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Abstract

Informing missing heritability for complex disease will likely require leveraging information across multiple SNPs within a
gene region simultaneously to characterize gene and locus-level contributions to disease phenotypes. To this aim, we
introduce a novel strategy, termed Mixed modeling of Meta-Analysis P-values (MixMAP), that draws on a principled
statistical modeling framework and the vast array of summary data now available from genetic association studies, to test
formally for locus level association. The primary inputs to this approach are: (a) single SNP level p-values for tests of
association; and (b) the mapping of SNPs to genomic regions. The output of MixMAP is comprised of locus level estimates
and tests of association. In application of MixMAP to summary data from the Global Lipids Gene Consortium, we suggest
twelve new loci (PKN, FN1, UGT1A1, PPARG, DMDGH, PPARD, CDK6, VPS13B, GAD2, GAB2, APOH and NPC1) for low-density
lipoprotein cholesterol (LDL-C), a causal risk factor for cardiovascular disease and we also demonstrate the potential utility
of MixMAP in small data settings. Overall, MixMAP offers novel and complementary information as compared to SNP-based
analysis approaches and is straightforward to implement with existing open-source statistical software tools.
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Introduction

Serum lipid levels are established determinants of cardiovascu-

lar disease morbidity with well-described heritability. Indeed,

meta-analysis of data arising from recent genome-wide association

studies has identified common genetic variants in at least 95 loci

associated with low-density lipoprotein cholesterol (LDL-C), high-

density lipoprotein cholesterol (HDL-C), triglycerides (TG) and

total cholesterol (TC) [1]. In practice, selection of statistically

relevant genes or loci, subsequently referred to collectively as loci,

is often based on simple linear regression of single-nucleotide

polymorphisms (SNPs); that is, loci within which there is at least

one SNP that reaches genome-wide significance, defined accord-

ing to a Bonferroni level correction for multiple testing, are

regarded as significantly associated with the trait under study.

While this approach is valid, we conjecture that substantial,

complementary knowledge about association can be acquired by

considering available information on all SNPs within a locus

simultaneously in characterizing association.

In order to address this, we apply a mixed effects modeling

paradigm that uses SNP-level meta-analysis p-values to arrive at

formal analytic characterization of underlying locus-level effects on

complex disease phenotypes. Through application of principled,

well-vetted statistical concepts for valid and reliable inference, this

approach, termed Mixed modeling of Meta- Analysis P-values

(MixMAP), draws strength from available information across all

SNPs within a pre-defined region without requiring first-stage data

reduction. That is, it is not necessary to eliminate redundancy

among SNPs in high linkage disequilibrium (LD) within a locus.

By incorporating all available information about SNPs within a

locus, MixMAP results in increased sensitivity for identifying loci

with multiple SNPs of moderate significance, as evidenced in the

applications described below.

Applications of hierarchical linear and generalized linear

models for analysis of data arising from genetic association studies

have been described previously. Specifically, use of mixed effects

models for family studies is common to account for correlation

arising from familial level clustering where a random effect for

family is included in the model (see for example [2,3]). In the

context of population-based investigations of unrelated individuals,

applications of mixed models are described with random effects for

SNPs, genes and sets of genes (see for example [4–8]). A primary

conceptual distinction between MixMAP and alternative ap-

proaches is that MixMAP uses summary level p-values as the

dependent variable in the hierarchical model rather than raw data,

allowing investigators to leverage existing, publicly-accessible data

resources. MixMAP also provides locus level tests and these are

not limited by an increasing number of SNPs within a gene as
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described in [7]. Technically most similar to MixMAP, the

approach of Wang et al. [8] involves fitting a hierarchical model to

summary level data, specifically x2-statistics from single-SNP tests

of association; however, in addition to differences in model

specification, hypothesis testing within the Wang et al. framework

is based on fixed effects parameters (representing pathway effects)

while MixMAP involves generating prediction intervals for latent

(locus-level) effects.

The purpose of this manuscript is to describe the MixMAP

algorithm and to illustrate its application under a range of

conditions. Application of MixMAP to two independent datasets

of SNP associations with LDL-C, a causal risk factor for

atherosclerotic cardiovascular disease (CVD), reveals that Mix-

MAP offers novel and complementary information as compared to

traditional analysis approaches. Notably, as an analytic tool that

selects loci with multiple moderate to strong signals, and one that

uses single SNP-level summary data (p-values), MixMAP is

intended to serve as an additional analysis framework that

complements, rather than replaces, single-SNP based investiga-

tions. This is further supported by simulation studies suggesting

MixMAP has a higher true positive rate than single-SNP based

analysis in the context of more moderate gene level signals.

MixMAP is straightforward to implement with the open-source

MixMAP package in R (freely-available for download at http://

cran.r-project.org/ and http://people.umass.edu/foulkes/

software.html.).

Results

Summary approach
This section reports the results of applying MixMAP to data

arising from two independent sources: the Global Lipids Gene

Consortium (GLGC) and the Penn Coronary Artery Calcification

(PennCAC). These revealed that application of MixMAP: (1)

supports published LDL-C loci; (2) suggests novel LD-CL genes

and (3) complements a single-SNP testing approach, as described

in detail below. Additionally, the results of simulation studies

designed to characterize the performance of MixMAP under a

range of conditions, also described below, support the concept that

MixMAP serves as a complementary analysis strategy. To begin,

we briefly outline the MixMAP algorithm and the available

GLGC and PennCAC data. Further details are provided in the

Material and Methods.

Summary of the MixMAP algorithm. MixMAP is a

statistical framework that uses the results of single SNP-level

analysis to test formally for locus-level association. The MixMAP

approach is designed to identify loci involving multiple SNPs each

with moderate effects on the trait that may not be detected by

single SNP analysis. Loci that are detected by a single SNP

approach may also be detected by MixMAP if multiple SNPs have

modest association across the locus. The primary inputs to the

MixMAP algorithm are: (a) p-values corresponding to single SNP

tests of association with a trait (e.g. LDL-C); (b) a mapping of SNPs

to genomic regions. Additional SNP and gene-level covariate

information, such as gene size, number of SNPs per Kb, number

of recombinant hotspots per Kb and average linkage disequilib-

rium can be incorporated.

The MixMAP algorithm is summarized as follows, with

additional detail provided below: [Step 1:] Fit a mixed effects

model to inverse normally transformed (ranked) p-values, with

random locus-specific intercepts; [Step 2:] Predict random locus-

specific effects using empirical Bayes estimation; [Step 3:]
Calculate corresponding prediction intervals using a Bonferroni

corrected threshold; and [Step 4:] Report a locus as statistically

meaningful if the upper limit of the prediction interval corre-

sponding to the locus effect is less than 0. In the present

manuscript, we fit the mixed model with random gene-level effects

and provide a post-hoc characterization of loci (genes or groups of

genes) based on the genes that emerge through application of

MixMAP. As more comprehensive information on the relationship

between genes within loci becomes available, the MixMAP

approach is flexible in that an alternative loci-level annotation

can be used as input to the algorithm.

Summary of the GLGC and PennCAC data. The current

applied investigation focuses on loci for LDL-C, an important

causal factor for CVD. Data arising from two independent data-

sets are considered: (1) reported and publicly available meta-

analysis SNP level p-values for association with LDL-C derived

from multiple independent association of approximately 100,000
individuals in the Global Lipids Gene Consortium (GLGC) study

(http://www.broadinstitute.org/mpg/pubs/lipids2010/); and (2)

SNP level p-values for association with LDL-C derived from

analysis of ITMAT-Broad-CARe (IBC) 50K SNP array data in

European ancestry individuals within the Penn Coronary Artery

Calcification (PennCAC) sample [9–11], a relatively small study

(n~2096 Caucasians) that is considered underpowered by itself to

identify the genetic determinants of a complex disease phenotype.

Additional details on this cohort are provided in Supporting

Information S1.

A total of 31827 SNPs in 2960 genes that are common to both

GLGC and PennCAC are used in the current investigation. As an

illustrative example, we chose to focus on the set of SNPs included

on the IBC array which was specifically designed to provide SNP

coverage in putative candidate CVD genes as well as emerging loci

at the time of design [12]. This facilitates (a) focus on a defined set

of SNP within candidate loci and (b) direct comparison of findings

across the two datasets that were examined. Representing the

largest published lipids meta-analysis, GLGC significant SNPs are

treated as the ‘‘gold-standard’’ to which application of MixMAP to

PennCAC is compared. Further validation of the findings resulting

from applying MixMAP to GLGC is not practical presently given

the comprehensive inclusion of all prior genome wide association

studies in GLGC, although this should be feasible in the near

future with published and available larger datasets from on-going

projects such as the GLGC Metabochip project [13]. Instead,

however, we use published literature on human data, animal/

mouse models and cell biology to support our suggested novel

discoveries.

Application of MixMAP in GLGC supports published LDL
loci

Here we describe our interpretation of MixMAP findings in

assigning genes to already established or novel loci in GLGC

analysis. Briefly, we assigned MixMAP identified genes to an

established GLGC locus (marked by SNP in GLGC Table 1 [1]) if

LD r2 values were §0:30 for one or more SNPs in a MixMAP

identified gene and a GLGC top SNP. Additionally, MixMAP

identified genes that were in close physical proximity (v500Kb) to

a GLGC top SNP but did not have strong LD (r2
v0:30) or were

within a wider region with multiple candidate genes (e.g. HLA)

were also assigned to the GLGC established LDL-C locus. The

SNP Annotation and Proxy Search (SNAP) [14] web-based tool

(http://www.broadinstitute.org/mpg/snap/) (for SNPs v500Kb

apart) and the Genome-wide LInkage DisEquilibrium Repository

and Search engine (GLIDERS) [15] (for SNPs w500Kb apart)

were used to determine pairwise LD between interrogated SNPs.

In SNAP, we used the SNP dataset for the 1000 Genomes Pilot 1

[or HapMAP 3 (release 2) build 36 for SNPs not available in 1000

MixMAP Suggests Novel Gene Loci for LDL-C
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Genomes] and population panel ‘‘CEU’’ while in GLIDERS

HapMAP 3 (release 2) build 36 was used.

Analysis of 31827 SNPs in 2960 genes in GLGC data identified

50 genes in 26 loci based on a single SNP signal threshold of

5|10{8 (Table 2). MixMAP detects 36 genes within 21 of these

26 loci based on a Bonferroni corrected gene-level threshold of

0:05=2960~1:69|10{5 (Table 2; Figure 1; Table S1). Thus, of

26 LDL-C loci detected by the single SNP approach in GLGC

GWAS data, 21 were also detected by MixMAP while 5 were not

detected. A comparison of MixMAP detected and not detected

GLGC genes/loci is of some interest to illustrate the strengths and

weaknesses of the approach. First, coverage of the genes at loci

detected by single SNP analysis but not detected by MixMAP is

generally lower than those detected by both approaches (5 vs. 13

median number of SNPs respectively). Second, genes detected by a

single SNP signal but not MixMAP tend to have a higher median

SNP p-value (median = 0.006 for genes with greater than 2 SNPs)

compared to genes detected by both approaches (med-

ian~1:4|10{7) suggesting that the distribution of p-values of

SNPs within genes detected by both approaches is shifted

downwards compared to that of genes detected by a single SNP

only signal (p~2:017|10{4 for two-sided Wilcoxon rank sum

test of difference in medians). Importantly, from a biological

perspective, almost all clinically important LDL-C genes/loci were

detected (e.g., LDLR, APOB, APOE, HMGCR, PCSK9, LPA,

SORT1, ABCG5/8, TRIB1, ABCA1, APOA5-A4-C3-A1 and

CETP) while genes at loci not detected (LDLRAP1, ANGPTL3,

HFE, HPR, TOP1) tended to be less well characterized

functionally and clinically.

Application of MixMAP in GLGC suggests novel LDL
genes

Twelve (12) additional loci are supported by MixMAP that are

not detected using the single SNP signal threshold in the GLGC

data (Table 3 and Figure 1). While the minimum p-values within

index genes at these loci are more moderate than those detected by

the single SNP threshold, in that they do not reach genome-wide

significance, the overall distribution of p-values is lower than

expected under no association (one-sided Wilcoxon signed rank

test that the median of the within gene p-values is greater 0:50,

against the alternative that it is less than 0.50, p~2:44|10{4.)

The median p-value of SNPs within these genes ranges from

5:16|10{4 for a gene with 13 SNPs to 0:194 for a gene with

relatively high coverage of 45 SNPs. Several of the genes in this

group (e.g. PPARG, PPARD and NPC1) are strongly implicated

in lipid and lipoprotein metabolism in human and animal model

systems, as indicated and referenced in the final column of Table 4

(See Supporting Information S2 for more detail).

Application of MixMAP in small sample setting
complements single SNP testing approach

Here we apply MixMAP to a small study (PennCAC) that

generated IBC array SNP data. In terms of independent support,

we treat published GLGC data as the gold standard to which

PennCAC is compared. This analysis includes 31585 (of the

original 31827 SNPs) in 2944 (of 2960) genes that remain after

filtering out those with MAFv0:01 and HWEv10{4. As might

be anticipated for this small sample, no SNPs meet genome-wide

significance (pv5|10{8) or even IBC array-wide significance

(pv3|10{6; an estimated threshold for independent SNP tests

based on simulations [16]) for association with LDL-C using the

single SNP signal approach. However, 8 genes in 7 loci contain

SNPs that are significant at the 1|10{4 level, a previously applied

threshold for suggestive stage 1 evidence of association in IBC

studies [16]. Notably, in PennCAC, none of these 7 loci coincide

with significant MixMAP locus tests at the Bonferroni corrected

threshold of a~0:05=2944~1:70|10{5; however, 2 interrogated

genes (BUD13 and APOA5) in 1 of these 7 loci (APOA5-A4-C3-

A1) do have single SNP signals for LDL-C at the Bonferroni

corrected level in the GLGC study data [1]. The same 2 genes

within this locus had significant MixMAP findings in GLGC data.

In PennCAC, an additional 7 genes in 7 distinct loci are

supported by MixMAP based on the Bonferroni corrected

threshold of a~0:05=2944~1:70|10{5 (Table 4 and Figure 2).

None of these loci have single SNP tests that reach even the

suggestive threshold of pv1|10{4 in PennCAC; however, 2 of

these 7 loci reach genome wide significance based on single SNP

signals in GLGC (SORT1 and LPA). The same 2 loci, as well as

VPS13B had significant MixMAP findings in GLGC data.

Furthermore, 2 loci (IL1R2, VPS13B) have some support for

modulation of lipids in animal models, as indicated in the final

column of Table 3. Thus, in this PennCAC data-set, an illustrative

example for small sample settings, MixMAP may add value to

single SNP based testing in identifying loci for LDL-C and other

complex traits.

Simulation studies support concept of MixMAP as a
complementary strategy to single SNP analysis

In order to evaluate the performance of MixMAP relative to

single SNP analysis, we investigate the ability to detect informative

loci and the likelihood of false findings as functions of gene level

effect size (measured by the shift parameter in a two-component

Gaussian mixture distribution), the number of informative genes

(measured by the number of genes with random effects arising

from a non-zero mean normal prior) and coverage (measured by

the proportion of observed SNPs included in the analysis). Details

of the simulation approach are described in Materials and

Methods below. Simulation results are reported in terms of: the

true positive rate (TPR), defined as the proportion of true signal

genes that are correctly identified; the false discovery rate (FDR),

given by the proportion of selected genes that are not associated

with the trait; and the false positive rate (FPR), defined as the

proportion of truly uninformative genes that are incorrectly

selected as significant. Explicit definitions of TPR, FDR and FPR

are given in Table 1. In all simulation scenarios, the results of

applying MixMAP as well as the single SNP approach are

presented to illustrate the potential gains associated with using

MixMAP as a complementary strategy.

Table 1. Contingency table representing measures of
predictive accuracy for simulations studies.

Actual

Informative
Non-
informative Total

Predicted Informative TP FP (TP + FP)

Non-informative FN TN

Total: m = (TP + FN) (FP + TN) N

Simulation studies report: TPR (sensitivity) = TP/(TP+FN); FPR (1-specificity) =
FP/(FP+TN); and FDR = FP/(TP+FP).
doi:10.1371/journal.pone.0054812.t001
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Figures 3 illustrates the estimated TPR (Sensitivity), FDR and

FPR (1-Specificity) for shift parameters ranging from 1 to 5:5,

where estimates are based on 500 simulations per condition. The

left panel of this figure reports results when the true number of

informative gene is m~48, the number detected in the GLGC

data, while the right panel considers twice as many (m~96)

informative genes. The range of 48 to 96 informative genes was

selected because it is generally consistent with the number of

significantly associated loci in prior reports of complex disease

traits. Notably for the GLGC data, the mean empirical Bayes (EB)

(shrinkage) estimate for the 48 detected genes was {1:23. This is

consistent with a shift parameter of approximately 2.3, as reported

in Figure 4; however, a broader range of shift parameters is

presented in the simulations studies for illustration and general-

izability.

As expected, the TPR increases with increasing shift parameter

values, with MixMAP consistently higher than the single-SNP

based approach for more moderate shift parameters (v5:0). For

both the single-SNP and MixMAP approaches the rate of increase

in the TPR (as a function of the shift parameter) is slower when the

number of informative genes is 96 versus 48, though the difference

is more pronounced in the context of MixMAP. This result is

consistent with underlying statistical theory, as the estimated

variance parameter for the single normal prior distribution of the

random effects will be larger as more genes arise from an

alternative distribution with non-zero mean. As a result, the

corresponding gene-level prediction intervals will be wider and it

will be more difficult to detect informative genes. This result

suggests that as the number of truly informative genes increases,

the added contribution of MixMAP over single SNP analysis is

smaller; however, with as many as 96 informative genes, MixMAP

is detecting a greater percentage of truly informative genes than

the single SNP approach for shift parameters less than 5:0. While

the FDR is consistently low for the single-SNP based approach

regardless of the shift parameter, the FDR for MixMAP is

relatively high (w0:10) for shift parameters less than 2:0. Notably,

the average number of detected genes (across the 500 simulations)

that are truly uninformative (FPs) is relatively constant across shift

parameter values, ranging between 4:1 to 4:5 with a median of

4:2. At the same time, the FDR tends to decrease because the total

number of detected genes (TPs+FPs) is increasing as the shift

parameter gets larger. Finally, the FPR is consistently small for

Figure 1. MixMAP gene-level effects for GLGC data. Points in this Manhattan style plot represent genes with their approximate location on the
x-axis and their corresponding effect estimates on the y-axis for the 2960 genes interrogated in Global Lipids Genetic Consortium (GLGC) summary
data [1]. Genes that are detected by both MixMAP and single SNP analysis are represented by red circles. Unique MixMAP findings for genes that lack
single SNP association signals are highlighted with blue rectangles. Grey and black dots are genes not detected by either the single SNP or MixMAP
approaches. After a conservative multiple testing adjustment, MixMAP identifies 12 loci in GLGC that are not identified by single SNP analysis. *The
absolute value of EB estimates are reported with positive values set to 0. Negative inverse normal transformed p-values that are large in absolute
value correspond to small p-values on the original scale. Corresponding prediction variances and interval limits are provided in Table S1.
doi:10.1371/journal.pone.0054812.g001
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Table 2. MixMAP results in GLGC for IBC array loci with evidence for single SNP LDL-C association.

Position Single SNP p-values

Locus{ Chr Start Stop Gene Name{
Single
SNP*1 MixMAP*2

# of
SNPs Min Median Max

LDLRAP9 1 25568422 25749764 RHCE + - 4 3.10E-10 2.07E-05 1.98E-003

1 25762009 25767440 LDLRAP1 +a - 5 6.38E-05 3.17E-04 3.59E-002

PCSK9 1 55267951 55304223 PCSK9 + + 34 1.93E-28 1.22E-05 0.8714

ANGPTL3 1 62704220 62822181 DOCK7 + - 3 2.16E-17 3.17E-17 8.62E-017

1 62827868 62845701 ANGPTL3 + - 6 1.43E-17 0.18 0.973

SORT1 1 109745416 109745601 PSMA5 + - 2 1.56E-12 – 8.78E-011

1 109590236 109623689 CELSR2 + + 23 9.70E2171 2.31E-29 0.7796

1 109622442 109630036 PSRC1 + + 7 4.93E-164 1.44E-08 0.3477

1 109633806 109650249 MYBPHL + + 10 7.89E-28 1.68E-12 0.07608

1 109652649 109742656 SORT1 + + 28 1.63E-23 1.14E-12 0.8676

APOB 2 21052397 21165196 APOB + + 49 4.48E-114 7.51E-18 0.9401

ABCG5/8 2 43921795 43958429 ABCG8 + + 21 1.73E-47 0.001336 0.9203

2 43893343 43924284 ABCG5 - + 25 8.14E-08 0.07115 0.4809

RAB3GAP1{ 2 136262314 136307216 LCT - + 11 1.13E-05 5.36E-05 0.6756

HMGCR 5 74667257 74693036 HMGCR + + 11 5.12E-45 5.70E-13 0.7414

74711473 74793312 COL4A3BP + + 9 2.90E-35 2.07E-12 0.4902

TIMD4{ 5 155681482 156120506 SGCDc - + 66 3.38E-07 0.113065 0.8402

5 156445860 156469146 HAVCR2c - + 11 0.003134 0.009268 0.5286

HFE 6 26196869 26204727 HFE + - 8 6.07-10 5.92E-03 6.64E-001

HLA 6 32512043 32535726 HLA-DRA + + 13 7.28E-13 0.01082 0.7028

6 31469689 31498389 MICA - + 20 2.60E-06 0.011105 0.6733

6 31644203 31652541 LTA - + 18 0.0002275 0.01893 0.9282

6 32000620 32025519 C2 - + 14 3.97E-05 0.041215 0.4409

6 32899566 32917826 TAP2 - + 25 4.81E-07 0.116 0.8873

LPA 6 160810340 160838285 LPAL2 - + 9 2.38E-06 0.0008496 0.6485

6 160873025 161011583 LPA + + 29 1.36E-15 1.36E-05 0.9738

NPC1L1 7 44519763 44551551 NPC1L1 + + 14 4.93E-11 7.35E-05 0.9729

TRIB1 8 126506812 126573908 TRIB1 + + 49 2.83E-29 7.98E-10 0.9683

ABO 9 135197039 135229220 SURF1 + - 5 1.57E-12 1.60E-02 1.49E-001

9 135121293 135145180 ABO + + 15 4.60E-21 0.0003062 0.01966

ABCA1 9 106585724 107556417 ABCA1 +b + 121 1.12E-07 0.2582 0.979

FADS1-2-3 11 61305135 61361791 FADS1 + + 9 1.75E-21 8.41E-21 0.0006352

11 61353788 61389758 FADS2 + - 6 2.12E-20 5.75E-04 7.88E-001

11 61398293 61420267 FADS3 + - 7 8.80E-10 3.72E-04 6.20E-001

APOA5-A4-C3-A1 11 116024949 116145447 BUD13 + + 6 4.21E-99 4.91E-06 0.05234

11 116152068 116168917 ZNF259 + + 9 1.47E-26 4.01E-09 0.8141

11 116157417 116170289 APOA5 + + 6 2.32E-16 7.16E-09 0.04245

11 116172547 116202948 APOA4 + - 8 1.97E-08 0.069 0.732

11 116212611 116233487 APOA1 + - 12 1.18E-09 4.12E-03 0.839

11 116230513 116233840 APOC3 - - 2 7.93E-03 – 0.665

BRAP{ 12 110368991 110368991 SH2B3 + - 1 1.73E-09 – –

12 110714419 110731337 ALDH2 + + 7 5.42E-09 5.92E-06 0.4789

12 110971201 110971201 C12orf30 + - 1 6.89E-09 – –

HNF1A{ 12 119890027 119923981 TCF1 + + 13 3.61E-15 0.03823 0.437

CETP 16 55548996 55576893 CETP + + 44 1.64E-12 0.003372 0.942

HPR 16 70640155 70671503 HPR + - 6 1.75E-22 1.35E-05 2.84E-001

LDLR 19 10663792 10663792 ILF3c + - 1 2.01E-14 – –

MixMAP Suggests Novel Gene Loci for LDL-C
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Table 3. MixMAP in GLGC identifies IBC array loci that lack single SNP evidence for LDL-C association.

Position Single SNP p-values Supporting

Locus Chr Start Stop Gene Name Single SNP*1 MixMAP*2 # of SNPs Min Median Max Evidence1

PKN2 1 88918822 89073711 PKN2 - + 21 0.003906 0.06777 0.6081 None

FN1 2 215938326 216066837 FN1 - + 44 1.56E-05 0.1254 0.9993 {B [49,50]

UGT1A1 2 234255355 234346384 UGT1A1 - + 20 3.53E-06 0.070225 0.9471 A [18–20]; B [21]

PPARG 3 12309416 12450557 PPARG - + 49 1.35E-05 0.1021 0.9917 Â,B,C[22–25]

DMDGH 5 78331610 78402461 DMGDH - + 19 0.002283 0.08308 0.6427 {A [51]

PPARD 6 35419966 35503982 PPARD - + 45 0.002272 0.1943 0.8976 A [31–34]; B [52]

CDK6 7 92074765 92304241 CDK6 - + 43 0.0006457 0.1083 0.8932 None

VPS13B 8 100143528 100936497 VPS13B - + 30 0.0003567 0.101375 0.861 **A [42]

GAD2 10 26552050 26631994 GAD2 - + 22 0.006998 0.06269 0.3543 None

GAB2 11 77604417 77802894 GAB2 - + 13 1.65E-05 0.0005164 0.9401 None

APOH 17 61629102 61657177 APOH - + 25 2.10E-05 0.1556 0.9846 A [26–29]

NPC1 18 19366772 19415132 NPC1 - + 16 0.014 0.04201 0.3832 A,B,C [35–38]

For the 31827 SNPs in 2960 genes interrogated in Global Lipids Genetic Consortium (GLGC) summary data [1], 12 novel loci are detected by MixMAP alone. The median
p-values for these genes tend to be lower than expected by chance. {No association with plasma lipids but mouse models support role in atherosclerosis; {No
association with plasma lipids but cause of inborn error of choline metabolism; **No association with plasma lipids but implicated in Cohen syndrome in which truncal
obesity is a feature;ˆPPARG is a prominent gene for insulin resistance, type-2 diabetes mellitus, lipodystrophy and obesity; some data link PPARG to lipoprotein

abnormalities; �z indicates corresponding gene detected and – indicates corresponding gene not detected; 1genome wide significant threshold (a~5|10{8);
2Bonferroni correction based on the number of genes (a~0:05=2960); }Based on published literature (see corresponding citations): A: human data; B: mouse/animal
data; and C: cell biology.
doi:10.1371/journal.pone.0054812.t003

Table 2. Cont.

Position Single SNP p-values

Locus{ Chr Start Stop Gene Name{
Single
SNP*1 MixMAP*2

# of
SNPs Min Median Max

19 11024562 11024562 SMARCA4 + - 1 1.74E-25 – –

19 11063306 11103658 LDLR + + 28 4.28E-117 6.98E-10 0.5643

CILP2 19 19185443 19329924 NCAN + + 12 1.42E-19 0.06043 0.5713

19 19324032 19366087 KIAA0892 + - 5 1.78E-15 5.68E-04 3.58E-001

19 19515117 19524850 CILP2 + - 5 5.99E-21 0.506 0.631

19 19526643 19584215 PBX4 + - 7 2.52E-18 6.89E-02 4.81E-001

19 19580840 19619190 EDG4 + - 7 1.02E-17 0.065 0.051

APOE-C1-C2 19 49929652 49944944 BCL3 + + 6 4.21E-99 4.91E-06 0.05234

19 50021054 50021054 BCAM + - 1 6.18E-63 – –

19 50043777 50074877 PVRL2 + + 16 5.11E-67 1.05E-08 0.6158

19 50081014 50119488 APOE + + 8 3.76E-110 2.67E-07 0.9906

19 50100676 50100676 TOMM40 + - 1 3.76E-110 – –

19 50139001 50145079 APOC4 + - 5 1.08E-72 6.08E-03 0.458

19 50139018 50149020 APOC2 + - 7 2.56E-10 0.074 0.652

TOP1{ 20 39225477 39230879 PLCG1 + - 2 5.99E-15 – 0.764

For the 31827 SNPs in 2960 genes interrogated in Global Lipids Genetic Consortium (GLGC) summary data [1], MixMAP detects 36 genes in 21 of 26 loci detected by
single SNP analysis in GLGC. Coverage of genes detected by both approaches is higher, while the median p-value is generally lower, than that of genes detected by
single SNP analysis alone. {Genes were assigned to a locus identified in the GLGC [1] if SNPs in that gene were within 500 Kb of or had linkage disequilibrium (LD)

r2
w0:30 with the top SNP at a GLGC genome wide significant locus. {Genes designated at genome wide significant locus in GLGC were not directly interrogated in IBC

array data; �z indicates corresponding gene detected and – indicates corresponding gene not detected; 1genome wide significant threshold (a~5|10{8); 2Bonferroni
correction based on the number of genes (a~0:05=2960); aGene is significant based on Single SNP approach in [1] (Table 1) but significant SNP is not included in IBC

array under study; bThis gene is significant based on single SNP approach for TC and HDL in GLGC [1] (Table 1) and conditionally associated with LDL (Table 6 Supp);
cLimited LD (r2

v0:3) detected; however, assigned to same locus due to physical proximity (v500Kb) and/or multiple candidate genes in the region. These may
represent signal for LDL-C independent of the established GLGC locus.
doi:10.1371/journal.pone.0054812.t002
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both the single-SNP based and MixMAP approaches across all

shift parameter values with averages (assuming 48 truly informa-

tive genes) of 6:87|10{7 and 0:00144, respectively.

Figure 5 reports the estimated TPR, FDR and FPR when only a

subset of the observed SNPs within each gene is included in the

analysis. The proportion of included SNPs (given on the x-axis)

ranges from 0:2 to 0:8 and each column in this figure represents a

different value of the shift parameter (2.0, 3.0 or 4.0 for columns 1,

2 and 3 respectively). As expected for all values of the shift

parameter, the TPR increases dramatically for MixMAP as the

proportion of SNPs within a gene approaches 100%. This follows

from the dependency of the prediction interval for a gene level

random effect on the number of SNPs within the corresponding

gene. Further the MixMAP FDR is relatively high (w0:10) for low

proportions (v0:50) of included SNPs within each gene, and this

is more pronounced for small shift parameters. Notably, while the

FDR is high, the average number of detected genes (across the 500

simulations) that are truly uninformative (FPs) is relatively constant

across the proportion of SNPs included, ranging between 4:1 to

4:5 with a median of 4:5 for shift parameter of 2:0. Finally, the

FPR is consistently small for both the MixMAP and single-SNP

approaches, with estimated values similar to those reported above

with complete SNP data. These results suggests that the

contribution of MixMAP will be more pronounced when genes

are adequately covered, and application of MixMAP in the

context of substantial missing information on SNPs can result in a

higher proportion of false discoveries (relative to the total number

of discoveries), though the absolute number of false discoveries

remains constant.

Discussion

Despite advances in the genomics of complex traits, only a

portion of heritability for common human diseases has been

elucidated. To date, most common variant discovery approaches

have relied on tests of disease association using one SNP at a time.

Methods that leverage existing datasets and exploit information

across multiple SNPs within a gene region are likely to yield

additional information regarding the locus association with traits.

We developed a novel strategy, MixMAP, that relies on well-vetted

statistical principles and draws from the vast array of summary

data now available from genetic association studies, to test

formally for locus-level association. The primary inputs required

for this approach are single SNP level p-values for tests of trait

association and mapping of SNPs to locus regions while the output

is locus level estimates and tests of association. Application of

MixMAP to SNP summary data for a pre-defined set of genes

within the GLGC meta-analysis of association with LDL-C suggest

that MixMAP can provide substantial value in discovery that is

complementary to single SNP testing approaches in identifying

novel loci for LDL-C. In addition, MixMAP analysis of PennCAC

IBC array and LDL-C data support its application in combination

with traditional SNP testing to enhance the power of discovery in

small dataset settings. Thus, MixMAP provides a novel strategy,

based on established statistical principles, for exploiting existing

and emerging genomic data to provide advances in our

understanding of complex human diseases.

Over the past decade sequencing of the human genome,

definition of common SNP variation in human population and

advances in genotyping technology have provided the possibility to

discover common genetic contributions to complex traits in

human. Indeed, very large scale applications of genome SNP

scans in humans combined with rigorous statistical correction for

Table 4. Top MixMAP and single SNP evidence for IBC array locus association with LDL-C in PennCAC.

Position PennCAC Results Top GLGC Findings Supporting

Locus Chr Start Stop Gene Name Single SNP*1 MixMAP*2 # of SNPsSNP p-value Evidence1

ELA2A 1 15653807 15669301 ELA2A + - 8 rs10927787 0.048 None

RGS7 1 239219450 239268557 RGS7 + - 38 rs628208 0.008 None

MFSD7 4 671940 671940 MFSD7 + - 1 rs9991613 0.671 None

ESR1 6 152167137 152467893 ESR1 + - 149 rs9341052 1.83E-04 A [53–56]

APOA5-A4-C3-A1 11 116024949 116145447 BUD13 + - 16 rs6589565 5.37E-16 A [1]

11 116157417 116170289 APOA5 + - 6 rs2075290 2.32E-16 A [1]

YY1 14 99795191 99809982 YY1 + - 2 rs4905941 0.232 C [57–59]

FEM1B 15 66348570 66371610 FEM1B + - 7 rs16951723 0.352 None

SORT1 1 109590236 109623689 CELSR2 - + 23 rs629301 9.70E-171 A [1]

IL1R2 2 101970201 102010893 IL1R2 - + 37 rs2236927 0.086 A [39]; B [40]; C [41]

TNIP3 4 122257475 122313818 TNIP3 - + 14 rs17051298 0.058 None

FGF2 4 123975987 124033758 FGF2 - + 25 rs308406 0.039 None

LPA 6 160873025 161011583 LPA - + 28 rs10455872 1.36E-15 A [1]

GRM3 7 86106844 86327561 GRM3 - + 32 rs10245069 0.058 None

VPS13B 8 100143528 100936497 VPS13B - + 30 rs7841688 3.57E-04 A{ [42]

For the 31585 SNPs in 2944 genes interrogated in PennCAC, MixMAP identifies 7 loci in PennCAC that are not identified by single SNP analysis. Of these gene/loci, SNPs
in 2 reach genome wide significance in GLGC (SORT1 and LPA) and are also MixMAP significant in GLGC; 1 is MixMAP significant but single SNP non-significant in GLGC
(VPS13B), and 2 have animal model data supporting modulation of lipid metabolism (VPS13B and IL1R2). {No association with plasma lipids but implicated in Cohen

syndrome in which truncal obesity is a feature;�z indicates corresponding gene detected and – indicates corresponding gene not detected; 1 IBC array threshold

(a~5|10{4); 2Bonferroni correction based on the number of genes (a~0:05=2944); }Based on published literature (see corresponding citations): A: human data; B:
mouse/animal data; and C: cell biology.
doi:10.1371/journal.pone.0054812.t004

MixMAP Suggests Novel Gene Loci for LDL-C

PLOS ONE | www.plosone.org 7 February 2013 | Volume 8 | Issue 2 | e54812



multiple testing has led to an explosion of novel validated genomic

discoveries for human diseases with exciting progress in functional

genomics as well as promise for novel therapeutics and disease

prediction. Despite this the majority of heritability for most

complex traits remains to be discovered. Current statistical

approaches for testing single SNP associations with disease are

designed to protect against excess false positives but may be

excessively conservative. Further, single SNP approaches to

analysis do not draw strength from information gained by

assessing simultaneously trends of association across a locus.

These observations suggest that false negatives are a significant

feature of existing association analysis and that additional genomic

discovery should be possible in existing data if appropriate

statistical methodologies are applied. Indeed, recent research

suggests that common variants with individual level effects that are

too small to be considered statistically significant using stringent

significance thresholds account for a substantial proportion of this

missing heritability for complex traits [17]. However, differenti-

ating the true signals within the vast amount of SNP data with

moderate p-values remains an unsolved problem.

We chose to analyze genetic contributors to LDL-C for several

reasons. First, LDL-C is an important complex trait that is causal

for a substantial portion of CVD death and morbidity in our

society. Second, LDL-C has a well described heritability and large

rigorously performed meta-analyses have been performed and

summary data are publicly available (GLGC). Third, although

many loci for LDL-C have been identified through association

studies at pv5|10{8, only a modest portion of its heritability

(approximately 25{30% of genetic variability [1]) has been

defined. Fourth, the basic biology of plasma lipids and LDL-C has

been extensively studied in animal models and cell systems

providing some additional mechanistic reference for any novel

discoveries we might make. We hypothesized that we would

identify novel loci for LDL-C, beyond the existing single SNP-

based discoveries, through application of MixMAP in the large

GLGC meta-analysis summary data. As an informative example,

we chose to focus on the set of SNPs for CVD candidate genes

included on the ITMAT-Broad-CARe (IBC) SNP array which was

designed to provide dense SNP coverage in putative candidate

CVD genes as well as some coverage of emerging loci at the time

of its design [12]. This approach allowed us to focus on a defined

set of SNPs within candidate loci and to perform direct

comparison of findings for this subset of SNPs within the GLGC

data-set to those in the smaller PennCAC sample application.

In GLGC data, MixMAP confirmed association for over 80% of

the loci identified through single SNP testing of the 31827 SNPs in

Figure 2. MixMAP gene-level effects for PennCAC data. Points in this Manhattan style plot represent genes with their approximate location on
the x-axis and their corresponding effect estimates on the y-axis for the 2944 genes interrogated in PennCAC. No individual SNPs met genome wide
or array wide significance in these data. After a conservative multiple testing adjustment, MixMAP identifies 7 loci in PennCAC that are not identified
by single SNP analysis. These MixMap findings are highlighted with blue rectangles. All other genes are represented by grey and black circles. *The
absolute value of EB estimates are reported with positive values set to 0. Negative inverse normal transformed p-values that are large in absolute
value correspond to small p-values on the original scale. Corresponding prediction variances and interval limits are provided in Table S2.
doi:10.1371/journal.pone.0054812.g002
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2960 genes examined. Failure to detect more of the loci established

by single SNP testing should not be surprising because MixMAP

loses information for extremely low individual SNP p-values and is

not designed for finding association when SNP coverage of a gene

region is poor, as is the case for some loci that reached significance

in the GLGC. Further, from a biological perspective, almost all

clinically important LDL-C genes/loci were detected by MixMAP

(e.g., LDLR, APOB, APOE, HMGCR, PCSK9, LPA, SORT1,

ABCG5/8, TRIB1, ABCA1, APOA5-A4-C3-A1 and CETP).

MixMAP, however, did provide evidence for 12 new loci

(corresponding to 12 interrogated genes) for LDL-C in GLGC

data that did not reach genome wide significance in single SNP

testing. This may be an under estimate because we applied

conservative criteria for our selection of novel loci (greater than

500kb from known GLGC locus, pairwise r2
v0:3 with top SNP at

GLGC established LDL-C locus, and outside of region with

multiple candidate genes). For example, interrogated SNPs in C2,

which MixMAP identifies as a gene associated with LDL-C, have

r2
v0:3 with the top GLGC SNP at the HLA locus in Teslovich et

al. [1].

Figure 3. Simulation results for a range of shift parameters and number of informative genes. The true positive rate (TPR, row 1), false
discovery rate (FDR, row 2) and false positive rate (FPR, row 3) are reported (y-axis) for shift parameters ranging from 1 to 5.5 (x-axis), when the ‘‘true’’
(under simulation) number of informative genes is equal to 48 (left hand column) or 96 (right hand column). ‘‘Informative’’ genes are assumed to
have effects that arise from a normal distribution with mean equal to the shift parameter while all remaining gene-level effects (2960 total) arise from
a standard normal distribution. All estimates are based on 500 simulations per condition. *Dots are enlarged to visualize overlapping symbols.
doi:10.1371/journal.pone.0054812.g003
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A more detailed description of the 12 genes/loci detected by

MixMAP alone is provided in Supplementary Materials. For many

of these 12 loci (FN1, UGT1A1, PPARG, GAB2 and APOH) the

GLGC single SNP test p-value provided suggestive evidence of

association (pv1|10{4) and published data in mice and human

support specific biological processes and plausible mechanisms of

association with LDL-C for some of the index genes (UGT1A1,

PPARG and APOH) at these loci [18–29]. Notably, a recent meta-

analysis of IBC array data for plasma lipids across 66,240

individuals also supports an association of APOH with LDL-C and

suggests that UGT1A1 is a locus for total cholesterol levels [30].

For some MixMAP significant loci with suggestive GLGC single

SNP tests, there is no or limited published biology or mechanism

for association with LDL-C (e.g. FN1 and GAB2). On the other

hand, some loci that are significant by MixMAP have quite modest

statistical support in GLGC single SNP analysis, but have strong

published data supporting mechanisms by which genes at the locus

may modulate LDL-C (e.g NPC1 and PPARD) [31–38]. Finally, a

few MixMAP loci have neither suggestive single SNP support from

GLGC nor reported biological plausibility for gene-lipid associa-

Figure 4. Density plots for average EB estimates of selected genes for a range of shift parameters. Density plots represent the
distribution of the average Empirical Bayes (EB) estimate across MixMAP selected genes when the effects of 48 genes are assumed to arise from a
normal distribution with mean equal to the indicated shift parameter while all remaining gene-level effects (2960248 = 2912) arise from a standard
normal distribution. Each plot is based on 2000 simulations. The mean of the EB estimates for the GLGC MixMAP selected genes was 21.23 (indicated
by the dotted vertical line in the top left panel). This is most consistent with an underlying shift parameter of approximately 2.3.
doi:10.1371/journal.pone.0054812.g004
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tions (e.g. PKN2 and CDK) and such loci require further focus

and validation. Overall, these data support the utility of MixMAP,

when used in combination with traditional single SNP testing, in

discovery of true loci for LDL-C and other complex traits

particularly.

A specific challenge in the genomics of complex traits is

identifying loci for such a trait when power is low due to limited

availability of human data. We chose to illustrate this issue in a

small sample (PennCAC, n = 2096) using LDL-C as an example in

part because the large GLGC dataset for LDL-C provides an

external reference for any MixMAP findings. In PennCAC, no

individual SNPs meet criteria for association with LDL-C using

the conservative genome-wide Bonferroni correction

(pv5|10{8) or the less conservative IBC array-wide Bonferroni

correction (pv3|10{6). At a less stringent, suggestive single SNP

criteria (pv1|10{4), 7 loci (represented by 8 genes) are

identified. At one of these loci, 2 interrogated genes (APOA5

and BUD13) contain SNPs with genome-wide significant signals in

Figure 5. Simulation results for a range of shift parameters and proportions of SNPs included within a gene. The true positive rate
(TPR, row 1), false discovery rate (FDR, row 2) and false positive rate (FPR, row 3) are reported (y-axis) for the percentage of SNPs included within each
gene ranging from 0.2 to 0.8 (x-axis), when the ‘‘true’’ (under simulation) shift parameter is equal to 2.0 (left most column), 3.0 (middle column) or 4.0
(right most column). In these simulations 48 genes are considered ‘‘informative’’. That is, the effects of these genes are assumed to arise from a
normal distribution with mean equal to the shift parameter while all remaining gene-level effects (2960248 = 2912) arise from a standard normal
distribution. All estimates are based on 500 simulations per condition. *Dots are enlarged to visualize overlapping symbols.
doi:10.1371/journal.pone.0054812.g005
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the independent GLGC dataset. As expected at this less

conservative threshold, however, most SNPs lack supporting

signals in GLGC data and lack supporting biology for genes at

the locus (Table 3) suggesting that several may be false positives.

Using MixMAP 7 genes, representing 7 independent loci, were

suggested for LDL-C. Of these, 2 (SORT1 and LPA) have

genome-wide significant signals in the independent GLGC data

and one (VPS13B) had a significant MixMAP signal in GLGC

data. Furthermore, 2 loci (IL1R2 and VP13B) have some support

for modulation of lipids in animal models [39–42]. Overall, these

PennCAC LDL-C analyses suggest that application of MixMAP in

small sample settings may provide complementary value to single

SNP tests and other strategies to maximize genetic inference in

settings where sample size is limited. Although in these small

sample settings false positives will remain a challenge, MixMAP

should enhance findings for prioritization and further follow-up.

We recognize that independent replication of findings is

essential for complete validation of novel findings in genetic

studies. Because the GLGC data represent the largest published

lipids GWAS meta-analysis to date, we believe a comprehensive

replication for LDL-C beyond these GLGC data is not possible at

the current time. However, we will pursue this for lipid genes/loci

in additional GLGC data when these data become available (e.g.,

Metabochip project data expected 2013 [12]). We also acknowl-

edge that for common SNP variation, a single gene often can not

specifically be assigned to the disease-associated variant. Further,

simple proximity to a variant and even incorporation of expression

QTL knowledge are not always correct in selecting causal genes.

This problem can lead to incorrect assumptions of causal genes

and raise concerns for validity of gene-based inference. However,

this limitation is not unique to our illustration of MixMAP and is

common to current gene and pathway analyses leveraging

common SNP datasets (e.g. [43]). The challenge can be addressed

in part by leveraging the maximum amount of linkage disequi-

librium, eQTL, fine mapping and biological data when assigning

genes to the associated SNPs. In the present investigation, we use

gene as the cluster to which SNPs belong, though MixMAP is not

limited by this specification. Importantly, the user can employ

alternative and newly evolved classifications, as the primary input

to the MixMAP algorithm.

The results of the simulation study further support the

application of MixMAP as a complementary strategy to single-

SNP based testing, particularly in the context of moderate gene

level effects and adequate SNP coverage. Our on-going research is

exploring calibrating the variance coefficient in the prediction

interval, as an alternative to using z1{0:05=N , to obtain desired

control of the FDR in specific well-defined settings. Because a first

stage ranking of p-values is applied prior to inverse normally

transforming the data for model fitting, the implications of using p-

values from a single cohort study (PennCAC) versus a meta-

analysis (GLGC) are limited to the varying degrees of precision in

each setting. That is, the full range of the quantitative data, and

specifically the fact that p-values from a meta-analysis tend to be

substantially smaller than those from a single cohort study, is not

being incorporated into the analysis presented herein. We expect

additional knowledge can be gained through a mixture modeling

extension of MixMAP that can accommodate the quantitative

nature of the summary data, and this is currently under

investigation. The present investigation is based on common

variants, and while incorporating the results of rare variant

analysis poses an additional challenge as these variants tend to be

grouped a priori for analysis, such an extension would also likely be

informative.

Further extensions of MixMAP would also allow application to

gene set and/or pathway-based analysis of association data.

Specifically, through inclusion of multiple nested random effects,

the MixMAP framework could be applied using both locus level

and pathway information simultaneously. Through fully paramet-

ric modeling, this may offer advantages over gene set enrichment

analysis, which similarly involves a first stage rank ordering [44].

This extension of MixMAP would be notably distinct from the

hierarchical modeling approach of [8] that similarly includes

random gene specific effects, but separately models each gene set

and focuses testing on fixed intercepts representing pathway effects

rather than latent variables. Additional future work includes a

specific evaluation of the influence of linkage disequilibrium,

minor allele frequencies, gene size and numbers of recombinant

hotspots as potential covariates in the models, as well as

comprehensive evaluation of the complex statistical power

considerations across a range of applications and conditions,

including candidate gene studies, GWAS, pathway analysis and

partial or whole-exome sequencing studies. Additional character-

ization of MixMAP may facilitate applications to summary

findings from Metabochip and exome sequencing, as well in

interrogation of gene sets and pathways utilizing such data. In

conclusion, the approach we have described is intended to

complement single SNP analysis and should provide a useful tool

to potentiate existing summary data and reveal important novel

loci, pathways and causal factors for complex diseases at little

additional cost.

Materials and Methods

As a consequence of the LD structure within genetic loci, we

expect SNP level p-values, corresponding to single tests of

association, to be potentially more similar within a gene than

across genes, regardless of the level of association. Thus, a

common statistical modeling framework for correlated data, the

mixed effects model [45–47], is a natural analytic framework to

consider for this setting. The application of MixMAP presented

herein is at a gene level, and thus the term ‘‘gene’’ is used

throughout this section; however, we note that as additional, locus-

level annotations become available, these can replace or enhance

the gene level classifications.

We begin by transforming the SNP level analysis or meta-

analysis p-values, which will serve as the outcomes in our model, to

normal variates in order to meet model assumptions. This is

achieved by: (a) applying a simple rank transformation, to ensure

uniformity over the interval from 0 to 1; and (b) applying an

inverse normal (probit) transformation to normalize the data. For

(a), the rank of the kth SNP is set equal to rk~(k)=(nz1) where

(k) is the ordered ranking across all SNPs and n is the total

number of SNPs under study. For (b), we let yk~W{1(rk) where

W is the cumulative density function of a standard normally

distributed random variable.

The first step of MixMAP is to fit a mixed effects model to

appropriately transformed p-values with gene-specific random

intercept terms and fixed effects for any relevant covariates.

Formally this model is given by:

yi~XibzZibizEi ð1Þ

where yi~(yi1,yi2,,yini
)T , yij is the transformed p-value for the jth

SNP within gene i, Xi is a matrix with jth row equal to a 1|p
vector of SNP or gene level covariates, i~1,N and j~1, . . . ,ni,

where N is the total number of genes and ni is the number of SNPs

in gene i. Further, we let Zi~Jni
be an ni|1 vector of 1’s,
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bi*N(0,s2
b) is the random effect of gene i, Ei*N(0,Ini

s2) and bi is

independent of ij . Finally, b is the corresponding vector of fixed

effects. In the example presented in this manuscript, the Xib term

additionally reduces to an overall intercept, but we retain this for

generalizability. In this model, bi represents a latent (unobservable)

effect of gene i on the corresponding transformed p-values.

Notably, as a result of the transformation described above, small p-

values correspond to large negative values of yij . Thus, values of bi

that are less than 0 would indicate a gene level effect.

Based on this model formulation, the best linear unbiased

predictor of the random effect for gene i is given by:

E(bi Dyi)~s2
bZT

i S{1
i (yi{Xi

bbb) ð2Þ

where Si~Cov(yi)~s2
bJni

zs2Ini
where Jni

~Jni
JT

ni
. The empir-

ical Bayes estimate of bi, denoted bbbi, is calculated by replacing sb

and S with corresponding REML estimates. A measure of

dispersion for this quantity in the intercept only model is given by:

Var(bi Dyi)~
1

ni=s2z1=s2
b

ð3Þ

and returned by the lmer() function in the R lme4 package (http://

cran.r-project.org/web/packages/lme4/index.html). This is relat-

ed in expectation to Var(bbbi{bi) as described in [48], Chapter 7.

Notably, the 12 novel gene and locus findings reported in this

manuscript were not sensitive to choice of prediction variance;

however, if Var(bbi
{bi) were applied in place of the measure

returned by lmer(), then three genes (namely HAVCR2, HLA-

DRA and LPAL2 in the TIMD4, HLA and LPA loci, respectively)

would not be MixMAP significant.

In general, we are interested in testing the null hypothesis of no

association between a given gene and the trait. To this aim, we

construct a one-sided prediction interval for the true gene-level

effect, given by bi for gene i, with the upper limit defined as:

PI
upper
i,a ~bbbizz1{a �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidVarVar(bi Dyi)

q
ð4Þ

where z1{a is the (1{a)-quantile from a standard normal

distribution, dVarVar (bi Dyi) is equal to Var(bi Dyi) evaluated at RML

estimates of s and sb, and a is a pre-defined significance threshold.

A Bonferroni level threshold given by 0:05=N where N is the

number of genes under study is suggested and applied in this

manuscript. If the upper limit of the gene-level prediction interval

is less than 0, then we conclude that the corresponding locus is

significantly associated with the trait.

P-values corresponding to tests of association with LDL-C were

generated as follows, and according to the approach described in

[1]: (1) Regress LDL on age, age2, gender and the first 10 principal

components derived using all available SNPs; (2) Calculate the

residuals from this model fit; (3) Fit a separate simple linear

regression for each SNP (coded as ordinal 0, 1, 2 variables) with

the residuals as the outcome; and (4) Record the t-test statistic and

corresponding p-value within each model for the test that the

coefficient of the SNP in the linear regression was equal to 0. For

the PennCAC data, SNP level p-values were generated within

Caucasians according to this same algorithm. For GLGC data,

reported meta-analysis p-values that were generated in the same

manner and then meta-analyzed were used in analysis. Transfor-

mations of these p-values and subsequent application of MixMAP

proceeded as described above.

For all simulation studies, random gene level effects, bi for

i~1,:::,N, are simulated according to a two-component Gaussian

mixture distribution with m elements arising from a N(m,s2
b) and

the remaining (N{m) elements arising from a N(0,s2
b) distribu-

tion, where N is the total number of genes under study and m is

the number of informative genes. SNP level z-scores are then

generated according to the model zij~mzbizEij where

Eij*N(0,s2). To begin for all simulations, the numbers of SNPs

within each gene are set equal to the observed counts for the

31825 SNPs within the 2960 genes in the GLGC and PennCAC

IBC subset. The median number of SNPs per gene is 6, the mean

is 10:75 and the range is 1 to 450. The first and third quartiles are

equal to 1 and 11, respectively. Notably, due to the LD structure

within genes, we expect p-values to be correlated within these

regions even under the complete null of no association between all

genes and the trait under study. As a result, the gene level random

effects, given by bi in the model above, are not identically equal to

0 under this null. That is, even uninformative genes, whose latent

effects are assumed to arise from a mean 0 distribution, will have

corresponding non-zero effects.
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