1

hi( ~XX )Ai
~XX ½t� ð20Þ

where the interpolation functions hi( ~XX ), i~1, � � �m have the

following properties:

0ƒhi( ~XX )ƒ1,
Xm

i~1

hi( ~XX )~1 ð21Þ

i.e., the trajectory of the nonlinear system in (16) or (17) could be

interpolated by the trajectories of m linear systems in (20) via the

nonlinear interpolation functions hi( ~XX ), i~1, � � �m
Suppose the nonlinear network system suffers from the

following intrinsic perturbations:

~XX ½tz1�~
Xm

i~1

hi( ~XX )Ai(1zg) ~XX ½t� ð22Þ

Based on the robust stability principle, we deduce the following.

Proposition 3: Suppose the nonlinear network system suffers from

intrinsic perturbations as in (22). The perturbative nonlinear

network system is robustly stable if the following LMIs have a

positive definition P~PT
w0 :

½Ai(1zg)�T P½Ai(1zg)�ƒP, for i~1,2, � � �m ð23Þ

Proof: See Text S5.

The physical meaning of the LMIs in (23) is that the

perturbation g is tolerable within all linearized network systems.

Therefore, based on the global linearization method, the

robustness go of the nonlinear network system in (16) can be

measured by solving the following constrained optimization:

go~ max g

subject to Pw0 and LMIs in (23)
ð24Þ

i.e., the maximum perturbation go, which is tolerable by all

linearized network systems, is a global extension of (15) from a

linear network system to a nonlinear network system.

Figure 2. Multiple regulatory loops of a GRN associated with aging-related pathophysiological phenotypes. This network includes the
following sixteen genes: FOXOs, NF-kB, p53, SIRT1, HIC1, Mdm2, Arf1, PTEN, PI3K, Akt, JNK, IKKs, IkB, BTG3, E2F1, and ATM. Blue arrows indicate
activation; blunt red arrows indicate suppression.
doi:10.1371/journal.pone.0055230.g002
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Similarly, if the shifted nonlinear network system with output

Y ½t� suffers from external stimuli as in:

~XX ½tz1�~~ff ( ~XX ½t�)zU ½t�

Y ½t�~C ~XX ½t�
ð25Þ

then, based on the global linearization technique detailed in [27],

the shifted nonlinear network system of (25) with output Y ½t� can

be represented by the following interpolated system:

~XX ½tz1�~
Xm

i~1

hi( ~XX )Ai
~XX ½t�zU ½t�

Y ½t�~C ~XX ½t�
ð26Þ

Then we get the following result:

Proposition 4: The network response of the nonlinear network

system in (26) has an upper bound d in (12), if there exists a

positive definite solution P~PT
w0 to the following LMIs:

Ai
T PAizCT C{P Ai

T P

PAi P{d2I

" #
ƒ0, i~1,2, � � �m ð27Þ

i.e., if the above LMIs hold for some Pw0, then the effect of U ½t�
on Y ½t� must be less than or equal to d: That is, (12) or (13) holds

for the nonlinear network system (25) or (26).

Proof: See Text S6.

Therefore, based on the global linearization method, the

network response ability do of the nonlinear network system in

(25) or (26) can be measured by solving the following constrained

optimization:

do~ min
P

d

subject to dw0, Pw0, and the LMIs in (27)
ð28Þ

Remark 7:

If the nonlinear network system is constructed by the system

identification method from microarray or other experimental data,

then the network robustness go and response ability do can be

measured by (24) and (28), respectively. However, to approximate

the nonlinear network system via interpolation, these systems must

undergo the global linearization in (18) and (19) to find the vertices

of the convex hull of the polytope in order to interpolate this

linearized system at the vertices (as in the system in (26)). This is

generally a very complex task. If we only want to measure the

network robustness and response ability of a network system near

an equilibrium point (e.g. phenotype), then the measurement

methods for network robustness and response ability by (10) and

(15) based on a linearized system at its equilibrium point are

sufficient. In the following section, we give several practical

examples based on linear network systems for measuring the

network robustness and response ability of a GRN and PPIN

constructed by time-series microarray data.

Results/Discussion

In this paper, we have presented two novel computational

methods, Network Robustness Measurement (NRM) and Re-

sponse Ability Measurement (RAM), which estimate the robust-

ness and response ability of network systems using time-series

microarray data. Briefly, the basic methodologies consist of

integrating time-series microarray data with either experimental

literature or protein-protein interaction information to construct

the dynamic system of a gene regulatory network (GRN) or

protein-protein interaction network (PPIN). Both of these systems

correspond to real phenomena in living organisms and can be used

to further evaluate network robustness and response ability (see

Figure 1). Details have been described in the preceding Materials

& Methods section. These methods are equally applicable to and

useful for GRNs and PPINs. In order to demonstrate the potential

applications of NRM and RAM for estimating system character-

istics exhibited under different biological conditions, we elaborate

on the usage of the above methods in two separate cases and

explain the analytic results within the following subsection.

Case 1: Estimating the Robustness and Response Ability
of a Gene Regulatory Network (GRN) at Different Stages
of Life

Aging is an extremely complex and system-level process, and it

has attracted much attention in medical research, especially since

chronic diseases are quite prevalent in elderly populations. These

illnesses may be the result of both gene mutations that lead to

intrinsic perturbations and environmental changes that stimulate

signaling in the body. In addition, aging may result in reduced

responses to environmental stimuli such as carcinogens, oxidative

stress, and pro-inflammatory molecules. Therefore, measuring

robustness to intrinsic perturbations and response ability to

external stimuli of an aging-related GRN could provide key

insights into the system-level mechanisms involved in aging.

given GRN, the more robust the GRN is.

Construction of a gene regulatory network associated with

aging-related pathophysiological phenotypes. Combing da-

ta from several references in the literature, we construct a GRN with

multiple regulatory loops that are highly associated with aging-

related pathophysiological phenotypes, consisting of the following

sixteen genes: FOXOs, NF-kB, p53, SIRT1, HIC1, Mdm2, Arf1,

PTEN, PI3K, Akt, JNK, IKKs, IkB, BTG3, E2F, and ATM

(Figure 2). All genes of interest are critical for regulating cellular

functions related to longevity, including detoxification of reactive

oxygen species (ROS), cell cycle arrest, repair of damaged DNA,

apoptosis, and pro-inflammation, as age increases [29,30]. The

GRN can be represented by the linear discrete-time dynamic system

shown in Table 1.

In this case, we want to estimate the network robustness and

response ability of this GRN, and also to investigate whether they

might be altered with increasing age. Furthermore, those altered

system characteristics associated with a high incidence of aging-

related disease, such as cancer, are prime targets for discussion.

The high-throughput microarray data assembled in [31], which

details the age-related effects on gene expression in the thymus and

spinal cord dissected from male C57BL/6 mice of ages 1, 6, 16,

and 24 months, are used as our gene expression profiles. In order

to make this data more useful for identifying the system

parameters of our dynamic GRN, we first rescale the original

gene expression time profiles. For young mice, those aged 17d and

19d are categorized as 3-week-old animals; 40d, 43d, and 44d as

6-week-old animals; 174d, 180d, and 186d as 25-week-old

animals; and, 193d and 194d as 28-week-old animals. For aged

mice, those aged 476d, 481d, and 485d are categorized as 68-

week-old animals; 495d and 498d as 71-week-old animals; 714d

and 719d as 102-week-old animals; and, 730d, 733d, and 743d as

105-week-old animals. (All animals had been placed on ad libitum

diets.) All of the above expression level data are calculated in log2
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scale, and then the Z-score method is used to normalize the gene

array expression data as has been previously described [32].

We construct multiple regulatory loops of a GRN containing

sixteen genes (Figure 2) associated with aging-related patho-

physiological phenotypes. Using the recursive least square

parameter estimation method [17] and the microarray data

from the thymus and spinal cord [31], a dynamic model of the

sixteen genes within the GRN in equation (1) is constructed

(shown in Table 1) with estimated parameters at different stages

of life (summarized in Table 2). With equation (1) and Tables 1–

2, we calculate sixteen eigenvalues for interactive matrix A at

the young and aged stages. The result (Figure 3) shows some

eigenvalues of the interactive matrix A clustered together in

similar regions near the point Z = 1, demonstrating that some

modes of the same network will more readily approach some

constant steady state than others [12,33].

Estimating network robustness and response ability of

GRNs at different stages of life by NRM and RAM

methods. It has previously been shown that gene networks

associated with aging-related pathophysiological phenotypes suf-

fers from intrinsic perturbations mainly due to noise processes like

molecular fluctuation or genetic mutation. The robustness of the

GRN is defined as its ability to tolerate intrinsic perturbations and

plays a principal role as a fail-safe mechanism during evolutionary

processes [12]. Therefore, comparisons of robustness go for

different GRNs pertaining to young and aged stages may

quantitatively describe their relative ability to tolerate these

intrinsic perturbations. By using our NRM method, we evaluate

the network robustness as shown in Table 3 to represent the

maximum intensity of intrinsic perturbations that the network

system can tolerate. In other words, the higher the go calculated

from a

Concerning the RAM, if a GRN also responds to external

stimuli U ½t�, such as upstream signals or biological molecules

outside the network, as in equation (11), the network response

ability measured should be based on the output/input energy ratio

within a time interval as detailed in equation (12). Supposing the

ratio of the effect of input signals U t½ � on Y ½t� is upper-bounded by

a positive value d, then we can calculate the smallest value do in

equation (12) (i.e., the minimum upper bound), and call it the

‘‘network response ability’’ to external stimuli. This method,

RAM, is based on system gain theory, and incorporates principles

behind the external input signal in system theory perspectives [27].

In general, a GRN with greater robustness always has lower

response ability, and vice versa. This is an inherent characteristic

of physical systems [27]. The trade-off between robustness and

response ability is demonstrably visible in Table 3 and constitutes

secondary proof of our proposed method.

Comparing the GRNs of the thymus and spinal cord data

between the ‘‘young’’ group and the ‘‘aged’’ group, we show that

both tissues evaluated have a higher robustness go value in the

aged group than the young group. These results are shown in

Table 3. The aging-related GRN examined in the first case study

is less robust to intrinsic perturbations in the young group than in

the aged group. In other words, the GRN at the aged stage can

function in spite of the accumulation of DNA damage or genetic

mutations accompanying the aging process. In addition, response

ability (do) of the GRN calculated from the aged group is lower

than that from the young group (Table 3A). In order to tolerate

and survive the accumulated intrinsic perturbations (e.g., genetic

mutations) associated with the increase in age, the elderly GRN

becomes more robust than the young GRN. Therefore, elderly

GRNs are less able to respond to external stimuli or transduce

them downstream. Hence, the response ability protecting organ-

ismal function against external stimuli (e.g., pro-inflammatory

molecules) may become worse in the elderly GRN. To confirm the

power of the proposed methods, the proposed network robustness

and response ability is validated by computer simulation in Figure

S1–S3 in Text S7.

In addition, a more robust GRN could harbor more accumu-

lated genetic mutations, which might provide more evolutionary

paths to other GRN phenotypes via random drift, and even lead to

aging-related diseases like cancers, metabolic disorders, and

arthritis [34,35]. On the other hand, the young aging-related

Table 1. Ordinary differential equations of gene regulatory networks in Figure 2 for sixteen genes associated with aging-related
pathophysiological phenotypes.

Gene Dynamic Equations of Sixteen Genes of Interest

x1 FOXOs x1[t+1] = a1,1x1[t] + a1,4x4[t] + a1,6x6[t] + a1,10x10[t] + a1,11x11[t] + a1,12x12[t] + h1

x2 NF-kB x2[t+1] = a2,1x1[t] + a2,2x2[t] + a2,4x4[t] + a2,9x9[t] + a2,13x13[t] + h2

x3 p53 x3[t+1] = a3,3x3[t] + a3,4x4[t] + a3,6x6[t] + a3,16x16[t] + h3

x4 Sirt1 x4[t+1] = a4,4x4[t] + a4,5x5[t] + a4,15x15[t] + h4

x5 HIC1 x5[t+1] = a5,3x3[t] + a5,5x5[t] + h5

x6 Mdm2 x6[t+1] = a6,2x2[t] + a6,3x3[t] + a6,6x6[t] + a6,7x7[t] + a6,10x10[t] + a6,16x16[t] + h6

x7 Arf1 x7[t+1] = a7,3x3[t] + a7,7x7[t] + a7,15x15[t] + h7

x8 PTEN x8[t+1] = a8,3x3[t] + a8,8x8[t] + h8

x9 PI3K x9[t+1] = a9,8x8[t] + a9,9x9[t] + a9,11x11[t] + h9

x10 Akt x10[t+1] = a10,9x9[t] + a10,10x10[t] + a10,11x11[t] + h10

x11 JNK x11[t+1] = a11,2x2[t] + a11,11x11[t] + h11

x12 IKKs x12[t+1] = a12,9x9[t] + a12,12x12[t] + h12

x13 IkB x13[t+1] = a13,12x12[t] + a13,13x13[t] + h13

x14 BTG3 x14[t+1] = a13,3x3[t] + a14,14x14[t] + h14

x15 E2F x15[t+1] = a15,7x7[t] + a15,14x14[t] + a15,15x15[t] + a15,16x16[t] + h15

x16 ATM x16[t+1] = a16,15x15[t] + a16,16x16[t] + h16

doi:10.1371/journal.pone.0055230.t001
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GRN is less robust, with a greater response to external stimuli.

From the above data, we can conclude that the GRNs of the

young group more efficiently respond to external stimuli. These

values show that while the GRN of the young group is less robust

to intrinsic perturbations, external stimuli elicit a strong response

from it, suggesting that gene expression may be readily

reprogrammed to mediate downstream genes or regulators. This

also allows for modulation of gene expression in response to

external stimuli such as exposure to oxidative stress, carcinogens,

and pro-inflammatory molecules.

Case 2: Estimating the Robustness and Response Ability
of a Protein-protein Interaction Network (PPIN) between
Normal and Cancer Cells

Robustness, an intrinsic and systematic property of complex

biological systems, enables living organisms to maintain their

functions in the face of various perturbations to assure their

survival [4,12,36]. Moreover, most genes code for sensors,

actuators, and the complex regulatory networks that control them,

and thus confer robustness to the cell under various challenging

circumstances rather than providing merely the basic functionality

required for survival under a single, ideal environment. Normal as

well as cancer cells utilize the same processes. At present, although

researchers have contended that cancer is a highly robust disease,

and clinical observations suggest that inefficiencies in cancer

therapy may be due to the according drug resistance, a useful

computational method to evaluate the network robustness from

microarray data and compare it between cancer and normal cells

remains lacking. Therefore, in the second case, the NRM method

we have proposed is applied to calculate the PPIN robustness of

HeLa cells versus normal fibroblasts under menadione treatment

(i.e., exposed to oxidative stress) from corresponding microarray

data and protein interaction information. The network response

ability is also evaluated and discussed.

Constructing refined PPINs of normal fibroblast cells and

HeLa cancer cells under menadione treatment. We use

microarray data downloaded from the Gene Expression Omnibus

(GEO) database on the NCBI website in this study to investigate

the network robustness and response ability of a PPIN in normal

cells versus cancer cells under oxidative stress [37]. Normal human

diploid lung fibroblasts and HeLa S3 cervical carcinoma cells are

treated with 10 mM menadione bisulfate for 0.5, 1, 3, 4, 6, 8, 12,

Figure 3. The locations of the sixteen eigenvalues of different tissues at the young and aged stages, respectively. Some eigenvalues
of the interactive matrix A for the thymus (A) and spinal cord (B) are located together at similar regions near the unit circle |Z| = 1.
doi:10.1371/journal.pone.0055230.g003
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24, and 36 hours and 0.5, 1, 2, 4, 8, 12, 24, and 32 hours,

respectively. For the oxidative stress condition, the temporal

responses at several time points over an interval of 24–36 hours are

measured, allowing stress effects to be observed over an interval

longer than a normal cell cycle duration.

As shown in the flowchart in Figure 1, the microarray data are

integrated with database information concerning protein interac-

tions as the input for our proposed method (see Materials &

Methods). The candidate protein interactions are taken from all

experimental conditions in these data to construct the rough PPIN.

To proceed further, the corresponding microarray data are used to

identify the parameters in equation (8) via the recursive least

square estimation method [17], and then to prune down the rough

PPINs based on these identified parameters, thus obtaining the

refined PPINs of both fibroblast and HeLa cells under menadione

treatment via the AIC (shown in Figure 4) [22]. After obtaining the

refined PPINs, we can see there are still 161 candidate proteins

with 371 interactions in the fibroblast PPIN and 222 candidate

proteins with 607 interactions in the HeLa PPIN under oxidative

stress conditions. Furthermore, the respective system interactive

matrices R of the fibroblast and HeLa cell PPINs can be acquired

and then applied to the sequential evaluation of network

robustness by equation (10) and response ability by equation (15).

Different network robustness and response ability

between the PPINs of normal fibroblasts and HeLa cells

both under oxidative stress. We compare the PPINs of

fibroblasts and HeLa cells while both are under an oxidative stress

insult and show that the PPIN of HeLa cells possesses a higher

Table 2. Estimated parameters of gene regulatory networks in Table 1 with sixteen genes in the thymus (A) and spinal cord (B) at
the young and aged stages.

Parameters of Young Stage Parameters of Aged Stage

(A) Thymus a1,1 = 0.407 a1,4 = 0.183 a1,6 = 20.213 a1,10 = 20.031 a1,1 = 0.258 a1,4 = 0.143 a1,6 = 20.023 a1,10 = 20.089

a1,11 = 0.060 a1,12 = 20.408 a2,1 = 0.099 a2,2 = 0.964 a1,11 = 0.033 a1,12 = 20.401 a2,1 = 0.186 a2,2 = 0.525

a2,4 = 20.130 a2,9 = 0.036 a2,13 = 0.126 a3,3 = 0.990 a2,4 = 0.408 a2,9 = 0.182 a2,13 = 20.122 a3,3 = 1.002

a3,4 = 20.071 a3,6 = 20.027 a3,16 = 20.013 a4,4 = 1.050 a3,4 = 0.055 a3,6 = 0.109 a3,16 = 0.100 a4,4 = 0.978

a4,5 = 0.026 a4,15 = 0.004 a5,3 = 20.001 a5,5 = 0.998 a4,5 = 0.036 a4,15 = 0.04 a5,3 = 0.019 a5,5 = 0.978

a6,2 = 0.413 a6,3 = 0.125 a6,6 = 0.424 a6,7 = 0.120 a6,2 = 20.087 a6,3 = 20.008 a6,6 = 0.199 a6,7 = 20.174

a6,10 = 0.200 a6,16 = 0.065 a7,3 = 0.028 a7,7 = 0.937 a6,10 = 0.070 a6,16 = 20.292 a7,3 = 20.093 a7,7 = 1.096

a7,15 = 20.006 a8,3 = 0.008 a8,8 = 1.106 a9,8 = 20.011 a7,15 = 20.107 a8,3 = 0.05 a8,8 = 1.001 a9,8 = 20.027

a9,9 = 0.985 a9,11 = 20.001 a10,9 = 0.009 a10,10 = 1.068 a9,9 = 0.982 a9,11 = 0.014 a10,9 = 20.02 a10,10 = 0.998

a10,11 = 20.024 a11,2 = 0.021 a11,11 = 1.015 a12,9 = 0.012 a10,11 = 0.007 a11,2 = 0.003 a11,11 = 0.994 a12,9 = 20.003

a12,12 = 1.019 a13,12 = 0.009 a13,13 = 0.998 a14,3 = 20.003 a12,12 = 1.028 a13,12 = 0.029 a13,13 = 1.009 a14,3 = 20.092

a14,14 = 1.030 a15,7 = 0.176 a15,14 = 20.0799 a15,15 = 0.964 a14,14 = 0.965 a15,7 = 0.366 a15,14 = 0.253 a15,15 = 0.454

a15,16 = 20.061 a16,15 = 20.010 a16,16 = 1.014 a15,16 = 20.045 a16,15 = 0.025 a16,16 = 0.997

(B) Spinal Cord a1,1 = 0.388 a1,4 = 0.082 a1,6 = 0.004 a1,10 = 20.161 a1,1 = 0.886 a1,4 = 0.044 a1,6 = 0.085 a1,10 = 0.043

a1,11 = 0.001 a1,12 = 20.462 a2,1 = 20.022 a2,2 = 0.920 a1,11 = 20.159 a1,12 = 20.101 a2,1 = 0.186 a2,2 = 0.835

a2,4 = 20.013 a2,9 = 0.120 a2,13 = 20.267 a3,3 = 0.954 a2,4 = 0.069 a2,9 = 0.034 a2,13 = 0.233 a3,3 = 0.869

a3,4 = 0.005 a3,6 = 0.268 a3,16 = 0.051 a4,4 = 0.979 a3,4 = 20.004 a3,6 = 0.003 a3,16 = 20.195 a4,4 = 0.911

a4,5 = 20.043 a4,15 = 0.129 a5,3 = 0.080 a5,5 = 0.974 a4,5 = 0.242 a4,15 = 20.364 a5,3 = 20.044 a5,5 = 0.998

a6,2 = 20.074 a6,3 = 0.084 a6,6 = 0.049 a6,7 = -.0031 a6,2 = 0.140 a6,3 = 20.013 a6,6 = 0.825 a6,7 = 20.289

a6,10 = 20.152 a6,16 = 20.102 a7,3 = 0.187 a7,7 = 1.040 a6,10 = 0.137 a6,16 = 0.045 a7,3 = 0.003 a7,7 = 0.991

a7,15 = 20.157 a8,3 = 0.037 a8,8 = 1.009 a9,8 = 20.006 a7,15 = 20.007 a8,3 = 20.019 a8,8 = 0.998 a9,8 = 20.091

a9,9 = 1.000 a9,11 = 20.008 a10,9 = 0.009 a10,10 = 0.981 a9,9 = 0.816 a9,11 = 0.126 a10,9 = 0.009 a10,10 = 0.980

a10,11 = 0.034 a11,2 = 0.013 a11,11 = 1.033 a12,9 = 0.018 a10,11 = 0.001 a11,2 = 0.004 a11,11 = 0.992 a12,9 = 20.057

a12,12 = 1.023 a13,12 = 20.002 a13,13 = 1.015 a14,3 = 0.596 a12,12 = 0.972 a13,12 = 0.007 a13,13 = 1.011 a14,3 = 20.011

a14,14 = 0.878 a15,7 = 20.064 a15,14 = 0.148 a15,15 = 0.681 a14,14 = 1.002 a15,7 = 20.352 a15,14 = 0.130 a15,15 = 0.667

a15,16 = 0.256 a16,15 = 20.021 a16,16 = 1.009 a15,16 = 20.205 a16,15 = 20.030 a16,16 = 1.009

doi:10.1371/journal.pone.0055230.t002

Table 3. Estimated network robustness (go) and response
ability (do).

(A) Young Aged

Thymus go 0.2233 0.3852

do 1.1770 0.9362

Spinal Cord go 0.2360 0.6417

do 1.1936 0.9073

(B) Fibroblast HeLa

Menadione go 0.1250 1.0016

Treatment do 1.1524 0.6159

Network robustness (go) and response ability (do) of the GRN with sixteen genes
across different tissues at different stages of life are shown in (A). In addition,
the network robustness (go) and response ability (do) of PPINs evaluated in
normal fibroblast and HeLa cancer cells under menadione treatment are
indicated in (B).
doi:10.1371/journal.pone.0055230.t003
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robustness go value than the PPIN of fibroblasts using our NRM

method. These results are shown in Table 3B. The PPIN is more

robust to such perturbation in the cancer cells than in the normal

cells. Moreover, the response ability (do) of the PPIN calculated

from the HeLa cells is lower than that from the fibroblasts

(Table 3B). Therefore, the PPIN of cancer cells is less efficient in

transducing or responding to external stimuli when compared with

that of normal cells. The analytic results support previous

contentions that cancer cells are more robust than normal cells

[38].

Accordingly, compelling evidence has previously suggested that

the level of reactive oxygen species (ROS) is higher in many types

of cancer cells than in their normal counterparts [39,40,41].

Although a moderate increase in ROS can promote cell

proliferation and differentiation, excessive amounts can cause

oxidative damage to DNA, protein, and lipids. However, during

tumorigenesis or advanced malignant transformation, oncogenic

signals can elevate cellular levels of ROS to the extent that

numerous genes are altered, accumulating changes via both

genetic and epigenetic mechanisms [42,43]. Therefore, cancer

cells themselves actively generate high levels of endogenous ROS

and are persistently exposed to them, stimulating cell proliferation

through redox-sensitive transcription factors and promoting anti-

oxidant adaptive mechanisms to minimize oxidative damage

[44,45]. Therefore, the intrinsic oxidative stress generated during

tumor initiation or malignant transformation may exert selective

pressure on the cell population and enrich those capable of stress

adaptation: i.e., cancer cells. These cells that survive oxidative

stress may have adapted mechanisms to counteract the cytotoxic

effects of increased ROS and to promote pathways essential to

cellular survival [45]. All of these alterations confer cellular

resistance and system robustness to subsequent intrinsic or

extrinsic oxidative stress, even at high levels. In clinical cancer

therapy, one chemotherapeutic strategy is to elevate excess cellular

oxidative stress in order to deplete the antioxidant system and

overwhelm the cancer system’s ability to neutralize and eliminate

such insults, inducing apoptosis and destroying the cancer network

system. However, the efficiency of such chemo- or radiotherapy is

still unsatisfactory. Moreover, previous evidence has suggested that

tumors are highly robust and maintain their proliferative potential

against a wide range of anti-cancer therapies. Heterogeneities have

been regarded as a vital property of cancer cells because they

facilitate robustness through redundancy, and so subsystems killed

by chemotherapy can be functionally replaced to ensure tumor

proliferation and survival [38]. Hence, the notion of the PPIN of

HeLa cells having higher robustness, as evaluated by our proposed

NRM method, is consistent with previous contentions and

experimental observations. Utilizing microarray data in system-

level computations, we have sufficiently demonstrated that cancer

cells possess better robustness and less response ability under

oxidative stress when compared with normal cells.

Conclusions
Our proposed methods, NRM and RAM, consist of multiple

analytical steps, from constructing dynamic GRNs and PPINs via

microarray data to estimating network robustness and response

ability based on their dynamic network systems. However, each

individual step can be employed separately, depending on the

specific application in question. For example, in the first step we

select a set of differentially expressed genes in aging (Case 1) or

cancer (Case 2) as our target genes. However, another user could

replace this set of genes with other sets of genes of interest to

facilitate targeted studies over a wide range of issues. In addition,

our proposed methods can evaluate the network robustness and

response ability not only for GRNs (Case 1) but also for PPINs

(Case 2) depending on the needs of the user. The generalized

NRM and RAM methods are effective tools for exploring and

analyzing different systems-level dynamical properties. Making use

of such network properties can facilitate biomedical predictions

and applications, providing useful information for clinical strategy,

drug target selection, and design specifications of synthetic biology

from the perspective of systems biology [10,14,15,16].
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