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Abstract

Human gene catalogs are fundamental to the study of human biology and medicine. But they are all based on open reading
frames (ORFs) in a reference genome sequence (with allowance for introns). Individual genomes, however, are polymorphic:
their sequences are not identical. There has been much research on how polymorphism affects previously-identified genes,
but no research has been done on how it affects gene identification itself. We computationally predict protein-coding genes
in a straightforward manner, by finding long ORFs in mRNA sequences aligned to the reference genome. We systematically
test the effect of known polymorphisms with this procedure. Polymorphisms can not only disrupt ORFs, they can also create
long ORFs that do not exist in the reference sequence. We found 5,737 putative protein-coding genes that do not exist in
the reference, whose protein-coding status is supported by homology to known proteins. On average 10% of these genes
are located in the genomic regions devoid of annotated genes in 12 other catalogs. Our statistical analysis showed that
these ORFs are unlikely to occur by chance.
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Introduction

Compilation of an accurate catalog of protein-coding genes

encoded in human genomes is a critical step to fully understand

the functional elements in human genomes. Many annotations of

protein-coding genes have been published [1] and a plethora of

gene finding software has been introduced [2]. Nevertheless, the

task has remained as a great challenge [3]. As stated by Brent [4]

the difficulty lies in the limitations of sequencing protocols, ways to

combine the predicted genes and finally the limitations of human

curators.

In response to these findings we also believe that there is an

increasing amount of genomic evidence that may affect protein-

coding gene detection, which has not been taken into account.

Human polymorphism is one example of such evidence [5]. It has

been suggested that such polymorphism affects protein-coding

genes, and that they are responsible for various human diseases

[6–8].

Several studies have tried to account for damaging polymor-

phism in known protein-coding genes. Such polymorphism could

affect the amino acid sequence, alter protein function and

contribute to disease. For example Ng and Henikoff [8] discovered

that two known genes were mistakenly classified as pseudogenes

because of mutations. Others analyzed predicted protein-coding

genes and found known SNPs and insertions and deletions in them

[9,10]. However, to our knowledge no work has been done on the

influence of polymorphism on the finding of novel genes.

In this article we provide a framework for finding new

unannotated genes based on human polymorphism. We examine

several types of polymorphism: SNPs, insertions, deletions,

multiple nucleotide polymorphisms, and microsatellites. With this

information we reconstruct the mRNAs and finally define the new

open reading frames (ORFs). Figure 1a depicts the standard model

for general transfers in biological sequence information. Figure 1b

further illustrates the effect of polymorphism on the mature

mRNA and its effect in defining the new ORF.

Demonstrating definitively that a transcript encodes a protein is

a difficult, time-consuming and expensive task. One approach is to

synthesize the protein artificially, raise an antibody against it and

use the antibody to test whether it is expressed in vivo. Even this

does not discriminate functional proteins from translation noise

caused by stochastic nonfunctional translation by ribosomes

[11,12]. On the other hand, proving that a transcript does not

encode protein is an impossible task because the protein might

only be expressed in very rare circumstances [13]. Thus we apply

several bioinformatics criteria to improve the reliability of our

findings: the ORF length, absence of repeats, E-value of homology

to Swiss-Prot and shortness of 59 untranslated region (UTR).

Figure 2 illustrates two pipelines in parallel, those with and without

polymorphism.

We identified 5,737 putative protein-coding genes that result

from mRNA modified by human polymorphisms and have

significant homology to known proteins. On average 10% of

these genes are located in genomic regions unannotated by 12

other gene catalogs. A genomic coordinate list of these protein-

coding genes is available as Table S1.

Among our other findings, we also discover that some of these

novel genes are orthologous to genomic regions of other species
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where genes are annotated. Furthermore, we exhibit three

examples of longest ORFs found after modification of the mRNA.

They show significant homology to Swiss-Prot proteins and were

not predicted as coding regions by any other gene finders. We

cannot rule out that these mRNAs are fragments of longer

mRNAs (i.e. artifacts), however the presence of supporting ESTs

suggests that they are not.

Results

We will first highlight the results by three examples. The

genomic positions of the mRNA in these examples are provided in

Table 1. There we also indicate the genomic positions of the

longest ORF, the polymorphism that causes the modification, the

length of 59 UTR after modification, the E-value of homology to

known proteins and the sequence orientation.

Figure 3 shows a modification by polymorphism of mRNA

AK124706. The new ORF is located upstream of the initial ORF.

A repeating element overlaps the initial ORF, but none is found

for the new ORF. There is also supporting evidence for

transcription with the presence of EST (DA187884) at the 59

end of the mRNA. It is aligned to Swiss-Prot Integrin beta-5 protein

(Acc: P18084) [14].

Figure 4 shows modification of mRNA AK127273. The mRNA

and ORFs are located on the forward strand of the chromosome.

We note that the predicted longest ORF after modification does

overlap a pseudogene (HIT00004716) predicted by H-Inv,

however this pseudogene is on the reverse strand of the

chromosome. The new ORF is 59 of the initial ORF. We verified

that an EST (DA317450) is present at the 59 end of the mRNA.

None of the existing gene finders predict a coding region in the

same location as our new ORF, which aligns to Swiss-Prot protein

capicua homolog (Acc: Q96RK0) [15].

Figure 5 shows modification of mRNA AY129028. Although

there is an existing coding region annotation in the mRNA, this

just overlaps the initial ORF. The mRNA and ORFs are located

on the reverse strand of the chromosome. Moreover, the initial

ORF is located 39 of the new ORF, and it overlaps a repeat

element. This suggests that the ribosome would have to scan over

the new ORF without translating it in order to reach the known

ORF. Even though AY129028 looks like a fragment of pre-spliced

mRNA, we found two ESTs (A1290869 and GD144663) at its 59

end, evidence for a real transcript starting here. It appears in this

figure that GD144663 starts at chr14:93,406,483–93,406,489

instead of chr14:93,406,109–93,406,489, however we believe the

latter is correct. The alignment in the former position lacks a

standard splice acceptor sequence, and alignment in the latter

Figure 1. The standard model of genetic information transfer in molecular biology. Panel (a) shows the transfer begins with the DNA
being transcribed into mRNA, and continues with protein being synthesized using information in mRNA as a template (translation). We investigate
the effect of polymorphic modification of the mRNA. Panel (b) depicts how the new longer ORF was formed. The starting position of the new ORF in
the mRNA is before that of original ORF. The new ORF may or may not overlap the original ORF, and if it does overlap, it is in different reading frame,
so that the proteins are completely different.
doi:10.1371/journal.pone.0054210.g001
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position would have 5 matches out of 7 (see Figure S1). The new

ORF also aligns to Swiss-Prot protein FLJ4630 (Acc: Q6ZRH3)

[14].

Population Differences in ORF changes
Human populations from different parts of the world are

surprisingly similar genetically. When averaged over all genes, the

majority of genetic variation present in the human species can be

found in any human ethnic group [16]. However the small level of

differentiation among these groups is large enough for geneticists

to make estimates on human diseases related to their ethnicity

[17]. Results from large scale undertakings such as 1000 Genome

[5] or HapMap Projects [18] for identifying human polymor-

Figure 2. Workflows for finding protein-coding genes. Panel (a) describes the workflow of gene-finding without applying human
polymorphism and (b) with human polymorphism. The values inside the brackets refer to the number mRNAs, ORFs and genes respectively. The final
number of genes in workflow (b) refers to the genes where the ORFs change after modification, but in workflow (a) such change does not apply. For
the second workflow (b) two main sources of data are used: human mRNA sequences and polymorphism data (dbSNP 131). Based on the
polymorphism information we redefine the mRNA sequences. Out of the modified mRNA sequences we derived the longest ORFs. These ORFs are
further refined by filtering them based on significant homology to Swiss-Prot and proximity to 59 UTR. Finally we construct the genes from the
refined ORFs.
doi:10.1371/journal.pone.0054210.g002

Table 1. Genomic positions of mRNA for the examples shown in Figure 3, 4, 5.

AK124706 AK127273 AY129028

Chr. name chrUn_gl000222 chr7 chr14

Strand 2 + -

mRNA pos. in chr. 25,008–28,821 128,295,697–128,299,178 93,403,259–93,406,150

dbSNP ref. rs66651466 rs71162510 rs8011546

ORF pos. after modification 28,249–28,585 128,296,043–128,296,637 93,404,946–93,405,303

ORF pos. before modification 27,864–28,166 128,298,398–128,298,944 93,404,502–93,404,811

59 UTR 236 347 847

E-value of new ORF alignment to Swiss-Prot 3.21E-10 4.74E-50 1.66E-08

doi:10.1371/journal.pone.0054210.t001
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phisms from diverse populations enable us to examine its

significance in great detail.

We investigate the percentage of ORF-changing alleles for

eleven different populations. These populations include: Europe-

an-derived individuals from Utah pedigrees (CEU), Han Chinese

in Beijing (CHB), Japanese in Tokyo (JPT) and Yoruba in Ibadan

Nigeria (YRI). In addition to that we also included the expanded

populations: African Ancestry in SouthWestern United States

(ASW), Chinese Ancestry in Metropolitan Denver, CO, US

(CHD), Gujarati Indians in Houston, TX (GIH), Luhya in

Webuye, Kenya (LWK), Mexican Ancestry in Los Angeles, CA,

US (MEX), Masai in Kinyawa, Kenya (MKK) and Toscani in

Italia (TSI).

The normalized cumulative frequency of allele percentage can

be seen in Figure 6a. We observed that there are slight differences

in the cumulative frequency on seven populations: ASW, CHD,

GIH, LWK, MEX, MKK, TSI. It is interesting to note that some

populations are closely grouped together, e.g. ASW-MKK and

CHB-JPT.

Four of the populations (CEU, CHB, JPT, and YRI) stand out

in Figure 6a. In these populations around 40% of the new ORFs

are extremely rare. In order to understand this, we plot the

Figure 4. Modification by polymorphism of mRNA AK127273 and its ORFs. The initial longest ORF before modification has length 546 bp.
The longest ORF after modification has length 594 bp. The polymorphism responsible for the modification is an in-del (rs71162510) which replaces
the reference genome allele ‘C’ with ‘TGCCCC’.
doi:10.1371/journal.pone.0054210.g004

Figure 3. Modification by polymorphism of mRNA AK124706 and its ORFs. In the reference genome the modification is caused by an
insertion (rs66651466) with ‘AT’ as the allele. The initial longest ORF before modification has length 302 bp. The new longest ORF has length 336 bp,
and it aligns to Swiss-Prot Integrin beta-5 protein (Acc:P18084). Annotation of start/stop codon in the translation process and alleles that cause the
change can be found in Figure 2.
doi:10.1371/journal.pone.0054210.g003
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Figure 6. Cumulative allele frequency from 11 populations. In panel (a) we plot the allele percentage of new ORFs and (b) allele percentage
of all HapMap data in UCSC Genome Browser. The percentage (x-axis) in panel (b) is based on Allele1, chosen arbitrarily.
doi:10.1371/journal.pone.0054210.g006

Figure 5. Modification by polymorphism of mRNA AY129028 and its ORFs. The initial longest ORF before modification has length 309 bp,
and after has length 357 bp. The polymorphism that effects the modification is a SNP (rs8011546) which replaces the reference allele ‘G’ with ‘A’.
doi:10.1371/journal.pone.0054210.g005
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frequency of all alleles in each population (Figure 6b) directly from

the UCSC HapMap data, regardless whether they cause new

ORFs or not. The same four populations also stand out as having

rare alleles. The reason presumably is an artifact of how the data

was collected. These four populations belong to the earlier phase

of HapMap project than the other seven populations [19].

For all the ORFs that underwent change, we discover that the

majority of them (54%) appear in all 11 populations and around

23% in 4 populations (CEU, CHB, JPT and YRI). In Supple-

mentary Material S1 Section 2 we listed the detailed breakdown of

the occurrences of ORFs in every population and additionally in

Table S2 we have included lists of ORFs and their occurrence in

every population.

Genes and mRNA Counts Affected By Polymorphism
In this work, an ORF is said to be new if it shares no same-

frame codons with the initial ORF before modification in mRNA.

This implies that these proteins could be completely distinct from

one another. In Table 2 we list the numbers of human ORFs and

genes affected by polymorphism.

We also looked at the types of polymorphism that cause ORF

modification. The table in Supplementary Material S1 Section 3

indicates five types of polymorphisms: deletion (DLT), insertion

(INS), insertion/deletion (IND) microsatellite (MIC), multiple

nucleotide polymorphism (MNP), and single nucleotide polymor-

phism (SNP). We found that the primary source of modification

that causes ORF change is SNP (79%) followed by insertion (3%),

deletion (6%), insertion/deletion (1%), MNP (0.01%) and micro-

satellite (0.01%).This is consistent with the fact that SNP is the

most common in the dbSNP database.

Among all the ORFs and genes, there are 8% a of them are

affected by polymorphism. In order to verify whether the new

ORF could be significantly affected by other polymorphisms, we

perform a further experiment. From the new mRNA after initial

modification we re-apply polymorphisms onto it (2nd modifica-

tion). Although the second modification does change the counts of

the disrupted ORFs, the effect is small (Supplementary Material

S1 Section 5). One possible future direction following this result is

Table 4. Number of new genes after modification by
polymorphism with and without overlap with each of 12
other gene sets.

Gene Finder No Overlap With Overlap

acembly 365 5,372

ccdsGene 713 5,024

ensGene 473 5,264

geneid 541 5,196

genscan 449 5,288

hinv70Coding 284 5,453

knownGene 452 5,285

nscanGene 521 5,216

refGene 521 5,216

sgpGene 498 5,239

vegaGene 1,762 3,975

xenoRefGene 622 5,115

doi:10.1371/journal.pone.0054210.t004

Table 5. Number of new genes after human polymorphism
modification that overlap with other species’ genes and not
found by Ensembl gene finder (ensGene).

With Overlap No Overlap

chicken (galGal3) 65 408

medaka (oryLat2) 68 405

zebrafish (danRer7) 71 402

zebrafinch (taeGut1) 72 401

panda (ailMel1) 76 397

tetraodon (tetNig2) 77 396

frog (xenTro2) 78 395

lizard (anoCar1) 78 395

fugu (fr2) 80 393

stickleback (gasAcu1) 81 392

cat (felCat3) 81 392

pig (susScr2) 83 390

orangutan (ponAbe2) 86 387

chimpanzee (panTro2) 87 386

marmoset (calJac3) 89 384

rhesus (rheMac2) 89 384

rabbit (oryCun2) 90 383

guinea pig (cavPor3) 92 381

horse (equCab2) 93 380

elephant (loxAfr3) 94 379

mouse (mm9) 94 379

cow (bosTau4) 96 377

rat (rn4) 97 376

dog (canFam2) 101 372

opossum (monDom5) 104 369

doi:10.1371/journal.pone.0054210.t005

Table 2. ORFs and genes that changed after modification.

ORFs Genes

Unchanged 202,232 26,491

Changed 18,726 5,737

An ORF is said to be new or undergo changes if it shares no same-frame codons
with the initial ORF before modification in the mRNA. The genes are
constructed by merging the ORFs (from different mRNAs) that overlap in the
same strand of a chromosome.
doi:10.1371/journal.pone.0054210.t002

Table 3. Effect of randomization in ORFs and genes
prediction.

Polymorphisms type ORFs Genes

Real 18,726 5,737

Random 3,004 1,330

Similar to the previous table, the figures refer to the number of ORFs that
changed after modification with real and random polymorphisms. These figures
are reported after validating the ORFs through Swiss-Prot homology.
doi:10.1371/journal.pone.0054210.t003
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Table 6. Molecular function gene ontology of new ORFs after modification.

Description P-Value FDR q-value Enrichment (N,B,n,b)

ATP binding 1.49E-33 5.71E-30 1.46 (16846,1442,5262,659)

adenyl ribonucleotide binding 5.77E-33 1.11E-29 1.45 (16846,1466,5262,666)

binding 9.74E-33 1.25E-29 1.09 (16846,11419,5262,3897)

adenyl nucleotide binding 2.80E-32 2.69E-29 1.45 (16846,1475,5262,667)

catalytic activity 1.12E-27 8.63E-25 1.19 (16846,5141,5262,1909)

protein binding 1.40E-25 8.98E-23 1.14 (16846,7073,5262,2519)

purine ribonucleoside triphosphate binding 1.90E-25 1.04E-22 1.35 (16846,1776,5262,751)

purine ribonucleotide binding 4.93E-25 2.36E-22 1.35 (16846,1806,5262,760)

ribonucleotide binding 4.93E-25 2.10E-22 1.35 (16846,1806,5262,760)

purine nucleotide binding 1.67E-24 6.40E-22 1.34 (16846,1818,5262,762)

nucleotide binding 5.94E-21 2.07E-18 1.27 (16846,2318,5262,921)

nucleoside phosphate binding 6.92E-21 2.21E-18 1.27 (16846,2319,5262,921)

small molecule binding 8.24E-21 2.43E-18 1.26 (16846,2485,5262,978)

ion binding 1.70E-19 4.65E-17 1.19 (16846,3833,5262,1426)

cation binding 2.72E-19 6.95E-17 1.19 (16846,3825,5262,1422)

metal ion binding 4.41E-19 1.06E-16 1.19 (16846,3754,5262,1397)

kinase activity 4.11E-18 9.27E-16 1.47 (16846,756,5262,347)

phosphotransferase activity, alcohol group as acceptor 1.79E-17 3.82E-15 1.48 (16846,704,5262,325)

protein kinase activity 7.02E-17 1.42E-14 1.51 (16846,592,5262,280)

transferase act. transferring phosphorus containing grp. 7.95E-17 1.52E-14 1.42 (16846,875,5262,387)

Ranked top 20 terms according to the P-value of overrepresentation against the background set. Last column with ‘Enrichment (N, B, n, b)’ is defined as follows: N is the
total number of genes, B is the total number of genes associated with the corresponding GO term (description), n is the number of genes in the target set, b is the
number of genes in the intersection. Enrichment~(b=n)=(B=N): Note that the total number of target genes (n) in the last column could be less or equal to the number
of input genes. This is because GOrilla normalised the input gene names with its gene database.
doi:10.1371/journal.pone.0054210.t006

Table 7. Biological process gene ontology of new ORFs after modification.

Description P-Value FDR q-value Enrichment (N,B,n,b)

macromolecule modification 1.23E-13 1.51E-10 1.23 (16846,1977,5262,762)

phosphorylation 5.86E-13 6.48E-10 1.43 (16846,628,5262,280)

Phosphate containing compound metabolic process 9.70E-13 9.75E-10 1.37 (16846,798,5262,342)

phosphorus metabolic process 9.70E-13 8.94E-10 1.37 (16846,798,5262,342)

protein phosphorylation 1.14E-12 9.73E-10 1.44 (16846,575,5262,259)

cellular protein modification process 3.48E-12 2.75E-09 1.23 (16846,1884,5262,721)

protein modification process 3.48E-12 2.57E-09 1.23 (16846,1884,5262,721)

regulation of biological process 1.63E-11 1.12E-08 1.08 (16846,7733,5262,2615)

protein metabolic process 6.10E-11 3.97E-08 1.16 (16846,2921,5262,1061)

regulation of biological quality 3.45E-10 2.12E-07 1.19 (16846,2036,5262,759)

transmem.eceptor protein tyrosine kinase sig. pathway 4.16E-10 2.42E-07 1.42 (16846,489,5262,217)

response to stimulus 6.81E-10 3.77E-07 1.10 (16846,5534,5262,1901)

regulation of cellular process 8.46E-10 4.46E-07 1.08 (16846,7330,5262,2470)

enzyme linked receptor protein signaling pathway 2.26E-09 1.14E-06 1.34 (16846,658,5262,276)

cellular protein metabolic process 3.41E-09 1.64E-06 1.17 (16846,2348,5262,856)

cellular response to stimulus 4.72E-09 2.18E-06 1.12 (16846,4170,5262,1453)

organelle organization 5.27E-09 2.33E-06 1.20 (16846,1654,5262,621)

regulation of response to stimulus 6.76E-09 2.87E-06 1.17 (16846,2110,5262,774)

cellular component organization 7.02E-09 2.88E-06 1.14 (16846,3139,5262,1115)

Peptidyl tyrosine phosphorylation 8.21E-09 3.24E-06 2.17 (16846,59,5262,40)

Ranked top 20 terms according to the P-value of overrepresentation against the background set.
doi:10.1371/journal.pone.0054210.t007
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to investigate the cancelling effect of the above second modifica-

tion.

Frequency of Random ORFs
We performed a control procedure where the chromosomal

positions of polymorphism are randomized. The mRNAs are then

modified with these false polymorphisms. Then we applied the

same software and parameterization as described in the Method

section for determining the longest ORF. Table 3 shows that the

number of changes in ORF and gene after modification by

random polymorphism is smaller than those caused by real

polymorphism. In Supplementary Material S1 Section 1, we detail

further the differences of these ORF predictions with respect to

their overlap with known genes of other species.

Comparison With Other Gene Catalogs
In general gene prediction approaches can be classified into two

categories: sequence similarity based searches and structure or

signal based searches. The similarity search approach is based on

finding similarity of ESTs (expressed sequence tags) and proteins

to the input genome. On the other hand signal based searches rely

on information such as motifs, splice sites, start and stop codons to

identify the genes. Our method belong to both categories, where

we treat the polymorphisms as signal and validation through

Swiss-Prot proteins as similarity based approach. We examine the

discrepancy of the genes found by our methods with the existing

gene finders.

There are fourteen gene finders used by the UCSC Genome

Browser to annotate the human genome. They are: Acembly [20],

CCDS [21], Ensembl [22], GeneID [23], Genscan [24],

KnownGene [25], H-InvDB [26], NSCAN [27], RefGene [28],

SGP [29], Vega [30] and Xenoref [28]. We compile the number

of our predicted genes that were not found and found by these

gene finders in Table 4. The majority of our genes do have

overlap, i.e. partially share genomic location, with those genes

from other finders. Our finding should complement the results

from existing gene finders. On average 10% of our novel coding

genes have zero overlap with any given one of these gene finders.

It was with H-InvDB genes where we found the greatest number

of gene overlaps, around 5% of our genes have no overlap with it.

Gene Comparison With Other Species
Recently there is a growing interest in the origin of human

protein coding genes [31]. It was suggested that novel genes

regularly appear from messenger RNAs of ancestral genes, and

such novel genes significantly affect the evolution of cellular,

physiological, morphological, behavioral and reproductive pheno-

typic traits [32–34].

We compared our novel protein coding human genes subject to

polymorphism with their counterpart genes in 25 other genomes.

For these genomes we find their genes based on the annotation

given by Ensembl gene prediction software [22]. Table 5 shows

the number of new protein coding genes discovered by our

method that overlap and do not overlap with genes in each of the

species. Surprisingly, we discovered that there are some overlaps

between predicted genes and the known genes of these species.

Moreover, we can distinguish between mammals and non-

mammals from the table. The mammals have more overlaps

(§81) than non-mammals.

Gene Ontology
Discovery of new genes will be useful if we can elucidate their

roles in various biological domains. Gene ontology (GO) provides

such a framework. We use Uniprot to estimate gene ontologies of

Table 8. Cellular component gene ontology of new ORFs after modification.

Description P-Value FDR q-value Enrichment (N,B,n,b)

cell part 2.57E-32 3.30E-29 1.08 (16846,12147,5262,4108)

intracellular part 6.23E-28 4.00E-25 1.08 (16846,11593,5262,3922)

organelle 2.22E-18 9.52E-16 1.11 (16846,7819,5262,2703)

intracellular organelle 3.61E-18 1.16E-15 1.11 (16846,7802,5262,2696)

cytoplasmic part 2.28E-17 5.85E-15 1.12 (16846,6470,5262,2268)

cytosol 1.01E-16 2.16E-14 1.24 (16846,2261,5262,878)

cytoplasm 1.03E-14 1.88E-12 1.16 (16846,3850,5262,1398)

Membrane bounded organelle 3.36E-14 5.39E-12 1.10 (16846,6897,5262,2377)

intracellular membrane bounded organelle 3.74E-14 5.33E-12 1.10 (16846,6892,5262,2375)

organelle part 8.10E-10 1.04E-07 1.09 (16846,6066,5262,2070)

intracellular organelle part 9.22E-10 1.08E-07 1.09 (16846,5980,5262,2042)

nucleus 1.36E-09 1.46E-07 1.11 (16846,4598,5262,1597)

non-membrane-bounded organelle 1.55E-09 1.53E-07 1.19 (16846,1920,5262,715)

Intracellular non-membrane bounded organelle 1.55E-09 1.42E-07 1.19 (16846,1920,5262,715)

nuclear part 6.90E-08 5.91E-06 1.15 (16846,2412,5262,866)

cytoplasmic vesicle part 7.30E-07 5.86E-05 1.37 (16846,390,5262,167)

cell junction 1.60E-06 1.21E-04 1.26 (16846,694,5262,274)

Golgi apparatus 5.61E-06 4.00E-04 1.26 (16846,629,5262,248)

cell projection 8.08E-06 5.46E-04 1.22 (16846,819,5262,313)

nucleoplasm 1.10E-05 7.05E-04 1.21 (16846,912,5262,344)

Ranked top 20 terms according to the P-value of overrepresentation against the background set.
doi:10.1371/journal.pone.0054210.t008
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our newly defined ORFs based on their homologs in Swiss-Prot,

because Uniprot provides high-quality gene ontology annotation

for proteins from multiple species [35].

We tabulate three categories of gene product (molecular

function, cellular function and biological process) where the ORFs

are over-represented (Table 6, 7, 8). The ontologies are assigned

using the web based application GOrilla [36].

In the initial experiment we used a target set of gene names

from Uniprot that have homology to our predicted ORFs, and a

background set of gene names from Uniprot that have homology

with longest ORFs before modification by polymorphism. In this

experiment we wish to show what is overrepresented in the new

ORFs with respect to old ORFs. We found that in the molecular

function category, ATP binding is the most overrepresented term with

significant P-value (1.49E-33). For the biological process category we

found that macromolecule modification is the most overrepresented

term with significant P-value (1.23E-13). Finally for the cellular

component category we found terms with significant P-value

(2.57E-32) related to cell part.

We also performed another experiment where we apply gene

names from Uniprot that have homology to old ORF and our newly

predicted ORFs as target sets separately. All human proteins from

Uniprot are used as background set. With this experiment we want

to show if the polymorphism does change the GO assignment, and

whether we can find more significant terms compared to the old

ORFs. The results (Supplementary Material S1 Section 6) showed

that polymorphism does indeed change the GO assignment.

Moreover, the P-values of GO terms for ORFs after modification

are more significant than those before modification.

Conclusion

In this work we describe our findings on the importance of human

polymorphism in determining protein-coding genes. Here we indicate

that the human population harbors a number of genes that have been

missed by previous analyses focusing on one reference genome alone.

In our approach we employ strict bioinformatics criteria: ORF length,

absence of repeats, E-value of ORF homology to Swiss-Prot, and

length of 59 UTR to verify our findings. We demonstrate that from the

new protein-coding genes there were some not found by other gene-

finder algorithms, but located in genomic regions where genes are

annotated in other species.

The UCSC Genome Browser also continuously updates their

data especially with regards to newer human genome assemblies,

introduction of new genomes, new gene predictors and annotation

of polymorphism. Along with this information, in the short-term

when more complete SNP catalogs, frequency data and more

distant species will be made available; we hope to explore further

the impact of human variations in gene finding. It would be useful

for example, to probe for the differences between newly predicted

genes and known annotated genes by looking at their sequence

similarity in addition to their genomic regions.

And eventually there will be data that include haplotype

combinations, more RNAs as well as full-length transcripts. To

adapt to these future changes, we believe it would be helpful to

make available a gene database based on our approach. A

dynamic browsing function for the location of ORFs before and

after modification would intuitively convey our results.

Materials and Methods

Source of sequence and polymorphism data
For consistency, all our information described below is obtained

from a single resource: the UCSC Genome Browser. First of all,

the human mature mRNA sequences from GenBank [37] were

used as the source for deriving ORFs. The sequences were

obtained from http://hgdownload.cse.ucsc.edu/goldenPath/

hg19/bigZips/mrna.fa.gz. In total there are 917,725 mRNA

sequences. To construct the genes we utilize the annotation of

mRNA location in the human genome. It can be downloaded

from http://hgdownload.cse.ucsc.edu/goldenPath/hg19/

database/all_mrna.txt.gz.

We applied human polymorphism from the dbSNP build131

database [38] for reconstructing the mRNAs. In total we

considered 25,877,929 variations. The annotation of these variants

on the human genome (hg19) was obtained from http://

hgdownload.cse.ucsc.edu/goldenPath/hg19/database/snp131.

txt.gz. The variants consist of: SNP - single nucleotide polymor-

phism, MNP- multiple nucleotides polymorphism, microsatellite -

variation in forms of short tandem repeats, insertion - the

polymorphism as insertions relative to the reference assembly,

deletion - the polymorphism as deletion relative to the reference

assembly and in-del - insertion/deletion. In-del is a special class

defined by dbSNP. We compare the length of the reference allele

to the length(s) of observed alleles; if the reference allele is shorter

than all other observed alleles, then ‘in-del’ will be considered as

‘insertion’. Likewise, if the reference allele is longer than all other

observed alleles, it will be considered as ‘deletion’. The table in

Supplementary Material S1 Section 4 shows the overall frequen-

cies of the above mentioned polymorphisms.

Defining mRNAs and ORFs from polymorphism
The reconstruction of mRNA is done by mutating, inserting or

deleting the nucleotides in the mRNA according to the variant

alleles in dbSNP, based on the positions of the variants and mRNA

in the human genome (hg19). Lacking information on haplotypes

(i.e. combinations of polymorphisms), we applied each polymor-

phism on its own. Thus, it is possible that some haplotypes that we

considered do not exist in any individual. For each newly

reconstructed mRNA we obtained the longest ORF using getorf

from EMBOSS [39], with options -min 300 -norev -find 1. We

used 300 bp nucleotide as minimum length for ORFs prediction

as suggested by many studies that this is an appropriate threshold

[40,41]. Our approach is also based on the standard view of

mRNA that it only encodes one distinct protein.

The sequence of triplet codons in ORFs beginning with ATG

and ending with a stop codon represents the protein. Here we only

look at ORFs with w~100 codons, because three out of sixty-four

codons encode stops and ORFs greater than 100 codons are

unlikely to appear by chance in non-coding sequences of average

composition [13]. We define genes by merging the ORFs from

different mRNAs that overlap in the same strand of a chromo-

some. Figure 2 exhibits the procedure for identifying novel coding

genes through polymorphism. Notice that in our procedure, there

is no re-alignment of the modified mRNA to the human genome

involved. For the purpose of determining the genomic loci of exons

of new mRNAs, we incorporate the mRNA annotation provided

by the UCSC Genome Browser. In this annotation the coordinates

of the mRNAs in the genome are specified. Such information

enables us to convert the exon locations in new mRNAs into exon

locations in the genome.

We also find supporting evidence to show that our newly

predicted ORFs are translated into proteins. As a first criterion, we

selected ORFs that aligned to the manually curated Swiss-Prot

protein database with alignment score §130. This scoring

threshold corresponds to significant homology (E-value ƒ3.07e-

6). At the end of this step we obtained 5,737 protein-coding genes.

The majority of the ORFs have low E-values (0) as can be seen
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from their cumulative distribution in Supplementary Material S1

Section 4. This procedure will allow us to reduce erroneous

translation of frameshifted or non-coding nucleotide sequences.

The alignment was done using LAST [42]. It contains two sub-

programs: lastdb and lastal. We indexed the protein database with

lastdb with parameter -p to indicate that the sequences are amino

acids and -c to soft-mask lower case letters. The actual alignment

was done using lastal with parameter -e 130 which sets the

minimum score for gapped alignments to 130. The E-value was

computed using the lastex program that comes in the package.

Both the translated ORFs and Swiss-Prot proteins were repeat

masked using TANTAN [43] before performing the alignment.

As a final criterion we select ORFs based on proximity to the

mRNA 59 end. It has been suggested that the ribosome scanning

mechanism favors short 59 UTRs, whereas long 59 UTRs are likely

to contain encumbrances, e.g. upstream start codons or secondary

structure elements [44,45].

Allele Frequency
The percentage of alleles is obtained from the count of

individuals who are homozygous and heterozygous for the

observed alleles. This information is available from the UCSC

Genome Browser HapMap annotation: http://hgdownload.cse.

ucsc.edu/goldenPath/hg19/database/hapmapSnps*.txt.gz. Fol-

lowing their nomenclature, the zygote counts are defined as

follows: homoCount1 and homoCount2 are counts of individuals

who are homozygous for the first allele and second allele

respectively; heteroCount is the count of individuals who are

heterozygous.

Subsequently we define counts of first of and second alleles

(Allele1Count and Allele2Count):

Allele1Count~2:homoCount1zheteroCount

Allele2Count~2:homoCount2zheteroCount

Finally the allele percentage can be obtained as:

Allele1%~
Allele1Count

Allele1CountzAllele2Count
:100%

These percentages are then computed with respect to our

predicted ORFs, by looking at the correspondence of modifying

variants in our method and the HapMap annotation above.

Comparison with Other Gene Catalogs
There are three sources of information involved in comparing

our result to other gene catalogs: 1) list of the new ORFs with their

positions in mRNA, 2) alignment of human mRNA with the human

genome, and 3) fourteen gene annotations of the human genome.

The primary information we employed from these annotations are

the predicted starting and ending positions of the exons. We

obtained the last two sources from the UCSC Genome Browser.

The key idea in these steps is to compare the overlaps with

respect to the genomic location of our predicted ORFs and those

predicted by other finders. Initially, we located the positions of the

new ORFs in the human genome. We can do that by transferring

the positions of new ORFs in mRNA with respect to alignment of

human mRNA to the human genome. Since the annotations of all

other catalogs already provide the genomic location of the exons,

we can easily find their overlap or non-overlap with the modified

new ORFs.

Gene Comparison with Other Species
For this task we use the following data sources: 1) list of new

ORFs obtained after modification and their corresponding

position in the mRNA, 2) alignment of human mRNA with the

human genome, 3) gene prediction for human genome (hg19) and

all other 25 species provided by Ensembl software [22], 4) human

genome alignment with other species. We obtained data sources 2

to 4 from the UCSC genome browser.

Similarly to the previous section, we defined overlap based on

the genomic location of new ORFs and gene location of other

species aligned to human genome. Hence, the first step we did was

to find the positions of the new ORFs in the human genome. This

can be done by transferring the positions of data source (1) using

data source (2). The next crucial step is to find the location of

exons of all other species predicted by Ensembl that align to the

human genome. The key data source for this step is (3) and (4).

Finally, the overlap and non-overlap of new ORFs in human and

all other species can be determined.

Gene Ontology
In finding over-represented gene ontology terms resulting from

the newly predicted genes after polymorphism, we applied GOrilla

(http://cbl-gorilla.cs.technion.ac.il/), a web-based application. We

used two unranked lists of genes as the option. We performed two

types of experiments for the analysis:

1. For the first experiment, the target list contains 5,630 gene

names from Uniprot that have homology to our 18,726

predicted ORFs. The background set consists of 46,961 gene

names from Uniprot that have homology with ORFs before

modification by polymorphism.

2. In the second experiment, we use all 71,124 human gene names

from Uniprot as background set. Then separately we use 5,630

gene names from ORFs after and 46,961 gene names from

ORFs before modification by polymorphisms as target set.

In both of the above experiments when an ORF has multiple

hits to the Uniprot gene names, we only took gene name with

highest E-value.

GOrilla uses the minimum hypergeometric score (mHG)

statistic for computing the P-value. In total there are 11,109 GO

terms used in our computation. To correct the P-value for multiple

testing, we further compute the FDR q-value [46]. It is computed

as:

FDR q-value~
p-value �Number of GO Terms

Rank of Term
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