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Abstract

Purpose: Recent high-throughput sequencing technology has identified numerous somatic mutations across the whole
exome in a variety of cancers. In this study, we generate a predictive model employing the whole exome somatic
mutational profile of ovarian high-grade serous carcinomas (Ov-HGSCs) obtained from The Cancer Genome Atlas data
portal.

Methods: A total of 311 patients were included for modeling overall survival (OS) and 259 patients were included for
modeling progression free survival (PFS) in an analysis of 509 genes. The model was validated with complete leave-one-out
cross-validation involving re-selecting genes for each iteration of the cross-validation procedure. Cross-validated Kaplan-
Meier curves were generated. Cross-validated time dependent receiver operating characteristic (ROC) curves were
computed and the area under the curve (AUC) values were calculated from the ROC curves to estimate the predictive
accuracy of the survival risk models.

Results: There was a significant difference in OS between the high-risk group (median, 28.1 months) and the low-risk group
(median, 61.5 months) (permutated p-value ,0.001). For PFS, there was also a significant difference in PFS between the
high-risk group (10.9 months) and the low-risk group (22.3 months) (permutated p-value ,0.001). Cross-validated AUC
values were 0.807 for the OS and 0.747 for the PFS based on a defined landmark time t= 36 months. In comparisons
between a predictive model containing only gene variables and a combined model containing both gene variables and
clinical covariates, the predictive model containing gene variables without clinical covariates were effective and high AUC
values for both OS and PFS were observed.

Conclusions: We designed a predictive model using a somatic mutation profile obtained from high-throughput genomic
sequencing data in Ov-HGSC samples that may represent a new strategy for applying high-throughput sequencing data to
clinical practice.
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Introduction

Recent high-throughput sequencing technology has generated

an enormous amount of data that continues to accumulate for

somatic mutations in a variety of cancers. A major issue for these

studies is how to separate the useful information from these large

volumes of data and how to use the data more effectively. It is

important to consider how the data from somatic mutational

profiles containing survival information can be applied in clinical

use. From this view point, the development of predictive modeling

using somatic mutation profiles that employ complete genomic

data with survival information may be worthwhile. Predictive

modeling has been well studied in microarray gene expression

profiling and in proteomic profiling [1,2,3]. For predictive

modeling, in case where the number of candidate variables

exceeds the number of cases, which is common in high throughput

genomic data analysis, complete cross-validation is one of

established methods and it has widely used for modeling and

estimating prediction error in the model [2,4]. The predictive

models are developed from scratch, repeating variable selection

and calibration, for each loop of the cross-validation [2]. There are

several cross-validation methods, which include leave-one-out

cross-validation (LOOCV), v-fold, and bootstrap resampling.

The predictive model with gene signature for predicting patient

survival can be used in clinical test. However, no study has

attempted to generate a predictive model using a somatic

mutational profile obtained from high-throughput sequencing

data. Somatic mutation has the potential to reflect patient survival

and cancer prognosis. In ovarian high grade serous carcinoma

(Ov-HGSC), BRCA2 mutation is associated with favorable survival

and platinum sensitivity [5,6,7,8,9,10,11,12]. Our previous study

revealed that hypermutation in Ov-HGSC patients was associated

with platinum sensitivity and favorable survival in patients treated

with platinum based chemotherapy after surgery [13]. These

findings may suggest that the somatic mutational profile harbors

clinical significance and that the combination of specific genes may

be predictive of the patient’s survival. Therefore, in this study we

generate a predictive model employing the whole exome somatic
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mutational profile of Ov-HGSCs obtained from The Cancer

Genome Atlas (TCGA) data portal.

Materials and Methods

Cancer Data
We downloaded a validated whole exome somatic mutation

data set and clinical information for 316 patients with Ov-HGSC

from TCGA website (http://tcga-data.nci.nih.gov/docs/

publications/ov_2001) with open access [12]. Data were down-

loaded on October 29, 2011. Among the 316 patients, there were

a total of 19356 mutations in 9968 genes. Among the 9968 genes,

the genes that were very rarely mutated (less than 5 frequencies)

were excluded from the selection of genes for modeling. In

addition, patients with missing clinical information for overall

survival (OS) or progression-free survival (PFS) were excluded

from this study. Finally, 311 patients with 509 genes for OS and

259 patients with 509 genes for PFS were included to generate

a predictive model for Ov-HGSC. All patients were diagnosed

with high-grade serous carcinoma and were in an advanced stage

(FIGO stage $2). Clinical information including OS, PFS,

platinum response status (sensitive vs. resistant), surgical outcome

(microscopic residual vs. macroscopic residual), age, and stage

were selected. The definition of OS and PFS were described in

a previous report [12] and detail clinical informations for each

patient were described in a previous report [13].

Prognostic Model Building and Validation
We used multivariate Cox regression to fit the prediction model.

To evaluate the predictive performance, we carried out the

LOOCV procedure as follows:

Step 1. For the i-th sample (i = 1,…,n), divide the i-th sample

from whole data as the training set and the remaining (n21)

patients as the validation set.

Step 2. For the training set, (1) select the genes with log-rank

p-values ,0.01, and standardize the selected gene using the mean

and standard deviation of the gene, then (2) apply multivariate

Cox regression to the standardized genes.

Step 3. For the validation set, (1) standardize each gene using

the mean and the standard deviation calculated from the training

set, then (2) calculate the risk score as the linear combination of

standardized values for each gene and the corresponding co-

efficient fitted from the multivariate Cox regression.

Step 4. Repeat above steps 1–3 for all n samples.

Step 5. Dichotomized the predictive scores into low- or high-

risk based on median value and cross-validated Kaplan-Meier

curves were generated.

To test the statistical significance of the spread between the

cross-validated Kaplan-Meier curves, we calculated a permutation

p-value as follows; (1) compute the log-rank p-value (P0) from

above LOOCV procedure from the original data, (2) from the b-th

permutation data (b = 1,…,B), compute the log-rank p-value (Pb)

from the LOOCV procedure, and (3) calculate the permutation p-

value as p
_
~B{1

XB

b~1
I(PbvP0).

Measurement of Predictive Accuracy of Predictive Model
Cross-validated time dependent receiver operating characteris-

tic (ROC) curves using the cross-validated predictive indices were

computed to measure the predictive accuracy based on landmark

time t=36 months for OS and PFS [2]. ROC curves were

generated using the nearest neighbors estimator defined in order

to take into account the time of events and the censoring [2,14,15].

The area under the curve (AUC) values were calculated from the

ROC curves to be used as a measure of predictive accuracy for the

survival risk model.

Statistical Analysis
Cross-validated Kaplan-Meier curves were generated for OS

and PFS, and the permutation distribution of the cross-validated

log-rank statistic was used for comparing the Kaplan-Meier curves

[2]. Chi-square test was used to test the association between the

Figure 1. Workflow of prognostic model building using somatic mutation profile in ovarian high-grade serous carcinoma.
doi:10.1371/journal.pone.0054089.g001

Modeling Using Somatic Mutation Profile

PLOS ONE | www.plosone.org 2 January 2013 | Volume 8 | Issue 1 | e54089



two groups and p values less than 0.05 were considered statistically

significant. Statistical analysis was performed using Stata/IC

statistical software (version 12, StataCorp Ltd., TX) and R

program (version 2.12.0: www.r-project.org).

Figure 2. Cross-validated Kaplan-Meier curves of the prognostic models. Model containing only gene variables for overall survival (A) and
progression free survival (B). Combined model containing both clinicopathological covariates and gene variables for overall survival (C) and
progression free survival (D).
doi:10.1371/journal.pone.0054089.g002
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Results

Development and Validation of a Prognostic Signature
Using Somatic Mutation Data
The primary end point was the OS and PFS. The de-

velopmental strategy and work flow of predictive models for OS

and PFS are schematically depicted in Figure 1. All data presented

in this report are based on classification during the LOOCV

procedure and are therefore fully cross validated. A permutated p

value of the cross-validated log-rank statistic was calculated to

compare the cross-validated Kaplan-Meier curves. Table 1

summarizes the characteristics of genes selected by fitting Cox

proportional hazards models for each OS and PFS. The results of

the log-rank test and the frequency of each gene, and the Cox

regression estimates used to calculate the score for each gene are

shown. Figure 2A shows the cross validated Kaplan-Meier plot for

OS based on classification of each case from LOOCV. There was

a significant difference in the OS between the high-risk group and

the low-risk group (permutated p-value ,0.001). The median

survival time for OS was significantly longer in the low-risk group

(61.5 months, 95% CI 55.3–67.7) than in the high-risk group (28.1

months, 95% CI 22.9–33.2) from LOOCV, which corresponds to

a hazard ratio for death of 0.077 (95% CI, 0.047–0.125). For PFS,

the cross validated Kaplan-Meier plot for PFS is shown in

Figure 2B. There was also a significant difference in PFS between

the high-risk group and the low-risk group (permutated p-value

,0.001). The median survival time for PFS was significantly

longer in the low-risk group (22.3 months, 95% CI 17.5–27.0) than

in the high-risk group (10.9 months, 95% CI 9.9–11.8) from

LOOCV, which corresponds to a hazard ratio for recurrence of

0.216 (95% CI, 0.158–0.296).

Predictive Accuracy of Models
We estimated the predictive accuracy of the model for OS and

PFS using time-dependent RO curve. Cross-validated time-

dependent ROC curves show the predictive accuracy of the

survival risk group model based on a defined landmark time 36

months for OS and PFS in Figure 3A and Figure 3B, respectively.

AUC values were 0.807 for the OS and 0.747 for the PFS.

Association of Risk Groups with Clinicopathological
Covariates
Association of risk groups for clinicopathological factors in-

cluding platinum response status (sensitive vs. resistant), surgical

outcome (microscopic vs. macroscopic residual), histological grade

(grade 2 vs. 3), tumor stage, and age, are described in Table 2.

Among the clinicopathological factors, surgical outcome and

platinum response status were significantly associated with risk

classification for both OS (p=0.026 and p=0.033, respectively)

and PFS (p,0.001 and p,0.001, respectively).

Comparison to Model Containing Clinicopathological
Covariates
To compare predictive model containing only gene variables

with combined model containing both clinicopathological covari-

ates and gene variables, we developed a combined survival risk

model containing clinicopathological covariates (age #60 yrs vs.

.60 yrs; grade 2 vs. 3; stages II–III vs. IV; microscopic vs.

macroscopic residual surgical outcome) and gene variables.

Platinum response status was not included because it cannot be

measured at initial surgical treatment. Cross-validated Kaplan-

Meier curves of OS (Figure 2C) and PFS (Figure 2D) for the

combined survival risk model were generated and the figures show

that clinicopathological covariates do not provide additional

survival risk discrimination compared to the curves provided by

only gene variables. In comparisons with the cross-validated time

dependent AUC curves between the predictive model containing

only gene variables and the combined model containing both

clinicopathological covariates and gene variables (Figure 3C for

OS and Figure 3D for PFS), accuracy of the predictive model

containing only gene variables is higher than that of the combined

model.

Discussion

The findings in this study demonstrate that predictive modeling

using somatic mutational profile obtained from whole exome

sequencing has potentially useful applications. Predictive modeling

using expression microarray is well established, whereas predictive

modeling using mutational profiling has not been attempted until

now. Most of the differences between microarray data and somatic

mutation data are characteristics of value. Expression microarray

data has continuous value, whereas a somatic mutation profile

Table 1. Characteristics of genes selected by fitting Cox proportional hazards models.

Overall survival Progression free Survival

Gene p-value Frequency Coefficient Gene p-value Frequency Coefficient

NIPBL 0.0002 310 0.201804 BOD1L 0.0008 259 0.199613

KIAA0913 0.0003 309 0.199313 EPDR1 0.0000 259 0.042329

MYH15 0.0007 309 0.054725 MYH15 0.0037 258 0.223415

NR4A2 0.0083 309 0.202806 ACCSL 0.0016 257 0.096368

ZNF804B 0.0020 309 0.135109 ATM 0.0026 257 0.284168

ABCA3 0.0086 308 0.166472 OVCH1 0.0023 257 0.319271

PIK3R4 0.0033 308 0.204053 SORCS3 0.0022 257 0.164987

DOCK3 0.0031 308 0.197207 CPN2 0.0050 256 0.19209

SPTB 0.0036 256 0.191474

BRCA2 0.0094 254 20.20805

doi:10.1371/journal.pone.0054089.t001

Modeling Using Somatic Mutation Profile

PLOS ONE | www.plosone.org 4 January 2013 | Volume 8 | Issue 1 | e54089



contains binary data. In other words, expression microarray data

is a relative value, whereas somatic mutation data is an absolute

value that indicates the presence or absence of mutation.

Therefore, if modeling using somatic mutation data is well

established, it may be more predictive for independent external

samples.

Currently, high-throughput sequencing in cancer is being

employed more often, and large amount of data from sequencing

will be generated. Therefore, our approach for generating

predictive modeling using somatic mutational profiles obtained

from high-throughput sequencing could be an effective method in

the high-throughput sequencing era.

A few noteworthy issues arose while creating the predictive

model from the somatic mutation data in this study. We

acknowledge that the genes considered in the modeling may

include passenger mutations. Currently, a major question is that

what is a driver mutated gene in the numerous mutated genes.

This was also a major issue that needed to be addressed before

making the predictive model using somatic mutation profiles.

Together, these issues may result in non-reproducible results in

external independent data set. In our present analysis, one factor

underlying the construction of a successful predictive model may

have been the large sample size, despite the rare frequency of

repeated mutated genes. In the future, it may be necessary to

Figure 3. Cross-validated time dependent receiver operating characteristic (ROC) curves and area under the curve (AUC). ROC curve
based on landmark time t=36 months of the predictive model for overall survival (A) and progression free survival (B). Cross-validated time
dependent AUC curves to compare the prognostic model containing only gene variables with the combined model containing both
clinicopathological covariates and gene variables for overall survival (C) and progression free survival (D).
doi:10.1371/journal.pone.0054089.g003
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develop additional algorithms that are adjusted to fit somatic

mutational profiles in cases of relatively small sample sizes. On the

other hand, the integration of a mutation profile, copy number

change, and gene expression profile with the goal of generating

a predictive model may be a more promising approach.

There are several methods for predictive modeling and

estimation of the predictive model [1,4,16,17,18]. In this study,

we used complete LOOCV for predictive model, and permutation

distribution of the cross-validated log-rank statistic was used for

comparing the cross-validated Kaplan-Meier curves and evaluated

the accuracy of the predictive model according to the study by

Simon et al [2]. This complete cross-validation method avoids

optimistic bias in estimation of survival risk discrimination for the

survival risk model developed on the full data set [2].

Among the genes selected by fitting Cox proportional hazards

models for PFS, the BRCA2 mutation was associated with

favorable survival, which was well demonstrated form the original

TCGA study as well as several other studies [8,13,19,20]. All of

the remaining genes, excluding BRCA2, were associated with poor

prognosis, which was not identified in previous studies. Even

though this study included some already well-known genes such as

ATM [21], most of the genes have not been extensively studied and

may need further validation.

In Ov-HGSC, the standard treatment is aggressive tumor

cytoreductive surgery followed by platinum based chemotherapy.

Ov-HGSC is usually platinum-sensitive [12,22,23]. However,

approximately 30% of patients exhibit platinum resistance and

aggressive disease progression [13,24,25]. However, it is difficult to

predict survival in the patient with Ov-HGSC after initial standard

surgical treatment. Our present study showed that predictive

models containing only gene mutation profile without clinical

covariates were effective and high AUC values for both OS and

PFS were observed.

In conclusion, we designed a predictive model using a somatic

mutation profile obtained from high-throughput genomic se-

quencing data for Ov-HGSC samples that may represent a new

strategy for applying high-throughput sequencing data to clinical

practice.

Author Contributions

Conceived and designed the experiments: IS COS. Analyzed the data: IS

COS. Contributed reagents/materials/analysis tools: IS COS. Wrote the

paper: IS COS.

References

1. Simon R, Radmacher MD, Dobbin K, McShane LM (2003) Pitfalls in the use of

DNA microarray data for diagnostic and prognostic classification. J Natl Cancer

Inst 95: 14–18.

2. Simon RM, Subramanian J, Li MC, Menezes S (2011) Using cross-validation to

evaluate predictive accuracy of survival risk classifiers based on high-dimensional

data. Brief Bioinform 12: 203–214.

3. Waldron L, Pintilie M, Tsao MS, Shepherd FA, Huttenhower C, et al. (2011)

Optimized application of penalized regression methods to diverse genomic data.

Bioinformatics 27: 3399–3406.

4. Molinaro AM, Simon R, Pfeiffer RM (2005) Prediction error estimation:

a comparison of resampling methods. Bioinformatics 21: 3301–3307.

5. Moynahan ME, Pierce AJ, Jasin M (2001) BRCA2 is required for homology-

directed repair of chromosomal breaks. Mol Cell 7: 263–272.

6. Patel KJ, Yu VP, Lee H, Corcoran A, Thistlethwaite FC, et al. (1998)

Involvement of Brca2 in DNA repair. Mol Cell 1: 347–357.

7. Xia F, Taghian DG, DeFrank JS, Zeng ZC, Willers H, et al. (2001) Deficiency of

human BRCA2 leads to impaired homologous recombination but maintains

normal nonhomologous end joining. Proc Natl Acad Sci U S A 98: 8644–8649.

8. Yang D, Khan S, Sun Y, Hess K, Shmulevich I, et al. (2011) Association of

BRCA1 and BRCA2 mutations with survival, chemotherapy sensitivity, and

gene mutator phenotype in patients with ovarian cancer. JAMA 306: 1557–

1565.

9. Foulkes WD (2006) BRCA1 and BRCA2: chemosensitivity, treatment outcomes

and prognosis. Fam Cancer 5: 135–142.

10. Norquist B, Wurz KA, Pennil CC, Garcia R, Gross J, et al. (2011) Secondary

somatic mutations restoring BRCA1/2 predict chemotherapy resistance in

hereditary ovarian carcinomas. J Clin Oncol 29: 3008–3015.

11. Yuan SS, Lee SY, Chen G, Song M, Tomlinson GE, et al. (1999) BRCA2 is

required for ionizing radiation-induced assembly of Rad51 complex in vivo.

Cancer Res 59: 3547–3551.

12. The Cancer Genome Atlas Research Network (2011) Integrated genomic

analyses of ovarian carcinoma. Nature 474: 609–615.

13. Sohn I, Jung WY, Sung CO (2012) Somatic hypermutation and outcomes of

platinum based chemotherapy in patients with high grade serous ovarian cancer.

Gynecol Oncol 126: 103–108.

14. Heagerty PJ, Zheng Y (2005) Survival model predictive accuracy and ROC

curves. Biometrics 61: 92–105.

15. Heagerty PJ, Lumley T, Pepe MS (2000) Time-dependent ROC curves for

censored survival data and a diagnostic marker. Biometrics 56: 337–344.

16. Azuaje F (2003) Genomic data sampling and its effect on classification

performance assessment. BMC Bioinformatics 4: 5.

17. Braga-Neto UM, Dougherty ER (2004) Is cross-validation valid for small-sample

microarray classification? Bioinformatics 20: 374–380.

18. Hickey JM, Veerkamp RF, Calus MP, Mulder HA, Thompson R (2009)

Estimation of prediction error variances via Monte Carlo sampling methods

using different formulations of the prediction error variance. Genet Sel Evol 41:

23.

19. Gallagher DJ, Konner JA, Bell-McGuinn KM, Bhatia J, Sabbatini P, et al.
(2011) Survival in epithelial ovarian cancer: a multivariate analysis incorporating

BRCA mutation status and platinum sensitivity. Ann Oncol 22: 1127–1132.

20. Lacour RA, Westin SN, Meyer LA, Wingo SN, Schorge JO, et al. (2011)

Improved survival in non-Ashkenazi Jewish ovarian cancer patients with

BRCA1 and BRCA2 gene mutations. Gynecol Oncol 121: 358–363.

21. McConville CM, Stankovic T, Byrd PJ, McGuire GM, Yao QY, et al. (1996)
Mutations associated with variant phenotypes in ataxia-telangiectasia. Am J Hum

Genet 59: 320–330.

22. Bowtell DD (2010) The genesis and evolution of high-grade serous ovarian

cancer. Nat Rev Cancer 10: 803–808.

23. Sabatier R, Finetti P, Cervera N, Birnbaum D, Bertucci F (2009) Gene

expression profiling and prediction of clinical outcome in ovarian cancer. Crit

Rev Oncol Hematol 72: 98–109.

Table 2. Association of risk groups with clinicopathological
factors for overall and progression free survival in ovarian high
grade serous cancer.

Overall survival Progression free survival

Low
risk

High
risk

p
value

Low
risk

High
risk p value

Age (yrs)

#60 78 (50.6) 76 (49.4) 0.956 66 (49.3) 68 (50.7) 0.853

.60 75 (50.3) 74 (49.7) 60 (50.4) 59 (49.6)

Surgical outcome

Microscopic 36 (62.1) 22 (37.9) 0.026 31 (62.0) 19 (38.0) 0.033

Macroscopic 99 (45.6) 118 (54.4) 80 (44.9) 98 (55.1)

Platiunm status,

sensitive 89 (70.6) 37 (29.4) ,0.001 92 (72.4) 35 (27.6) ,0.001

resistant 18 (29.0) 44 (71.0) 12 (19.4) 50 (80.6)

Grade

2 17 (63.0) 10 (37.0) 0.169 14 (66.7) 7 (33.3) 0.119

3 136 (49.1) 141 (50.9) 113 (48.9) 118 (51.1)

Stage

2 10 (71.4) 4 (28.6) 0.198 9 (69.2) 4 (30.8) 0.281

3 122 (50.2) 121 (49.8) 104 (50.7) 101 (49.3)

4 24 (44.4) 30 (55.6) 18 (43.9) 23 (56.1)

doi:10.1371/journal.pone.0054089.t002

Modeling Using Somatic Mutation Profile

PLOS ONE | www.plosone.org 6 January 2013 | Volume 8 | Issue 1 | e54089



24. Bookman MA (2003) Developmental chemotherapy and management of

recurrent ovarian cancer. J Clin Oncol 21: 149s–167s.
25. Miller DS, Blessing JA, Krasner CN, Mannel RS, Hanjani P, et al. (2009) Phase

II evaluation of pemetrexed in the treatment of recurrent or persistent platinum-

resistant ovarian or primary peritoneal carcinoma: a study of the Gynecologic

Oncology Group. J Clin Oncol 27: 2686–2691.

Modeling Using Somatic Mutation Profile

PLOS ONE | www.plosone.org 7 January 2013 | Volume 8 | Issue 1 | e54089


