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Abstract

Purpose: This study aims to explore gene expression signatures and serum biomarkers to predict intrinsic chemoresistance
in epithelial ovarian cancer (EOC).

Patients and Methods: Gene expression profiling data of 322 high-grade EOC cases between 2009 and 2010 in The Cancer
Genome Atlas project (TCGA) were used to develop and validate gene expression signatures that could discriminate
different responses to first-line platinum/paclitaxel-based treatments. A gene regulation network was then built to further
identify hub genes responsible for differential gene expression between the complete response (CR) group and the
progressive disease (PD) group. Further, to find more robust serum biomarkers for clinical application, we integrated our
gene signatures and gene signatures reported previously to identify secretory protein-encoding genes by searching the
DAVID database. In the end, gene-drug interaction network was constructed by searching Comparative Toxicogenomics
Database (CTD) and literature.

Results: A 349-gene predictive model and an 18-gene model independent of key clinical features with high accuracy were
developed for prediction of chemoresistance in EOC. Among them, ten important hub genes and six critical signaling
pathways were identified to have important implications in chemotherapeutic response. Further, ten potential serum
biomarkers were identified for predicting chemoresistance in EOC. Finally, we suggested some drugs for individualized
treatment.

Conclusion: We have developed the predictive models and serum biomarkers for platinum/paclitaxel response and
established the new approach to discover potential serum biomarkers from gene expression profiles. The potential drugs
that target hub genes are also suggested.
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Introduction

Epithelial ovarian cancer, which accounts for over 90% of all

ovarian cancers, occurs most commonly in sixth and seventh

decades of postmenopausal women and is a leading cause of

cancer death among women in developed countries [1]. In the

United States, there were approximately 21,990 new cases of

ovarian cancer diagnosed and 15,460 deaths in 2011 [2]. Primary

cytoreductive surgery followed by postoperative chemotherapy is

considered the standard of care for advanced ovarian cancer [3].

First-line chemotherapy with platinum and paclitaxel agents is

capable of achieving a complete response (CR) in the approxi-

mately 70% of patients with advanced disease [4]. However, about

30% patients do not respond to these drugs and even the patients

who initially respond to first line chemotherapy frequently relapse

and eventually become resistant to those agents.

How to predict chemotherapeutic resistance and even more

importantly, how to reverse the resistance are clinically challenged.

One of approaches is to identify predictive biomarkers especially

those biomarkers that could be also therapeutic targets. Gene

expression profiling technology was used to identify chemoresis-

tance-related biomarkers [5–13]. However, to date, no gene

expression signature has been proved to be sufficiently effective in

predicting chemoresistance in clinical practice, which is largely

due to inappropriate sample inclusion and/or small sample size

used in the studies.

To address this challenge, we critically selected and assessed 322

serous ovarian cancer patients only with CR or progressive disease
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(PD) to platinum/paclitaxel-based therapy from The Cancer

Genome Atlas (TCGA) project to identify gene expression

signatures associated with chemoresistance. By using supervised

principal components method, a 349-gene predictive model and

an 18-gene de-correlated model independent of patient age, stage,

debulking status or tumor stages were developed for chemoresis-

tance prediction. Further, to identify serum chemotherapeutic

biomarkers for more practically clinical application, we combined

our 322-gene expression profile and four previous findings, which

were selected based on the strict criteria of gene expression profile

of the epithelial ovarian cancer, validation, appropriate sample

size, and treatment response prediction of first line chemotherapy.

We found ten serum biomarkers that have predictive value for

primary response to first-line chemotherapy. In the end, several

drugs that could target hub genes in our models were suggested.

Our results provide a platform for the selection of the most suitable

drugs for a better treatment outcome of those patients resistant to

platinum/paclitaxel-based chemotherapy.

Patients and Methods

Ethics Statement
We are free to use ovarian cancer data in TCGA by meeting its

freedom-to-publish criteria: A marker paper has been published

on that tumor type. The Research Ethics Committee of Peking

University Cancer Hospital & Institute waived the requirement for

ethical approval of this analysis because the registry is a de-

identified database. Written consents were obtained from all alive

patients.

Table 1. Clinicopathological Characteristics of Ovarian Cancer Patients.

Characteristics
Clinical Complete
Responders (n = 287)

Progressive Desease
(n = 35) p-value

Mean age, years 58.76655 59.91429 0.574a

Stage(FIGO), No. of patients 0.065b

II 20 0

III 228 26

IV 39 9

Grade, No. of patients 0.484b

2 35 6

3 251 29

4 1 0

Surgical debulking, No.of patients 0.001b

None 70 2

#1 cm 138 16

1 cm,2 cm 13 6

.2 cm 38 10

Unknown 28 1

First-line chemotherapy 1b

Platinum-based Taxane (paclitaxel or docetaxel) 283 35

Unknown 4 0

Abbreviations: FIGO = Fe’de’ration Internationale de Gyne’cologie et Obste’trique;
aMann-Whitney test.
bFisher’s exact test.
doi:10.1371/journal.pone.0052745.t001

Table 2. Selection of the previously published gene signatures associated with response to platinum/Paclitaxel-based treatment
(2005 to 2011).

Publication Platform No.of genes Samples investigated Journal

Dressman et al, 2007 Affymetrix Human U133A GeneChip 1388 119 advanced-stage serous ovarian cancers J Clin Oncol

Helleman et al, 2006 18K cDNA microarrays 68 96 primary ovarian adenocarcinoma(mainly
serous)

Int J Cancer

Jazaeri et al, 2005 Combined two cDNA microarrays
contained 32,448 and 7,585 features
each

85 21primary chemosensitive tumors and 24
primary chemoresistant tumors(mainly serous)

Clin Cancer Res

Ju et al, 2009 Affymetrix Human U133A GeneChip 100 5 primary chemosensitive tumors and 8
primary chemoresistant tumors

Oncol Res

doi:10.1371/journal.pone.0052745.t002
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Patients and Tissue Samples
A total of 322 patients with high-grade serous ovarian cancer

were carefully selected from TCGA database (National Cancer

Institute. The cancer genome atlas data portal. http://tcga-data.

nci.nih.gov/tcga/findArchives.htm. Accessed September 1, 2011).

Detailed information of the selected patients including age at

diagnosis, tumor stage, grade and debulking status are listed in

Table 1. All ovarian cancer specimens’ information and clinical

definitions were previously described [14]. All selected patients

received a first-line platinum/paclitaxel-based treatment except

that four patients’ treatment regimen was unknown. The 322

samples were randomly divided into training (n = 200) and testing

sets (n = 122). In the training set, 177 of 200 patients demonstrated

CR and 23 of 200 patients demonstrated PD to primary

platinum/paclitaxel-based therapy after surgery. In the testing

set, 110 of 122 patients had CR and 12 of 122 patients had PD to

platinum/paclitaxel-based treatment.

Selection of Related Studies Published Previously
In order to find previous studies closely related to our study, we

searched online databases from 2005,2011 with strict criteria: the

same cancer subtype, validation, appropriate sample size, and

treatment response prediction of first line chemotherapy. Four

studies were identified [6,8,10,11] and their detailed information

was listed in Table 2. For the validation of our signature genes, 3

datasets [15–17] from NCBI GEO database [18] were download-

ed. These 3 datasets are all gene expression profiles of

chemoresistant ovarian cancer cell lines ‘A2780-resistant’ and

parental cell line ‘A2870’, which were independently generated by

3 different groups. There are 5, 3 and 6 replicates in datasets

GSE15372, GSE28646, and GSE33482 respectively. Genes that

are closely related to platinum/paclitaxel treatment response are

also searched on the CTD database.

Gene Expression Profiling Analysis
Gene expression profiling data (level 3) of 322 serous ovarian

cancer samples were obtained from the TCGA Data Portal. The

profiling of all the samples was performed on the Human U133A

Gene Chip (Affymetrix, Santa Clara, CA).

Bioinformatics and Statistical Analysis
The supervised principal components method was employed for

generating a general predictive gene model and a gene model that

is independent of key clinical features including age, stage,

debulking status, and grade (de-correlated model). The analysis

above was conducted using superpc package [19] in R 2.14.0 (R

Foundation for Statistical Computing [http://www.r-project.org/

]). The differentially expressed genes in 3 GEO dataset were also

computed in R. We used ChEA for transcription factor analysis

[20], DAVID and Clone/Gene ID Converter for gene annotation

[21,22], and GATHER for pathway enrichment analysis [23].

GNCpro (http://gncpro.sabiosciences.com/gncpro/gncpro.php),

C3NET package [24] in R 2.14.0, MiMI plugin [25], and

GeneMANIA [26] plugin in Cytoscape [27] were employed to

explore and plot gene-gene interaction network and transcription

factor network as well as top ten genes’ interaction network and

gene-drug interaction network.

Standard statistical tests were used to analyze the clinical and

gene expression profiling data, including the x2 test, fisher exact

test and independent samples t-test. Significance was defined as a p

value of less than 0.05. Benjamini-Hochberg multiple testing

correction was used to estimate the false discovery rate in the

pathway analysis [28]. Receiver operating characteristic (ROC)

curve and Area Under the Curve (AUC) were used for signature

predictability evaluation. Analyses were primarily performed using

R and SPSS version 18 (SPSS Inc, Chicago, Illinois).

Results

Development of Predictive Models Associated With
Chemotherapeutic Response

To identify a gene expression signature that predicts response to

chemotherapy and thus help determine the most appropriate

regimen for personalized treatment, a 349-gene predictive model

and an 18-gene de-correlated model were developed from the

training set using superpc package in Bioconductor (Fig. 1).

Specifically, first we computed the univariate regression score of

each feature (12042 genes) in regard to patient’s treatment

outcome (CR or PD). Then we performed a 10 fold cross-

Figure 1. Work flow of the study design. The 322 high-grade
serous ovarian cancer cases were randomly divided in the training set
(200 samples) and the testing set (122 samples). The training set was
used to generate the predictive model and de-correlated model that is
independent of key clinical features. Then these two models were
validated using the testing set. Next we used 3 datasets from GEO
database to validate signature genes in our findings. To explore
potential biomarkers in serum, we combined signature genes in these
two models with genes previously reported in four previous studies and
queried these genes in DAVID database. Seventy-seven genes encoding
secretory proteins were identified (Table S3). The predictability of those
genes for chemotherapeutic response was then tested individually
using the data from all 322 samples. Finally, we performed a functional
analysis on those signature genes and suggested some drugs that
could target the hub genes in our findings.
doi:10.1371/journal.pone.0052745.g001
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validation to find out the best threshold and to form a reduced

data matrix consisting of only those features whose score exceeds a

threshold (in our case, the best threshold is 1.26). Then we

performed principal component analysis to find out the most

significant gene set for prediction of treatment response. It turns

out the first principal component containing 349 features is the

best (p = 0.025). In order to keep the strongest power in prediction

of response, we didn’t do the shrinkage. Finally, the most

significant principal component in a regression model was used

to predict the treatment outcome. Similarly, in case of developing

de-correlated model, first we fitted a linear model to key clinical

features (age, stages, debulking status, and grade) as competing

predictors, and then we replaced these features by the residual

from this fit. In the superpc model building process, these ‘de-

correlated’ features are used to explicitly look for predictors which

are independent of key clinical features. We chose the threshold

1.85 and the first principal component contains 18 features with

p = 0.001. Since 18-gene model is a small gene set, we didn’t do

the shrinkage either.

As shown in Fig. 2, the 349-gene signature had an AUC = 0.826

(p,0.001) in the training set (Fig. 2A) and AUC = 0.702 (p = 0.022)

in the testing set (Fig. 2B). The 18-gene de-correlated signature

had an AUC = 0.775 (p,0.001) in the training set (Fig. 2C) and

AUC = 0.614 (p = 0.197) in the testing set (Fig. 2D). In the 349-

Figure 2. ROC curves of the two predictive models in the training set and the testing set. (A) ROC curve of the 349-gene predictive model
in training set (200 samples, AUC = 0.826; p,0.001. (B) ROC curve of the 349-gene predictive model in the testing set (122 samples, AUC = 0.702;
p = 0.022). (C) ROC curve of the 18-gene de-correlated predictive model in the training set (200 samples, AUC = 0.775; p,0.001. (D) ROC curve of the
18-gene de-correlated predictive model in the testing set (122 samples, AUC = 0.614; p = 0.197).
doi:10.1371/journal.pone.0052745.g002
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gene model, 30 most weighted genes were listed in Table 3 (We

determined the top 30 genes by the rank of importance-score of

each gene in Fig. S6, which was computed for each gene equal its

correlation with the supervised principal component predictor. See

Table S1 for all genes’ information in this model) and 18 genes in

the 18-gene de-correlated model were listed in Table 4 (important-

score of each gene is listed in Fig. S7).

Based on these results, the 349-gene model had high sensitivity

and specificity in both the training set and the testing set. The 18-

gene de-correlated model had good sensitivity and specificity in

the training set, but relatively low sensitivity and specificity in the

testing set.

Functional Analysis of the Signature Genes from the Two
Predictive Models

To understand the biological roles of the signature genes from

the 349-gene predictive model and the 18-gene de-correlated

model involved in chemoresistance, we performed three types of

analyses. First, we conducted a gene-gene interaction network

analysis to identify hub genes in the 349-gene model using MiMI

plugin in Cytoscape (Fig. 3). By defining hub genes as genes that

interact with at least three other genes, ten hub genes were

identified (Table 5), of which UBE2I (Ubiquitin-conjugating

enzyme E2I) [29,30], CASP3 (Caspase 3, apoptosis-related

cysteine peptidase) [31] and MAPK3 (Mitogen-activated protein

kinase 3) [32,33] are closely associated with platinum/paclitaxel-

based chemotherapeutic response.

Considering that most changes in gene expression are regulated

by upstream regulatory transcription factors and/or signaling

genes, we then searched on ChEA for transcription factors that

could regulate the 349 genes. Twenty nine transcription factors

with statistical significance (p,0.01) were found (Table S2). Based

on different interaction types, we constructed an interaction

network of these transcription factors (Fig. S5).and performed a

pathway enrichment analysis using these factors. We found that six

Table 3. Top 30 weighted genes in 349-gene signature.

Gene Symbol Description Function

C6orf120 Chromosome 6 open reading frame 120 Secreted, signal, extracellular region

BLMH Bleomycin hydrolase response to toxin, response to drug

ACTR6 ARP6 actin-related protein 6 homolog (yeast) Actin/actin-like

USP21 Ubiquitin specific peptidase 21 positive regulation of transcription, chromatin modification

NIT1 Nitrilase 1 nitrilase activity, hydrolase activity

VPS72 Vacuolar protein sorting 72 homolog (S. cerevisiae) negative regulation of gene expression, chromatin regulator

KIAA0859 KIAA0859 methyltransferase, tumor promoter

GTF2H5 General transcription factor IIH, polypeptide 5 DNA repair,response to DNA damage stimulus

PIGC Phosphatidylinositol glycan anchor biosynthesis, class C protein amino acid lipidation, GPI anchor metabolic process

C1orf25 Chromosome 1 open reading frame 25 tRNA (guanine) methyltransferase activity, ion binding

TBP TATA box binding protein transcription regulation,CARM1 and Regulation of the Estrogen Receptor

NCSTN Nicastrin positive regulation of apoptosis, Notch signaling pathway

SF3B4 Splicing factor 3b, subunit 4, 49 kDa RNA splicing factor activity, transesterification mechanism

SCAMP3 Secretory carrier membrane protein 3 response to extracellular stimulus, protein transport

MTX1 Metaxin 1 establishment of protein localization, intracellular transport

C1orf27 Chromosome 1 open reading frame 27 oxidation reduction, metal ion binding

RHOT1 Ras homolog gene family, member T1 microtubule-based transport, programmed cell death,small GTPase mediated
signal transduction

ZNF200 Zinc finger protein 200 regulation of transcription, transition metal ion binding

SCNM1 sodium channel modifier 1 mRNA processing, transition metal ion binding

DDX23 DEAD (Asp-Glu-Ala-Asp) box polypeptide 23 mrna processing, cellular macromolecular complex assembly

SSR2 Signal sequence receptor, beta (translocon-associated
protein beta)

establishment of protein localization, intracellular transport,signal sequence
binding

ENSA Endosulfine alpha response to extracellular stimulus, ion channel inhibitor activity

PDCD2 Programmed cell death 2 apoptosis, dna-binding, metal-binding

TIMM17B Translocase of inner mitochondrial membrane 17
homolog B (yeast)

protein localization

NFS1 NFS1 nitrogen fixation 1 homolog (S. cerevisiae) sulfurtransferase activity,cysteine metabolic process

GNPDA1 Glucosamine-6-phosphate deaminase 1 alcohol catabolic process, amino sugar catabolic process

NKIRAS2 NFKB inhibitor interacting Ras-like 2 I-kappaB kinase/NF-kappaB cascade,small GTPase mediated signal transduction

ENOPH1 Enolase-phosphatase 1 Cysteine and methionine metabolism

TTC31 Tetratricopeptide repeat domain 31 unknown

NUDT9 Nudix (nucleoside diphosphate linked
moiety X)-type motif 9

purine nucleotide metabolic process, ion transport

doi:10.1371/journal.pone.0052745.t003
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Table 4. The 18 signatured genes in the 18-gene de-correlated model.

Gene Symbol Gene Name Function

AFF1 AF4/FMR2 family, member 1 positive regulation of gene expression, Proto-oncogene

AFM afamin serum transport proteins

CLCA4 chloride channel accessory 4 calcium-activated chloride channel

CXXC4 CXXC finger 4 chemotherapy resistance, metal-binding

ESR2 estrogen receptor 2 (ER beta) negative regulation of apoptosis,metal-binding, dna-binding

HSD17B2 hydroxysteroid (17-beta) dehydrogenase 2 response to chemical stimulus

LMO1 LIM domain only 1 (rhombotin 1) cell proliferation,apoptosis regulation, Proto-oncogene, metal-binding

MVK mevalonate kinase isoprenoid and sterol synthesis,atp-binding

OPCML opioid binding protein/cell adhesion molecule-like tumor suppressor, cell adhesion

PAPPA PAPPA antisense RNA (non-protein coding);
pregnancy-associated plasma protein A, pappalysin 1

wound healing and angiogenesis, metal-binding

PDCD1LG2 programmed cell death 1 ligand 2 regulation of immune system process

PSMD4 proteasome (prosome, macropain) 26S subunit, non-ATPase, 4 mitotic cell cycle, metal-binding, rna-binding, atp-binding

RNASEL ribonuclease L (29,59-oligoisoadenylate synthetase-dependent) tumor suppressor, metal binding

SEMA4F sema domain, immunoglobulin domain (Ig), transmembrane
domain (TM) and short cytoplasmic domain, (semaphorin) 4F

regulation of cell growth

SLC17A7 solute carrier family 17 (sodium-dependent inorganic
phosphate cotransporter), member 7

ion transport, cell junction

TNFSF11 tumor necrosis factor (ligand) superfamily, member 11 regulation of cell apoptosis

TRIM15 tripartite motif-containing 15 metal-binding

ZP2 zona pellucida glycoprotein 2 (sperm receptor) cell-cell recognition, microenvironment

doi:10.1371/journal.pone.0052745.t004

Figure 3. Ten hub genes in the 349-gene signature. Genes that interact with at least three other genes were selected, among which UBE2I,
CASP3 and MAPK3 are important molecules that are involved in ovarian cancer progression or chemoresistance. Detailed information of these ten
hub genes are listed in Table 4.
doi:10.1371/journal.pone.0052745.g003
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pathways were most related to eight of the 29 transcription factors,

including MAPK signaling pathway (p = 0.0007), TGF-beta

signaling pathway (p = 0.001), cell cycle (p = 0.001), Wnt signaling

pathway (p = 0.003), focal adhesion (p = 0.007), and cell prolifer-

ation (p = 0.02). These pathways may play important roles in

chemoresistance in ovarian cancer. Detailed information of the

transcription factors are listed in Table 6 and Table S2.

The gene-gene interaction network of the 18-gene model was

built by C3NET in Bioconductor (Fig. S6A), in which 17 genes

have physical interactions with the other genes. To gain a more

complete picture of the 18 genes and their interacting neighbors,

we constructed a network using GNCpro (Fig. S6B), in which 11 of

18 genes have interactions with the other genes and PAPPA,

TNFSF11, and ESR2 are important hub genes in the 18-gene

model. As shown in Fig. S6B, TNFSF11 up-regulates critical

transcription factors such as JUN, SRC and AKT1, ESR2 has

physical interactions with SP1, AKT1 and SRC, and PAPPA

modifies IGFBP4 [34–40].

Hunting for Potential Serum Biomarkers for
Chemotherapeutic Response

Since serum biomarker is most conveniently detected in clinics,

we sought to set up a new way to identify potential serum

biomarkers for chemotherapeutic response from gene expression

profiles by targeting genes encoding secretory proteins. We

integrated genes in 349-gene model and 18-gene model and those

genes from the four previous studies and searched for genes

encoding the secretory proteins in DAVID database (Fig. 1). As a

result, 77 genes were identified to encode the secretory proteins

that could be secreted into the serum (Table S3). We then tested

the predictive values of these genes individually for chemothera-

peutic response using the 322 gene expression profiling data and

computed the AUC value of these genes (Table S4). Top ten genes

with highest AUC values (Table 7) were found to have the ability

to discriminate the CR group from the PD group (p,0.05), of

which AFM has been reported to be an independent serum

biomarker of CA125 for the prediction of ovarian cancer

progression by comparative proteomics analysis [41,42].

Functional Analysis of Potential Serum Therapeutic
Biomarkers

To further investigate the roles of the top ten serum biomarkers

in chemotherapeutic response, we constructed a gene/protein

interaction network using GNCpro. As shown in Fig. 4A, IL1RL1,

PRG4, AFM, GIP and COMP appeared to be critical hub genes

since they could interact with the genes known to be involved in

chemoresistance. For example, AFM seems to interact indirectly

with MUC1, ESR1, and BRCA1 that are known to contribute to

the resistance to the platinum/paclitaxel-based treatment (Fig. 4B).

Further validation of genes in our signature, hub genes
and potential serum biomarkers

We further validated genes in our signature, hub genes and

potential serum biomarkers in 3 more ways. First, we use 3

different datasets (GSE15372, GSE28646 and GSE33482) from

NCBI GEO database to validate our data. These 3 datasets are all

gene expression profiles of chemoresistant ovarian cancer cell lines

‘A2780-resistant’ and parental cell line ‘A2870’, which were

generated by 3 different groups. There are 5, 3 and 6 replicates in

datasets GSE15372, GSE28646 and GSE33482, respectively.

Differentially expressed genes in these 3 dataset were computed

and displayed in Table S8. We use the Venn diagram to show the

overlap between our signature genes and those differentially

expressed genes (Fig. 5). 133 genes of 349-gene model, 9 genes of

18-gene model, 7 of 13 hub genes and 5 of 10 potential serum

Table 5. Ten hub genes in the 349-gene signature.

Gene Symbol Description Function

UBE2I Ubiquitin-conjugating enzyme E2I mitotic cell cycle, negative regulation of gene expression

SMARCE1 SWI/SNF related, matrix associated, actin
dependent regulator of chromatin, subfamily e, member 1

negative regulation of transcription, chromatin modification

CASP3 Caspase 3, apoptosis-related cysteine peptidase response to tumor necrosis factor, regulation of cell proliferation

DISC1 Disrupted in schizophrenia 1 microtubule organizing center

ARHGEF11 Rho guanine nucleotide exchange factor (GEF) 11 regulation of cell growth, regulation of apoptosis

CENTD2 Centaurin, delta 2 promote tumor survival

RHOT1 Ras homolog gene family, member T1 microtubule-based transport, programmed cell death,small GTPase
mediated signal transduction

ARHGAP6 Rho GTPase activating protein 6 negative regulation of cell-matrix adhesion, small GTPase mediated
signal transduction

ARHGEF9 Cdc42 guanine nucleotide exchange factor (GEF) 9 induction of apoptosis by extracellular signals, regulation of Ras protein
signal transduction

MAPK3 Mitogen-activated protein kinase 3 Ras protein signal transduction, cell cycle

doi:10.1371/journal.pone.0052745.t005

Table 6. Six enriched pathways of 29 transcription factors
derived from the 349-gene model.

Annotation
Transcription
Factors p-value

MAPK signaling pathway ELK1 JUN MYC 0.0007

TGF-beta signaling pathway E2F4 MYC 0.001

Cell cycle E2F1 E2F4 0.001

Wnt signaling pathway JUN MYC 0.003

Focal adhesion ELK1 JUN 0.007

Cell proliferation AR E2F1 E2F4 ESR1
ETS1 MYC

0.02

doi:10.1371/journal.pone.0052745.t006
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biomarkers are overlapped with differentially expressed genes from

those 3 datasets (Fig. 5A, 5B, 5C, and 5D, respectively).

Meanwhile, we searched CTD database for genes that could

associated with sensitivity to platinum/paclitaxel-based drugs

(Table S5), then the overlap between our signature genes and

searched results was also presented (Fig. S4C). 30 of 349-gene

model, 3 of 18-gene model and 4 of 13 hub genes are overlapped

with searched results.

In addition, we presented the overlap between our signature

genes and those signature genes from 4 literatures (Fig. S3 and

S4B). 16 genes of 349-gene model, 0 genes of 18-gene model, 1 of

13 hub genes, and 2 of 10 potential serum biomarkers are

overlapped with gene signatures from 4 previous publications

(Table S9). However, as we can see from Figure S4D, signature

genes from literatures in Table 2 also shown little overlap among

them. This may due to their relatively small sample size, different

standard of sample selection, or different methods to develop

predictive models.

Construction of Gene-drug interaction network and gene
targeting drug suggestion

Since we already got key transcription factors and hub genes, we

might want to know which drugs could target these genes in order

to reverse the resistance to platinum/paclitaxel-based treatment.

By searching on The CTD and NCBI Pubmed Database, several

drugs and specific inhibitors were found to interact with our key

transcription factors and hub genes. By combining these results,

we build a key transcription factor-drug interaction network (Fig.

Table 7. Area Under the Curve (AUC) of Top Ten genes (p,0.05) that encode secretory proteins.

Gene AUC Std. Errora Asymptotic Sig.b Asymptotic 95% Confidence Interval

Lower Bound Upper Bound

CLPS 0.637 0.041 0.008 0.556 0.718

C1orf56 0.636 0.048 0.009 0.542 0.730

AFM 0.630 0.055 0.012 0.523 0.737

GIP 0.618 0.052 0.022 0.515 0.721

PRG4 0.618 0.052 0.023 0.515 0.721

CPA2 0.617 0.046 0.024 0.527 0.707

FOLR1 0.613 0.047 0.029 0.521 0.705

IL1RL1 0.608 0.046 0.037 0.518 0.699

COMP 0.604 0.055 0.045 0.496 0.711

C6orf120 0.602 0.050 0.048 0.504 0.700

Abbreviations: Std.: standard. Sig: significance.
aUnder the nonparametric assumption;
bNull hypothesis: true area = 0.5.
doi:10.1371/journal.pone.0052745.t007

Figure 4. Hub genes and gene-gene interaction networks of top ten secretory protein-encoding genes. (A) Hub genes and neighboring
genes of top ten secretory protein-encoding genes. (B) AFM was exemplified to show potential mechanisms of the top ten secretory protein-
encoding genes probably involving in chemoresistance.
doi:10.1371/journal.pone.0052745.g004
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S7) and a hub gene-chemical interaction network (Fig. 6), which

not only show us which chemicals can inhibit these key

transcription factors and hub genes, but also tell us how these

genes could increase or decrease the susceptibility of chemother-

apeutic drugs. For example, ESR2 could increase the patient’s

susceptibility to Cisplatin, Etoposide and Raloxifene, while

Gefitinib could increase the expression of ESR2. MAPK3 could

decrease the patient’s susceptibility to Doxorubicin, Dacarbazine

and Estrogens, while Gefitinib and Cisplatin could decrease the

expression of MAPK3, which suggested Gefitinib might be a good

drug for platinum/paclitaxel-resistant patients.

Discussion

Prediction of chemotherapeutic response is always a challenging

clinical task. Many efforts have been conducted to find gene

expression signatures to discriminate different responders using the

high-throughput technology. However, none of those gene

signatures is formally used in clinics. Possible reasons might be

lacking of critical sample selection or small sample size. Our study

and 4 previous publications listed in Table 2 are all aimed to find

out gene signatures for predicting platinum-based treatment

outcome of serous ovarian cancer. And there are several genes

overlapped between our signature genes and those signature genes

from previous publications. However, there are several differences

among ours and those 4 publications. The statistical methods for

developing models we use (Dressman et al. shotgun stochastic

search [10], Ju et al. manually select top differentially expressed

genes [11], Helleman et al. BRB & SAM [8], and Jazaeri et al.

BRB [6]), sample size, and selection standard are not the same.

Our model size (349-gene signature) is more appropriate

compared with Dressman et al. (1704 probes representing 1388

genes). Although Ju et al., Helleman et al. and Jazaeri et al have

smaller model size (100, 68, and 85 respectively), they either had

small training set or merely used top differentially expressed genes

as predictors.

In conclusion, our signatures are novel compared to the 4

previous publications (Table 2) in 4 aspects: 1) We have a bigger

sample size (322 compared with 119, 96, 45 and 13), which are

more convincible in developing predictive models. 2) We have a

better sample selection (just using CR and PD samples and mainly

focusing on platinum/paclitaxel resistance). 3) In order to find out

which genes are truly related to treatment outcomes and to

exclude the potential bias of those key clinical features, we

developed a de-correlated model which was novel. 4) We

employed supervised component analysis to develop 349-gene

signature and 18-gene signature, which is different from that just

using highest differentially expressed genes (Ju et al.).

To further elucidate the biological contribution of those

signature genes to treatment outcomes, we built the regulatory

networks to identify critical hub genes and signaling pathways

differentially present in the CR and PD groups. Among the ten

Figure 5. Venn diagram showing the overlap between our signatures genes and 3 external datasets from NCBI GEO database. The
Venn diagram shows how much genes in the 349-gene model (A), 18-gene model (B), hub genes (C), and top 10 serum biomarkers (D) are overlapped
with 3 external datasets GSE15372, GSE28646 and GSE33482.
doi:10.1371/journal.pone.0052745.g005
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hub genes identified in the 349-gene model, UBE2I is correlated

with histological subtypes of EOC [43], CASP3 is the most

important marker of apoptosis [44], and MAPK3 plays a crucial

role in EOC progression. The other genes (SMARCE1, DISC1,

CENTD2, RHOT1, ARHGAP6, ARHGEF9 and ARHGEF11)

are also involved in cancer progression or chemoresistance [45–

49].

Since gene expression profiles are noisy and it is hard to find

most significant pathways by doing the pathway enrichment

directly, we set up a new strategy to solve this problem. Our

strategy is based on two aspects: 1) most gene expression changes

are regulated by transcription factors and 2) the action of

transcription factors is relatively less noisy. By this approach, we

found that the genes in the 349-gene model are regulated by 29

transcription factors that are enriched in the six critical pathways,

including MAPK, TGF beta, Wnt, cell cycle, Focal adhesion, and

cell proliferation signaling pathways. The association of these

pathways with the response to chemotherapy or cancer progres-

sion has been reported in previous studies [50–58]. The hub genes,

transcription factors and critical signaling pathways we identified

could be potential targets for drug design after further validation.

One important feature of an ideal biomarker is easy to detect.

We thus developed a new approach to screen chemotherapeutic

biomarkers that could be detected in the serum. We found ten

genes encoding secretory proteins that have the ability to separate

CR from PD and thus could be potential serum biomarkers for

predicting the response to the platinum/paclitaxel-based treat-

ment in EOC. AFM identified in the study was reported to be an

independent diagnostic marker of CA125 [42], which partly

supports our strategy and findings. Since CA125 is the conven-

tional biomarker for ovarian cancer progression and chemother-

apeutic response, the addition of AFM to CA125 could thus

improve the prognostic power in EOC.

The construction of gene-drug interaction network gave us

more hints on how to choose the right drugs for individualized

treatment. As shown in results section, Gefitinib might be an

appropriate drug for the treatment of platinum/paclitaxel-resistant

patients by decreasing the expression of MAPK3 and increasing

the expression of ESR2.

Although our findings are encouraging, there are still some

questions unanswered. For instance, experimental validations are

still needed to explore the specific roles of those hub genes,

transcription factors and signaling pathways in chemoresistance

using ovarian cancer cell lines and animal. In addition, we need to

further test those serum biomarkers using serum samples of

ovarian cancer patients.

Summarily, we developed two predictive models that yield

insights into the molecular mechanisms of chemoresistance. Based

on the models, we built an upstream regulatory network in which

several critical transcription factors and signaling pathways may

play crucial roles in chemoresistance in EOC. Further, by

integrating with published findings, we found ten potential serum

biomarkers that could be used in clinical practice. In addition,

gene-drug interaction network was constructed, which not only

shows us which drugs can inhibit these key transcription factors

and hub genes, but also tell us how these genes could increase or

Figure 6. Hub gene-drug interaction network. The hub gene-drug interaction network shows us how these genes and drugs could interact
with each other. For example, ESR2 could increase the patient’s susceptibility to Cisplatin, Etoposide and Raloxifene, while Gefitinib could increase the
expression of ESR2.
doi:10.1371/journal.pone.0052745.g006
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decrease the susceptibility of chemotherapeutic drugs. This is a

good beginning for us to select the most suitable drugs for a better

treatment outcome of those patients resistant to platinum/

paclitaxel-based chemotherapy.
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Table S1 Gene list of the 349-gene signature.
(XLSX)

Table S2 Potential Transcriptional Factors that regu-
late genes in the 349-gene signature.
(XLSX)

Table S3 77 genes that encode secretory proteins
related with platinum/paclitaxel-based treatment(inte-
grated our results with 4 previous studies).
(XLSX)

Table S4 Area Under the Curve of genes that encode
secretory proteins.
(XLSX)

Table S5 Genes interact with platinum or paclitaxel
searched from CTD database.
(XLSX)

Table S6 Importance-scores of 349 genes in predictive
regression model.
(XLSX)

Table S7 Importance-scores of 18 genes in de-correlat-
ed model.
(XLSX)

Table S8 Differentially expressed genes in GSE15372 &
GSE33482 & GSE28646.
(XLSX)

Table S9 Signature genes from 4 previous publications
which were listed in Table 2.
(XLSX)

Figure S1 Heat map of 349-gene signature against 322
patients. This diagram shows the heat map of 349-gene

signature against 322 patients, in which rows represent different

genes in 349- gene signature and columns represent different

patients. The blue bar above the heat map represents CR and

green bar represents PD.

(TIFF)

Figure S2 Heat map of 18-gene signature against 322
patients. This diagram shows the heat map of 18-gene signature

against 322 patients, where rows represent different genes in 18-

gene signature and columns represent different patients. The blue

bar above the heat map represents CR and green bar represents

PD.

(TIFF)

Figure S3 The Venn diagram showing the overlap
between our signatures and genes from previous
publications. The Venn diagram shows how much genes in

the 349-gene model (A), 18-gene model (B), hub genes (C), top 10

serum biomarkers (D) are overlapped with 3 previous publications

(Dressman et al., Ju et al. and Jazaeri et al.).

(TIF)

Figure S4 The Venn diagram showing the overlap
among our signatures and other datasets & publica-
tions. (A) The Venn diagram shows genes in 18-gene signature

are all belong to genes in 349-gene signature. (B) The Venn

diagram shows there are no overlap between genes from Helleman

et al. and genes in our findings (349-gene signature, 18-gene

signature and hub genes).

(TIF)

Figure S5 Transcription factor Interaction network and
enriched pathways derived from the 349-gene model.
Eight transcription factors circled in dot yellow line are enriched in

TGF-beta, MAPK and Wnt signaling pathway (red arrow).

(TIF)

Figure S6 Gene-gene interaction network of 17 genes in
the 18-gene model and Hub gene interaction network of
18 signature genes. (A) Gene-gene interaction network of 17 in

the 18-gene model analyzed by C3NET. (B) Hub genes and

neighboring genes of the 18 signature genes.

(TIF)

Figure S7 Transcription factor- drug Interaction net-
work. This diagram shows how Transcription factors and drug

are interacted. For example, MYC could decrease patient’s

susceptibility to Cisplatin, Fluorouracil and Doxorubicin, whereas

10058-F4 could decrease the expression of MYC.

(TIF)
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