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Abstract

As next generation sequencing technologies are getting more efficient and less expensive, RNA-Seq is becoming a widely
used technique for transcriptome studies. Computational analysis of RNA-Seq data often starts with the mapping of millions
of short reads back to the genome or transcriptome, a process in which some reads are found to map equally well to
multiple genomic locations (multimapping reads). We have developed the Minimum Unique Length Tool (MULTo), a
framework for efficient and comprehensive representation of mappability information, through identification of the shortest
possible length required for each genomic coordinate to become unique in the genome and transcriptome. Using the
minimum unique length information, we have compared different uniqueness compensation approaches for transcript
expression level quantification and demonstrate that the best compensation is achieved by discarding multimapping reads
and correctly adjusting gene model lengths. We have also explored uniqueness within specific regions of the mouse
genome and enhancer mapping experiments. Finally, by making MULTo available to the community we hope to facilitate
the use of uniqueness compensation in RNA-Seq analysis and to eliminate the need to make additional mappability files.
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Introduction

Next-generation sequencing based methods have in the last

couple of years increased enormously in usage. Common to next

generation sequencing methods is the fragmentation of DNA or

RNA into smaller pieces which are amplified, whereupon short

reads from millions of these fragments are sequenced in parallel

[1]. The length of the sequenced reads typically ranges from

around 25 to 150 base pairs for most applications. The origins of

the reads are then determined by mapping them back to the

genome. Finding the origins is not always straightforward though,

since the genome contains repetitive regions caused by transpos-

able elements, tandem arrays and gene duplicates which may

cause reads to map to more than one place in the genome. For

short reads, the same sequence could also occur in several places

just by chance. The mappability can to some extent be improved

by performing paired-end sequencing, where two reads from each

DNA or RNA fragment is sequenced – one from each end. In this

case a fragment can become uniquely mapped although one read

is non-uniquely mapping to a repetitive region. Depending upon

application, ‘‘multimapping’’ reads are often excluded from

analysis since their origin cannot be unambiguously determined.

When performing transcriptome sequencing, expression levels

of different genes are determined by counting the number of reads

mapping to the gene and normalizing this read count by the length

of the gene model and the total number of mapped reads in the

sample [2]. Thus, expression levels are expressed as number of

reads per thousands of base pairs of gene model and million

mappable reads (RPKM) that enables comparison of expression

levels both between genes of different lengths and between samples

of different sequence depths. However, a problem emerges when a

large portion of a gene is not uniquely mappable. The read count

in this region will be deceptively low if only the uniquely mapping

reads are counted, and as a result the calculated expression level

will not reflect the true expression level.

Previous efforts to compensate for the lack of mappability have

normalized reads counts with the number of uniquely mappable

positions [3–5] instead of full transcript length. These studies have

often stored whether reads of a particular length are uniquely

mappable at any given genomic coordinate, e.g. encoding this

uniqueness information in either chromosomal fasta files with a

capital letter to indicate unique mappability, in Wig formats, of by

storing the number of occurrences of the given read in the genome

[6–9]. A major limitation with these types of files is that they need

to be generated for each read length encountered, and also,

compiling and storing uniqueness files for large number of read

lengths requires excessive data storage [5,6,10]. Alternative

approaches instead include multimapping reads, by assigning

them to their most likely origin based on either how many unique

reads map to the surrounding region [2] or on the total number of

reads (unique and multimapping) that potentially comes from the

region [11]. Assigning multimapping reads to genes based on the

coverage of uniquely mapping reads could be problematic, since
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multimapping reads will more likely be assigned to regions of high

uniqueness, and could therefore lead to biases in gene expression

levels. Although these alternative methods have been described in

the literature, no study to date has compared their uniqueness

compensation.

In this paper we present a novel approach to efficiently and

comprehensively describe mappability of a genome or transcrip-

tome. We create a single uniqueness file per chromosome for each

genome with mappability information across the full range of useful

read lengths. The files contain values representing the minimum

read length required for uniqueness at each genomic position,

which enable fast and easy querying for uniqueness across

arbitrary read lengths. We also developed similar uniqueness files

for transcriptomes (including exon-exon junctions) to get improved

mappability information for spliced mRNA. Using the uniqueness

information for the transcriptome files, we compared the

alternative approaches for handling multimapping reads in

RNA-Seq and found that using these uniqueness files for transcript

quantification results in the most effective compensation for

transcripts with low uniqueness. Similar uniqueness files were also

developed for bisulfite sequencing and paired-end RNA-Sequenc-

ing experiments and we explored the mappability to give

guidelines for the required read length for different sequencing

applications. Finally, the uniqueness data and framework devel-

oped within this study can easily be used in experiments of

arbitrary read lengths and therefore facilitate the use of uniqueness

compensation in RNA-Seq analyses.

Results

Comprehensive uniqueness representation using the
minimum unique length

We reasoned that instead of storing whether a read of

predetermined length is unique at a given genomic coordinate, it

would be more efficient to store the minimum length required for

each genomic coordinate to be uniquely mappable, which we call

the minimum unique length (MUL). To find the minimum unique

length for every position of a mammalian genome, we developed

an iterative re-mapping scheme as illustrated in Fig. 1 and Fig. S1.

By default we queried read lengths between 20 and 255

nucleotides (nt). The upper limit is chosen to enable efficient data

storage – a byte in a binary file can take on values between 0 and

255 – while the lower limit is chosen because sequence reads are

seldom shorter than 20 nt. At the same time, this range covers the

read lengths used in most genomic and transcriptomic studies. We

created MULTo files for the mouse and human genomes (mm9

and hg19, respectively), requiring only 2.5 Gigabytes of storage

(about the same size as Fasta files with uniqueness information for

one read length). Since each genomic coordinate is stored as a

number it makes queries at arbitrary locations and for arbitrary

read lengths both simple and efficient. The MULTo package also

includes a search function to easily retrieve the uniqueness for a set

of genomic regions.

Uniqueness profiles within transcribed regions
For transcriptome analyses, sequenced reads are required to be

unique in both the genome and transcriptome. We extended our

analyses to consider transcriptomes and to correctly handle splice

junctions. In expression level quantification, reads mapping to all

isoforms of a genomic locus are often being used to estimate gene

expression levels, whereas reads mapping to isoform-specific

regions can be used to deconvolute isoform expression levels.

We created transcriptome MULTo files for both purposes. For

gene expression quantification, a read was considered unique if it

mapped to one or more transcripts but at the exact genomic locus

(defined as having the same start or end coordinate after

converting the transcript coordinates to genomic coordinates).

Alternatively, we generated MULTo files with only reads that map

uniquely to one transcript variant, with a caution that the

uniqueness profiles are highly sensitive to the completeness of

the transcript annotations used. These two strategies are illustrated

in Fig. S2, and we used the less stringent (gene-level) files to

compensate for mappability when estimating expression levels.

We also estimated uniqueness information in paired-end

sequencing data, although the situation is more complex than

Figure 1. Schematic illustration MULTo file generation. (A) We
defined the minimum unique length (MUL) of a genomic coordinate as
the length of the shortest starting oligonucleotide at that coordinate
that is needed to be unique. To find the MUL value, Fasta files with
artificial ‘‘reads’’ of different lengths were iteratively created from whole
chromosome fasta files and mapped to the genome using bowtie.
When the minimum length needed for uniqueness was found, this
value was stored in a binary file. In this example, position 3000091 was
unique at 33 base pairs but not at 32, i.e. we have a MUL value of 33. (B)
Exemplifying that MUL values can be retrieved from arbitrary regions in
just a few lines of code.
doi:10.1371/journal.pone.0053822.g001

Minimum Unique Length Analyses
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for single-end read. In paired-end uniqueness one has to consider

not only read lengths but the insert length. Moreover, the insert

length for a sequencing experiment is never an absolute value but

rather a normal distribution of lengths. Therefore we first

simulated inserts lengths around a mean value, and then counted

the proportion of uniquely mapping across the inserts, before we

obtain an estimate of the proportion of unique positions within

each transcript (see methods).

Gene-level transcriptome uniqueness
Using mouse RefSeq transcript annotations, we explored the

fraction of genes with different proportions of uniquely mappable

positions in both single-read and paired-end data. We found that

the transcriptome effectively collapsed into two classes of gene-

level uniqueness, transcripts with high or low mappability

regardless of read lengths (Fig. 2a). Already at 50 nt, over 83%

of the transcripts were unique in 90% or more of its mappable

positions, and increasing the read length to 255 increased the

fraction of transcripts to 95%. Still, a few percent of transcripts

had no mappability even at 255 nt read lengths. With paired-end

information we found 93% of transcripts being unique at 90% or

more mappable positions for 50 nt reads and 500 nt inserts

(Fig. 2a).

Transcript-level transcriptome uniqueness
Exploring the transcript-level uniqueness for genes with two or

more isoforms, we found that most transcripts had very low

proportions of unique positions (Fig. 2b). At 50 nt only about 13%

of all transcripts had more than 25% unique positions. Using

paired-end data increased this percentage to 21% of transcripts,

and at 200 nt read lengths this percentage increase further to 28%.

Thus, both paired-end sequencing and longer read lengths are

important for analyses of isoform-specific expression level, but still

only a limited amount of fragments are directly informative. In

agreement with a recent paired-end RNA-Seq study [12], we

found that isoform-specific mappability increased with the insert

length in paired-end sequencing libraries (Fig. S3). Finally, we

examined the uniqueness across transcripts and found a fairly even

uniqueness profile with lower uniqueness in 39UTRs for shorter

read lengths (Fig. 2c).

The effect of uniqueness length compensation in RNA-
Seq

Our main motivation in creating the MULTo resource was to

be able to normalize expression values by the number of uniquely

mappable positions, regardless of the read length sequenced in a

particular experiment. We have recently published a flexible

program for expression level estimations (rpkmforgenes) that only

considers uniquely mapping reads and corrects the gene model

length for only uniquely mappable positions [13]. We incorporat-

ed the gene-leve uniqueness files from MULTo into rpkmforgenes

to allow for unique length normalization at any read length

(Sandberg lab RNA-Seq tools. Available: http://sandberg.cmb.ki.

se/rnaseq, Accessed Dec 12 2012).

To study the impact of uniqueness compensation on gene

expression level estimation, we compared RPKM values estimated

from uniquely mapping reads using either the full transcript

lengths (raw RPKM) or after correcting transcript lengths for

uniquely mappable positions (norm RPKM). Naturally, the lack of

proper uniqueness length compensation confounded the estimates

for lower expression levels. This is apparent from Fig. 3a, where

we plot differences in RPKM (norm/raw) at different read lengths.

To control the comparison for only length effects, we used a large,

Figure 2. Uniqueness in the transcriptome. (A, B) We calculated
the proportion of unique positions for each transcript, both for single
reads and paired-end fragments (mean 500 nt), and then plotted how
many transcripts have a certain proportion of unique positions. The y-
axis represents the proportion of all transcripts that satisfies the given
condition. (A) Gene-level uniqueness of all RefSeq transcripts. (B)
Transcript-level uniqueness for all transcripts from multi-isoform genes.
(C) Positional plot of the uniqueness proportion across all coding
transcripts. We calculated the number of reads of a specific length that
passes through each position, and determined what proportion of
these were unique. Since transcripts differ in length, we binned
positions together so that each region (upstream, downstream, coding
sequence, 59 and 39UTR) had the same number of bins for each
transcript. The x-axis represents coordinate bins across transcripts.
doi:10.1371/journal.pone.0053822.g002
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mixed-tissue, RNA-Seq dataset of 100 bp reads and iteratively

trimmed the Fastq reads from a 100 bp experiment down to the

shorter lengths. While most genes were not significantly affected by

the uniqueness normalization, we found 764 genes whose RPKM

values increased two-fold or more after mappability compensation

for 25 bp reads, and 162 genes for 100 bp reads. The overall

differences in RPKM increased with shorter read lengths (since

they have fewer uniquely mappable positions) and for particular

genes the expression difference can be more than 10-fold. The

ferritin heavy chain gene (FTH1) is an example of a gene highly

dependent on uniqueness normalization for correct expression

values (Fig. 3b–c). FTH1 has three paralogues with highly similar

sequence, resulting in only 42% of the positions in gene being

uniquely mappable at 25 base pairs. Uniqueness normalization for

FTH1 in our RNA-Seq data increased the RPKM more than 4-

fold (Fig. 3b), and visual inspection of the read coverage confirms

only reads at uniquely mappable positions (Fig. 3c). These results

show the importance of normalizing RNA-Seq data to the number

of uniquely mappable positions in a gene when estimating absolute

expression levels, especially when using short reads.

Comparing uniqueness compensation methods for RNA-
Seq

At least three different methods have been used to compensate

for the lack of uniqueness in RNA-Seq analyses although no study

has compared their compensation ability. We therefore sought out

to compare how these methods compensate for uniqueness on the

exact same RNA-Seq data. Using the MULTo files we derived the

proportion of uniquely mappable positions within each transcript

and we compared the effects of uniqueness compensation on

transcripts as a function of the numbers of uniquely mappable

positions. Accurate compensation methods should show gene

expression changes that followed the expected distribution (y = 1/

x, where x is the proportion uniquely mappable positions). We first

evaluated uniqueness compensation by discarding multimapping

reads and adjusting the gene models to only include uniquely

mappable positions (using rpkmforgenes). Comparing expression

levels (as RPKMs) generated with only uniquely mapping reads

and full (raw) or adjusted (norm) gene model lengths revealed that

essentially all genes followed the expected line (Fig. 4a), demon-

strating that gene expression estimates with rpkmforgenes generate

intuitive and accurate uniqueness compensation. The few points

that deviated from the line were likely the results of noise in the

separation of reads from multiple overlapping transcripts. Impor-

tantly, analyzing the uniqueness compensation as a function of the

numbers of uniquely mappable positions within transcripts

provides useful diagnostic and we next evaluate the two other

methods.

In the early ERANGE method [2], raw RPKM values were first

calculated based on uniquely mapping reads and full transcript

length, followed by the assignment of multimapping reads to the

most likely transcript of origin based on the raw RPKM. We

compared those raw RPKM values to those achieved by

ERANGE after multimapping correction. The comparison

revealed a partial compensation for uniqueness that followed the

expected distribution (y = 1/x), with a slight but widespread

underestimation of expression levels for transcript with lower

fractions of unique positions and a few outliers that were over-

estimated (Fig. 4b). A similar approach for multimapping

assignments is used in cufflinks, where they score the probability

Figure 3. Effects of uniqueness normalization on expression level. (A) Histogram showing how uniqueness compensation using MULTo
affects the RPKM values at different read lengths. The x-axis show the difference in gene expression between uniqueness compensated and
uncompensated expression levels. (B) RPKM values for FTH1 before and after uniqueness normalization. (C) Read coverage and uniqueness profile
across FTH1 for 25 nt reads. Uniqueness density was calculated as the proportion unique reads aligning to each genomic coordinate.
doi:10.1371/journal.pone.0053822.g003
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of each read to map to all its possible positions, and then calculate

expression levels as the likelihood of a transcript abundance, given

the set of uniquely mapping and multimapping fragments [11].

We computed expression levels in cufflinks (as FPKM using the

multi-read option) on the same alignment files and compared their

expression levels to the raw uncorrected levels that used only

uniquely mapping reads. Again, we found more variability in the

uniqueness compensation (Fig. 4c), with frequent outliers that were

either overestimated and a group of genes with low mappability

that failed to be compensated using the multimapping reads.

Although the computed gene expression values from these three

methods were in general agreement (Fig. 4d–e), a great deal of

variation was introduced by their respective methods for

uniqueness compensation, since the gene expression values derived

from only using uniquely mapping reads show much less

variability (Fig. S4a–b). In these comparisons we noted that

Cufflinks tends to overestimate the expression levels of short

transcripts (in particular those below 300 bp) (Fig. 4e), but this

disconcordance was not due to mappability, since Cufflinks

overestimated this class of transcripts using uniquely mapping

reads alone (Fig. S4c). Finally, the expression values in Cufflinks

depend upon the number of multimapping reads allowed in the

initial TopHat mapping. Some transcripts vary ten-folds in

expression from TopHat mappings that allowed for 20 or 255

multimapping reads (Fig. S4d).

Mappability profiles of genes and regulatory regions
The mappability of the genome is also relevant for analysis of

other types of sequencing data, including ChIP-Seq, (Chromatin

Immunoprecipation coupled with sequencing), DNAse hypersen-

sitive site and bisulfite sequencing. The ability to distinguish ChIP-

Seq peaks over background can be improved by mappability

normalization [9]. We investigated the patterns within regulatory

regions and compared those with annotated genes and intergenic

regions. Proximal promoters (here defined as the 1 kb upstream of

annotated transcript start sites), enhancer regions (exemplified by

p300 ChIP-Seq from embryonic forebrain, midbrain, limb and

embryonic stem cells), CpG islands and intragenic regions were

generally more unique that the intergenic region (Fig. 5a). We also

looked at the uniqueness pattern within gene regions, and found

introns to contain slightly less unique sequence while UTRs had

highest uniqueness (Fig. 5b). From these analyses we note that in

general, only a small increase in uniqueness is observed when

increasing read lengths above 50 nt, and for particular regions

such as CpG islands the increase in uniqueness levels off already at

25 nt. Therefore, analyses of regulatory regions do not require

particular long reads, but can benefit from using uniqueness

normalization in the peak calling as shown for ChIP-Seq data [9].

Bisulfite treatment of DNA converts unmethylated cytosines to

uracil and is widely used to map DNA methylation levels with

single nucleotide resolution. To achieve an unbiased mapping of

bisulfite sequencing reads to the genome, one first converts all

cytosines to thymidines in the reads and then aligns them to a

genome index generated from fully converted chromosomes

(effectively only containing A, G and T bases). We next

investigated how bisulfite treatment affected mappability, and

generated similar MULTo files for mouse and human bisulfite

converted genomes (see Methods). As expected, the mappability is

generally lower in the bisulfite-converted genome. However, for

reads longer than 35 nt, the difference in mappability between the

bisulfite and normal genome is quite low (Fig. 5c–d), consistent

with a recent study on bisulfite sequencing [14]. Since DNA

methylation of regulatory regions (enhancers, promoters and CpG

Figure 4. Comparison of uniqueness compensation methods for RNA-Seq. Scatter plots showing how gene expression values (RPKM) are
affected by uniqueness compensation for transcripts as a function of increasing proportion unique positions. (A) Uniqueness compensation with
MULTo corrected transcript lengths are close to optimal compensation line (y = 1/x) (B) ERANGE uniqueness compensation. (C) Cufflinks uniqueness
compensation. (D,E) MA-plots between MUL and ERANGE uniqueness compensation (D) and between MUL and cufflinks uniqueness compensation
(E) showing how gene expression differences correlate to the gene expression average. Short transcripts were colored red.
doi:10.1371/journal.pone.0053822.g004

Minimum Unique Length Analyses
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islands) affects gene expression [15,16], these regions are of special

interest when performing bisulfite sequencing. We found that these

regulatory regions are even less affected by loss of mappability

than intragenic or intergenic regions, or the genome as a whole

(Fig. 5c). We conclude that when using read lengths of 35 or

above, bisulfite conversion causes only a small decrease in

mappability

Discussion

RNA-Seq is becoming the gold standard for genome-wide

transcriptome analyses. When estimating absolute expression

levels within a sample, it becomes important that the length

normalization is faithfully recapitulating both the length of the

expressed transcript isoform [17] and that one carefully compen-

sates for uniqueness or multimapping reads. We demonstrated that

discarding multimapping reads and correctly adjusting the

transcript length to only consider uniquely mappable positions

achieved the most controlled compensation for uniqueness. These

results were in agreement with a recent comparison of RNA-Seq

derived expression levels with qRT-PCR data, where they found

that correction for uniquely mappable positions improves expres-

sion level estimations [5]. In the other methods, it is possible that

transcripts with low proportion of unique positions will obtain too

low raw RPKM and therefore have lower probabilities of

obtaining multimapping reads with the consequence of a final

underestimation of their expression levels. Although these analyses

focused on gene and transcript expression estimation, it is clear

that the uniqueness compensation will be equally important for

analyses of parts of transcripts, e.g. in exon inclusion levels [12].

Indeed, the importance of correct uniqueness compensation

should increase when estimating absolute expression or inclusion

of short transcript parts. Our results on mappability of paired-end

data as a function of read and fragment lengths are effects that are

intrinsic to previous analyses, which also added inference of

indirect isoform-specific information [12].

The uniqueness files we used throughout this study did not

consider mismatches. Although read alignment procedures often

allow for mismatches, only reads with a single ‘‘best’’ match are

normally kept and reads that instead map equally well to multiple

locations are discarded as multimapping reads. For example,

Bowtie users generate these alignments using the ‘‘best’’ and

‘‘strata’’ flags. Using uniqueness files where each chromosomal

coordinate has to be unique and more than a number of

mismatches away from the rest of the genome would likely be of

limited use since they are overly conservative and would lead to

unnecessary loss of sequence information. Finally, considering the

low error rates in base calling on commonly used sequencing

platforms (,1% on Illumina sequencers), it is unlikely that

sequencing errors alone would cause reads to map to wrong

locations.

Although the read length range used in these analyses has a

maximum of 255 nts, the same procedure can easily be extended

to include read lengths up to 65,536 nts by simply storing the

minimum unique length for each position in two bytes instead of

one.

There are however limitations in using a method that discard

multimapping reads. First, the approach is not as effective in

Figure 5. Uniqueness profiles within genomic regions. The proportions of unique positions within different regions were calculated for read
lengths in the range 20–255 nts. (A) Proportion unique positions in whole genome, within RefSeq genes, intergenic regions, known p300 binding
sites, proximal promoters and CpG islands. (B) Proportion unique positions within different parts of genes; exons, introns and UTRs. (C,D) Difference
in proportion unique positions between the regular and bisulfite converted genome. The y-axis in (C) and (D) represents the uniqueness proportion
in bisulfite genome subtracted from that in the regular genome. The vertical dashed line marks 35 nucleotide reads.
doi:10.1371/journal.pone.0053822.g005

Minimum Unique Length Analyses
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transcript reconstruction experiments, since non-unique regions

will get no coverage that will cause fragmented reconstructions.

Second, recently duplicated paralogues with no uniquely distin-

guishing positions will escape quantification. Therefore, we

propose that different uniqueness compensation approaches would

have to be used for expression level estimation and transcript

reconstruction.

The creation of uniqueness files is more challenging for paired-

end sequencing experiments, since the minimum unique length of

a pair of reads is dependent upon the fragment length distribution.

It is therefore not possible to get an absolute value of the minimum

unique length for each position, which preclude us from creating

genome-wide paired-end uniqueness files. Instead, paired-end

uniqueness files can be generated for specific genomic regions and

in this study we estimated the proportion of unique positions in

each transcript, still over a range of read lengths but at different

given mean fragments length distributions. This information is

well suited to normalize paired-end RNA-Seq data for uniqueness.

There are other next-generation sequencing applications where

it could be equally important to correct for the uniquely mappable

positions. Lack of uniqueness could potentially affect the ability to

identify peaks of reads in e.g. ChIP-Seq or DNAse-Seq applica-

tions. In general, we found a fairly high uniqueness in regulatory

regions indicating that mappability normalization might be more

important to avoid false positive peak calls than false negatives. We

also reasoned that bisulfite-Seq might be more dependent upon

uniqueness compensation due to the reduced complexity of the

genome, but we found only minor decrease in mappability for fully

converted reads. However, uniqueness compensation might be

more important when comparing peak strengths in data sets

generated with different read lengths.

Finally, we have made both scripts and MULTo files (for hg19

and mm9) available from our website (MULTo website. Available:

http://sandberg.cmb.ki.se/multo, Accessed Dec 12 2012). This

MULTo framework can be easily integrated into software to

leverage the use of accurate uniqueness compensation for RNA-

Seq and to eliminate the need to make uniqueness files for each

new read length encountered.

Materials and Methods

Generation of MULTo files
To determine the minimum unique length (MUL) for each

genomic position, we iteratively evaluate reads of different lengths

from each genomic coordinate for uniqueness in the genome.

Since we store the information of minimum read lengths in single

bytes, the range of read lengths is limited by the numbers a byte

can take on, i.e. 0–255. This range well covers the common read

lengths used for sequencing today, and as default we query read

lengths between 20 and 255. The program takes in a Fasta file for

each chromosome, and constructs a temporary Fasta file with

artificial reads from each genomic position which it then maps to

the genome with Bowtie [18]. We typically process a block of

10 M reads at a time, and we make sure to only obtain uniquely

mappable positions and allowing for no mismatches (2m 1 and –v

0 options in Bowtie). In the first round, we query uniqueness at the

maximum read length (255 by default) to be able to discard

everything that is multimapping at this length, and write zeros to

the genomic positions of these reads to indicate that they are not

mappable within the span of 20–255 nts. In the second round, we

query genome uniqueness at the minimum read length as above,

and all positions unique at this length can be left out from further

queries and we write 20 at each coordinate in the binary MULTo

files generated. To find the individual uniqueness of each genomic

coordinate in the range 20–255, we incrementally step up in read

length 25 nts at a time. In each such iteration, we first find the

multimapping reads at this length, and those that where unique

are queried for shorter read lengths, until the minimum required

read length for unique mapping is found (see more details in

Figure S2). This iterative procedure was run with multi-threading

both for each Bowtie mapping (where we use 15 processors) and

we run several chromosomes in parallel.

Creating Bisulfite MULTo files
To create bisulfite MULTo files we had to make some

modifications to the algorithm due to the fact that the two strands

will no longer be reverse complementary when all the Cs are

converted to Ts. Since Bowtie will by default map reads to both

strands, we instead had to create bisulfite converted genome

sequence for both the forward and reversed strand, and then build

bowtie indexes for both. Due to size limitations for input files to

the bowtie-index builder we had to create separate indexes for

forward and reverse strands. The genomic reads are therefore

mapped twice with bowtie for this application, once for each

strand. A read is first mapped to the strand it came from, using

option 2m 1 and –norc in Bowtie to suppress reports of

multimapping reads and reverse complementary mapping respec-

tively. When the read is mapped to the other strand, we use option

2k 1 instead of 2m 1. In this way multimapping is allowed, but

only the first valid alignment is reported to speed up the search. By

removing all reads that pass through the second mapping from the

ones from the first mapping we will only get the reads that were

unique left. By default two bisulfite MULTo files are created; one

for forward strand and one for reverse strand.

Creating Transcriptome MULTo files
The transcript MULTo files were based on reference annota-

tions (RefSeq by default). Reads are then created from these files

by the same approach as for the genome. Spliced transcripts are

generally around 1–3 kb in length, which means that every

transcript will generate a few thousand artificial reads. We found

that the speed of bowtie alignments for fewer reads was quite low.

The mapping time per read does not reach a plateau until 10

million reads or more are aligned in batch (data not shown).

Therefore we combined together around 10 million reads from

different transcripts and run them together through the algorithm,

only separating them at the step where minimum uniqueness read

lengths are saved to an array for each transcript.

To find the uniqueness of transcripts we need to align reads

both to the genome and to other transcripts, and we therefore

create a bowtie-index that contains both the full genome and

transcriptome. Since reads can often map to the exact same

(genomic) positions in several transcripts as well as to the genome,

we must allow multimapping in this approach (using the –a option

in Bowtie). Allowing multimapping will slow Bowtie down

significantly, and we therefore took measures to only perform

the least possible multimappings. This is achieved by maximally

allowing as many multimapping reads as the number of existing

overlapping transcripts for a genomic locus in the reference

annotation. We therefore used the flag 2m for bowtie to only

allow as many multimappings as the number of overlaps, plus one

for the genomic hit, since if there are more we can be sure that this

read was mapping to another region as well. The software package

includes a function for creating transcript Fasta files which also

determines the number of overlaps to other annotated genes and

sorts them into folders according to the number of overlaps.

We further separated uniqueness into a gene level and transcript

level uniqueness. For each multimapping read, we compared the
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genomic start and end positions of all matched locations to

determine whether they were all derived from the same genomic

locus. For transcript level uniqueness, only reads that map to

exactly one start position and one end position are considered

unique, while gene level MUL values only requires that all reads

map to the same start or end position. The uniqueness of each

transcript is stored in separate MULTo files.

Creating paired-end uniqueness files
An absolute minimum unique length cannot be determined for

paired-end data, due to differences in fragment length between

and within samples. Instead we create uniqueness files with an

estimation of the number of uniquely mappable positions in each

transcript for a range of read lengths, given a fragment length

distribution. MULTo assumes a normal distribution of fragment

lengths, where the mean and standard deviation is given as input

(default values are mean = 250, std = 25). Paired-end fragments are

simulated by drawing a number (5 by default) of random lengths

from the given Gaussian distribution for each position in the

transcript. Fragments with an end position outside the transcript

will be discarded. Mate pairs of different lengths are created from

these fragments and mapped to the genome by the same

algorithms as gene-level and transcript-level uniqueness queries,

but instead of saving a minimum unique length for each position,

the proportion of the fragments that are uniquely mapped at each

step is saved. When running bowtie, the minimum (2I) and

maximum (2X) insert size is given as mean 63 standard

deviations, which should cover 99.7% of all fragments in the

Gaussian distribution. For the default case this will be 2I 175 and

2X 325. An estimate of the unique length of the transcript at each

read length is then calculated as transcript length N (uniquely

mapped fragments/all fragments) and this is presented in the

output in a table format. Observe that read lengths close to the

mean fragment length is not very useful in this approach; since

bowtie discards mappings where mate1 and mate2 completely

overlap.

Alignment of RNA-Seq reads
We analyzed mixed-tissue data from the Illumina Human Body

Atlas 2.0 Project (GSE30611) that were sequenced for 100 bp

single-end, stranded reads. The raw reads in fastq files were

iteratively trimmed down to shorter read lengths to analyze the

effect of read length on mappability and expression level

estimation. Reads were aligned using TopHat against respective

genome assembly (hg19 and mm9) and raw junctions derived from

RefSeq annotations were provided. We initially allowed multi-

mapping (using –g 255) and two mismatches (2n 2) and then

identify the ‘‘best’’ match with the fewest number of mismatches.

Reads with only one best matching locations were considered

unique. The minimum anchor length for junction-spanning reads

was set to 4 nt.

Gene expression level estimation
Using rpkmforgenes, we generated RPKM expression levels

using only alignments files with uniquely mappable reads and

corrected the transcript lengths using a MULTo file with gene

level uniqueness superimposed upon the genomic uniqueness

information. The parameters used were: ‘‘-rmnameoverlap (to

ignore exons shared by multiple genes), -allmapnorm (to normalize

the depth against all mapped reads), -fulltranscript (to not remove

UTRs), -samse (fast option for unique SAM format, single-end,

with only uniquely mappable reads)’’. Expression level estimations

using cufflinks were based on alignment files with multimapping

read (however redundant mappings from trancriptomes and

genomes were removed). We used the –multi-read-correct flag in

cufflinks to get best possible weighting of reads mapping to

multiple locations. Expression levels for mouse tissues that were

estimated using ERANGE were downloaded [2]. We re-analyzed

their raw data (also trimming lengths to 25 nts) to generate

uniquely mapping reads for gene expression analyses in rpkmfor-

genes [13].

Gene and genomic region annotations
The gene annotations used for mappability profiles over

transcripts were based on RefSeq transcripts for mm9 assembly

downloaded from UCSC Genome Browser on July 3rd 2011. The

CpG island annotations were downloaded from UCSC Genome

Browser mm9 annotation track (30 August 2011). Cytoband

annotations were downloaded from dChip website (http://sites.

google.com/site/dchipsoft/home) on September 6th 2011.

Supporting Information

Figure S1 Schematic of the algorithm for finding minimum

unique length. (A) 255 nt reads are created from the 10 million

first positions, and mapped to the genome. Those positions that

did not have a uniquely mapping read will be represented by a

zero in an array, and later in the MUL-file. (B) The unique

positions at 255 are further mapped at 20 nt. Those unique at

20 nt will be represented by 20 in the array, and the non-unique

will be mapped at 45 nt (C). The reads that are non-unique at this

step will iteratively be mapped at 25 nt higher until uniqueness is

found. When uniqueness is found at this step, we know an upper

limit where the position is unique (kHigh), and a lower limit where

it is not unique (kLow). (D) We now go through the lengths

between kLow and kHigh to find the exact length at which the

position becomes unique. When the MUL value is found for all 10

million positions, the array is written to a binary file and the next

block of 10 million positions is queried.

(TIF)

Figure S2 Creating transcriptome MUL files. The spliced

transcript sequence is fetched from the genomic sequence into

new Fasta files, from which Fasta files with artificial reads are

created for mapping against the genome and transcriptome. A

read is considered unique at ‘‘gene level’’ if it maps to only one

genomic locus (same start or end position), while it is considered

unique at ‘‘transcript level’’ only when it maps to only one

transcript.

(TIF)

Figure S3 Uniqueness at single read and two lengths of paired-

end fragments. (A) Proportion unique positions from all transcripts

at gene-level. (B) Proportion unique positions from all multi-

isoform genes at the transcript-level.

(TIF)

Figure S4 Comparisons between raw RPKM values. (A)

Cufflinks RPKM values from only unique reads are in general

similar to our raw RPKM values, except for a subset with higher

RPKM in Cufflinks. (B) ERANGE raw values were more

consistently similar to our raw values. (C) The subset of higher

RPKMs in Cufflinks was due to Cufflinks overestimating the

expression of short transcripts. (D) Comparison of cufflinks result

when allowing a maximum of 255 or 20 multi hits.

(TIF)
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