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Abstract

The mechanisms that govern human learning and decision making under uncertainty have been the focus of intense
behavioral and, more recently, neuroscientific investigation. Substantial progress has been made in building models of the
processes involved, and identifying underlying neural mechanisms using simple, two-alternative forced choice decision
tasks. However, less attention has been given to how social information influences these processes, and the neural systems
that mediate this influence. Here we sought to address these questions by using tasks similar to ones that have been used
to study individual decision making behavior, and adding conditions in which participants were given trial-by-trial
information about the performance of other individuals (their choices and/or their rewards) simultaneously playing the
same tasks. We asked two questions: How does such information about the behavior of others influence performance in
otherwise simple decision tasks, and what neural systems mediate this influence? We found that bilateral insula exhibited a
parametric relationship to the degree of misalignment of the individual’s performance with those of others in the group.
Furthermore, activity in the bilateral insula significantly predicted participants’ subsequent choices to align their behavior
with others in the group when they were misaligned either in their choices (independent of success) or their degree of
success (independent of specific choices). These findings add to the growing body of empirical data suggesting that the
insula participates in an important way in social information processing and decision making.

Citation: Tomlin D, Nedic A, Prentice DA, Holmes P, Cohen JD (2013) The Neural Substrates of Social Influence on Decision Making. PLoS ONE 8(1): e52630.
doi:10.1371/journal.pone.0052630

Editor: Aldo Rustichini, University of Minnesota, United States of America

Received September 7, 2011; Accepted November 20, 2012; Published January 9, 2013

Copyright: � 2013 Tomlin et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was made possible by the Air Force Office of Scientific Research, MURI-16 Project, ONR BAA 06-028. In addition, this project/publication was
made possible through the support of a grant from the John Templeton Foundation. The opinions expressed in this publication are those of the authors and do
not necessarily reflect the views of the John Templeton Foundation. The funders had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: dtomlin@princeton.edu

Introduction

The mechanisms that govern human learning and decision

making under uncertainty have been the focus of intense

behavioral and, more recently, neuroscientific investigation. An

important focus has been on performance in two alternative forced

choice (TAFC) decision tasks, in which the two choices are

associated with different probabilities of reward, and the

participant must discover how to maximize their reward by

sampling each option [1]. Models based on simple principles of

reinforcement learning and information integration have begun to

reveal the processes responsible for the performance of individuals

in such tasks [2–5]. However, relatively little is known about how

social information — that is, the experience of other individuals

engaged in the same task — influences these decision making

processes, and even less is known about the neural mechanisms

that mediate these influences.

Recently, neuroimaging has been used to identify what neural

systems are responsive to the presence and use of social

information. However, these have tended either to focus on the

responses to social factors rather than how these factors contribute

to decision making [6,7], or to examine decisions in the domain of

preferences, which lack an objective measure over which their

merits can be compared [8–12]. Those studies that have employed

objective outcomes have used social agents with: 1) roles

significantly different from the participant’s, thereby precluding

the comparison of decisions [13–18], or 2) fictitious behavior

designed to balance the experimental design rather than mimic

actual human decisions [19,20].

In the present study, our goal was to use the simplest and most

direct design possible to address a particular gap we perceived to

be present in this area of research: the use of simple TAFC tasks,

in which individual performance has been well-characterized, to

study how the introduction of specific forms of social information

under tightly controlled conditions influences decision making,

and identify the neural systems involved. Our motivation for this

approach was two-fold: 1) to generate data from tasks that have

been subjected previously to computational modeling, so that these

models can be extended to address the influence of social

information on decision making; and 2) to acquire neural data

that could identify brain systems responsive to, and involved in

mediating the influence of, social information. Results pertaining

to the first objective are the subject of separate reports [21–23].

Here, we focus on results related to the second objective.
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Materials and Methods

Participants
Participants were recruited at Baylor College of Medicine via

email and word of mouth, and informed consent was obtained

according to protocols approved by Baylor College of Medicine

and Princeton University’s Institutional Review Boards. Groups of

five participants engaged in a series of decision making tasks while

functional magnetic resonance imaging (fMRI) data were acquired

[24]. Participants did not meet prior to the experiment, nor did

they see one another afterward. On a few occasions, the initiation

of synchronized data acquisition failed on one or two scanners.

While this did not interfere with the collection of behavioral data

(and was not apparent to those participants whose scanners did

acquire data), the imaging data for the affected participants were

lost. As noted below, there were four social conditions crossed with

the six tasks, yielding a 664 design. Groups were collected until a

minimum of 15 individual fMRI data sets filled each of the 24 cells

of the design (after excluding for excessive head motion). This

yielded a behavioral set of 23 groups (n = 115 individuals; 68

female, 47 male; ages 18–57, with a mean age of 29), and an

imaging subset of 86 participants (n = 86 individuals; 52 female, 34

male).

Decision making tasks in a social context
Groups of five participants each played a set of six simple

decision making games involving a series of two-alternative forced

choices. Visual feedback was presented after each trial on a rear

projection screen and was viewed by participants via a mirror on

the acquisition coil. Behavioral responses were recorded by an

optical button box placed in the right hand.

The tasks used in the games were similar to ones used previously

for studying individual decision making behavior [1,3,25]. For

each trial in each task, each participant chose between two

buttons, ‘‘A’’ and ‘‘B,’’ that then produced a reward. The reward

was calculated using a deterministic reward function based on the

participant’s choice history (percentage of the last twenty choices

allocated to button A). This reward was then shown to the

participant prior to the next choice. This paradigm allowed

participants’ earnings to change over time as they either continued

to press a given button, or chose the other one. Participants were

not instructed that the history of their choices was a key

determinant of the reward earned, and none reported being

aware of this dependency. The six tasks differed according to the

reward function used (these are described in the Supporting

Information, and in-depth behavioral and computational analyses

of these have been reported elsewhere [21–23]). The effect of

social information upon brain activity and subsequent choices –

the focus of the present report – was comparable across the tasks.

Thus, for present purposes, we combine data across tasks.

Each of the five participants in a group made a series of 150

decisions in each of the six games. Participants’ choices were

synchronized across the group, and all group members performed

the same task in each game. Thus, information about other group

members could be informative, although the reward functions for

each participant was always independent of the others (no

competition), and participants could not communicate directly

(no cooperation). While information regarding their own most

recent reward was always available to participants, information

about the other group members varied from task to task. Each

game was played in one of four social conditions (Figure 1). In the

‘‘No Information’’ condition nothing was displayed about the

other participants. In the ‘‘Choices’’ condition, participants were

shown which buttons each of the other four participants had

pressed in the last trial, but not their rewards. In the ‘‘Rewards’’

condition, participants were shown how many points each of the

other participants earned on the last trial, but not their choices.

Finally, in the ‘‘Both’’ condition, participants were shown both the

buttons pressed and how many points were earned by each other

group member. Information about other players was displayed

beside a symbol corresponding to that player which remained

consistent across the entire experiment. These symbols were not

shown during the No Information condition.

Participants were informed that the other participants were

playing the same game, but that the choices and earnings of the

other group members would not affect their own earnings, and

that the purpose of the shared social information was only to allow

group members to observe one another. This incentive structure

was selected because it allowed for the provision of social

information, but precluded the complicating influence of either

competitive or cooperative group behaviors.

Each group played six games, each of which involved a single

task paired with a single social condition. Every group played each

task and experienced each social condition at least once.

Assignment of tasks to social conditions was counterbalanced

across groups using a Latin-Square design. Consecutive games

always involved different tasks and were played under different

social conditions. For example, a group might play one task in the

Choices condition as the first game, a different task in the No

Information condition as the second game, yet another task in the

Rewards condition as the third game, and so on.

The earnings during each game were assigned a random scale

factor between 50 and 99 to prevent participants from knowing if

they had obtained the maximum possible reward within a given

task at any time. The number of points accrued, which determined

participants’ compensation ($30 to $50 USD), was calculated after

normalizing by this scale factor so that each task had the same

potential payoff. Participants were informed of these compensation

procedures prior to the experiment.

Figure 1. Social conditions within the multi-person decision
making tasks. Participants played each task under a social condition
that determined what information was available about other group
members. In the No Information condition, participants played a task
without social information. In the Choices condition, the button
previously chosen by each other group member was shown, and was
updated for each decision. In the Rewards condition, the number of
points earned by each other group member was shown, and was
updated synchronously as in the Choices condition. Finally, the Both
condition displayed both Choices and Rewards information on each
trial.
doi:10.1371/journal.pone.0052630.g001
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The decisions in each trial had a deadline of 1.7 seconds. For

decisions not made in time, the computer used the button chosen

on the previous trial as the participant’s current choice. Decisions

or the passage of the deadline were confirmed to participants by

the ‘‘A’’ and ‘‘B’’ buttons turning gray. This state persisted until

the trial length was 2.5 seconds, yielding a minimum inter-trial

interval of .8 seconds and synchronizing participants’ decisions.

After this period, the buttons regained their colors and the relevant

reward and social information for the previous trial were shown.

Tasks were separated by a screen lasting eight seconds and

indicating the social condition in which the next task would be

performed.

Data acquisition and preprocessing
Functional imaging data [26,27] were collected using two

Siemens 3.0 Tesla Allegra scanners and three Siemens 3.0 Tesla

Trio scanners (combinations of task and social condition were

balanced across scanners). Each session included a high resolution,

T1-weighted scan (MP-RAGE; Siemens). Whole-brain imaging

was collected during the tasks in a single session using echo-planar

imaging with a repetition time (TR) of 2000 ms, echo time (TE) of

40 ms, and a flip angle of 90u. The images were acquired as

matrices of 64664626 voxels aligned to the anterior and posterior

commissures of the corpus callosum, resulting in voxels with a

resolution of 3.463.464.0 mm.

Image preprocessing was performed using SPM8 [28,29]. Slice

timing correction was followed by realignment to the first

functional scan using a six-parameter rigid-body transformation.

The mean of the realigned images was coregistered to the T1-

weighted structural image using a twelve-parameter affine

transformation. Tissue segmentation was determined for each

structural image, and the gray matter designated by this

classification was used for spatial normalization by applying a

twelve-parameter affine transformation. The functional images

were then normalized and smoothed with an 8 mm FWHM

Gaussian kernel for inter-subject analyses.

Data analysis
Our approach to analysis was designed to meet two goals: 1)

identify brain areas responsive to social information; and 2)

determine the extent to which social information and/or

corresponding brain activity was predictive of subsequent behav-

ior. Toward these ends, we conducted two types of analyses, one

using standard linear regression and a second using logistic

regression.

GLM analysis: Identification of brain areas responsive to

social information. We used SPM8 [29,30] to implement a

standard general linear model (GLM) for each participant, that

included regressor representing timing of decisions and nature of

the social information on each trial, as well as variables of no

interest (head motion, and the effects of absolute reward – i.e.,

independent of social information). The regressor for head motion

was constructed from the motion values computed by the 6-

parameter rigid body transformation used for spatial realignment.

To control for the effects of absolute reward, regressors were

included that coded the reward amplitude on each trial and its

derivative (i.e., its magnitude relative to the previous trial). For the

effects of social information, a separate regressor was constructed

for each social condition, as follows: First, a base regressor was

constructed from a series of delta functions placed at each time

point at which the participant submitted a decision (due to the

timing of the task, delta functions placed at the screen onsets

produced the same qualitative result); for trials in which

participants did not respond before the deadline, delta functions

were placed at the deadline. Next, the delta function correspond-

ing to each decision was scaled by the social information available

to the participant during that decision (quantified as described

below). Finally, the scaled delta functions were convolved with a

hemodynamic response function (modeled via two gamma

functions) to simulate the time course of the BOLD response.

To quantify social information on a trial-by-trial basis, we

defined two metrics: one for choices (‘‘group alignment’’) and

another for rewards (‘‘reward rank’’). Group alignment quantified

the similarity of each participant’s choice to those of other group

members during the Choices and Both conditions (Figure 2A). For

a given participant and choice, the metric was defined as the

proportion of the group that chose the same button as the

participant on the previous trial (excluding the participant in

question). The metric varied between 0 and 1 in increments of .25,

with 1 indicating a unanimous decision and 0 indicating that all

other members had made the opposite choice. To quantify social

information about reward, a reward rank metric was calculated as

the ordinal value of the participant’s earnings relative to those of

the other participants on each trial, with higher values indicating

higher rank and values between whole numbers representing ties

(Figure 2B). Those metrics based on information unavailable

during a given condition (e.g., information regarding others’

choices in the Rewards condition) were excluded.

The GLM for each participant was fit voxel-wise to the BOLD

data for that participant, and a random effects analysis was

performed across participants for the betas computed for each

regressor. Data were then cluster-thresholded, via a nonparamet-

ric permutation test (Threshold-Free Cluster Enhancement, [31–

33]), to identify regions of interest (ROIs) that surpassed a level of

statistical significance of p,.05.

Logistic regression model: Effects of social information

and brain activity on behavior. The second goal of our

analyses was to examine how social information and correspond-

ing brain activity influenced subsequent choice behavior. To do so,

we used logistic regression to test the extent to which social

information and/or brain activity in each ROI predicted

‘‘switching’’ from one button to the other on each trial. We chose

switching (rather than specific button choices) as it indicated a shift

in a participant’s preference over the buttons, and was therefore

likely to be most sensitive to the impact of social information and/

or related brain activity on decision making behavior. Because

button switching is a binary variable, it required the use of logistic

(rather than linear) regression. The regression was carried out

separately for each of the ROIs identified in the GLM described

above, and estimated the probability of switching using a weighted

function of: a) the social information available to the participant on

each trial (i.e., group alignment and/or reward rank); and b) brain

activity (the BOLD response) for the given ROI.

The model was fit by maximizing its ability to predict switching

behavior on each trial (excluding the first choice), defined by a

binary variable: whether or not the button pressed by the

participant was the same as that on the previous choice (1 for

switches, 0 for non-switches). The probability of switching on trial i

was defined by:

Pi(switch)~
1

1ze{xi

where the variable xi was defined by the following sum:

xi~b1zb2|½ social information �izb3|½ brain activityj �i

In which [social information]i designated the quantified value of
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social information (group alignment or reward rank, depending

upon social condition) available on trial i, and [brain activityj]i

designated the mean BOLD response for ROI j on trial i. For each

ROI, three regressions were carred out, implementing models of

increasing complexity. The first sought to explain behavior by

fitting only the parameter b1 (i.e., by setting b2 and b3 to zero),

capturing the participant’s bias toward (average probability of)

switching regardless of social information or brain activity. The

second model added social information (that was scaled to range

from 0 to 1) by fitting both b1 and b2. The third model was

hierarchical: first we fit parameters b1 and b2 to account for the

effects of the participant’s bias and of social information on

switching; we then fit the remaining variance (residuals) by

estimating b3, reflecting the effects of brain activity on switching

behavior independent of social information. This latter regression

was carried out since social information and the BOLD signals

were known to be correlated (given the way in which the regions of

interest were defined); using hierarchical regression allowed us to

determine the extent to which neural activity explained switching

behavior above and beyond the effects of social information. For

this hierarchical regression, brain activity in each region of interest

was computed by extracting the BOLD signal during the decision

epoch of each trial (shifted by four seconds to account for

hemodynamic lag), averaging across voxels in that region of

interest, and z-scoring this mean across trials. Because the Both

condition involved combining Choices and Rewards feedback,

separate regressors were included for the metric associated with

each type of social information (group alignment and reward

rank):

xi~b1zb2|½ group alignment �iz

b3|½ reward rank �izb4|½ brain activityj �i

A final model was created to estimate any statistical interaction

between social information and the BOLD signal from the regions

of interest. However, these interactions were not significant for any

Figure 2. BOLD activity is correlated with continuous measures of marginality. (A) The group alignment metric. A participant’s group
alignment metric was defined as the percentage of other group members who made the same choice during the previous trial. Information
regarding the buttons pressed by each group member in the previous trial was revealed at the onset of the current trial. (B) The reward rank metric. A
participant’s reward rank metric was defined as the ordinal value of the participant’s earnings relative to those of the other participants on each trial,
with higher values indicating greater relative rewards. Information regarding the earnings of each group member in the previous trial was revealed at
the onset of the current trial. (C) Effect of group alignment in the Choices condition. In the Choices condition, activity in the insula, thalamus, DLPFC,
dACC, and parietal cortex was inversely proportional to the participant’s group alignment (p,.05 corrected; see Table 1). (D) Effect of group
alignment in the Both condition. In the Both condition, activity in the insula, DLPFC, dACC, and parietal cortex was inversely proportional to the
participant’s group alignment (p,.05 corrected; see Table 2).
doi:10.1371/journal.pone.0052630.g002
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of the signals tested, and thus are not considered further here.

Parameter values were estimated using log-likelihood maximiza-

tion via MATLAB’s function minimization routine [34]. Partic-

ipants exhibiting less than three instances of switching (6% of the

total sample) were excluded from the analysis.

Because the models that included brain activity contained one

more parameter than those which used only the baseline rate of

switching and social information, we used Akaike’s Information

Criterion (AIC) to assess whether predictive power was signifi-

cantly improved by addition of the brain activity parameter. We

then conducted paired t-tests to determine whether the brain

activity in each region significantly increased these AIC values (i.e.,

significantly predicted behavior) across participants.

Results

Brain regions sensitive to social information
For each participant included in the GLM analysis (n = 86

individuals; 52 female, 34 male), group alignment in the Choices

condition was correlated negatively with activity in several regions

(Figure 2C). That is, as participants’ group alignment decreased,

and therefore their marginality relative to the group increased, so

did activity in these areas. The regions identified were the insula,

dorsal anterior cingulate cortex (dACC), dorsolateral prefrontal

cortex (DLPFC), parietal cortex, medial thalamus (with portions of

this activation overlapping with the dorsal caudate), all bilateral

(p,.05 corrected; see Table 1). When data from the Both

condition were analyzed using the same method, a similar network

of regions (with the exception of the thalamus) was shown to be

active, while no additional regions showed a correlation

(Figure 2D; see Table 2). Analysis of time courses of activity in

these regions confirmed that the BOLD response increased as

fewer group members made the same choice as the participant

(ANOVA at t+4 seconds: for the insula, p,1024; see Figure 3).

GLM analysis of the Rewards condition revealed no regions in

which activity varied parametrically with reward rank. However,

our findings in the Choices condition led us to hypothesize that the

regions shown in Figure 2C exhibited activity correlated with

reward rank, and that such an effect was not apparent in the GLM

due to the larger number of values that the reward rank metric

could attain (thereby reducing the amount of data corresponding

to each possible value). Post-hoc analysis of the Rewards condition,

using masks based on the regions shown in Figure 2C, demon-

strated that reward rank was negatively correlated with insula

activity at t+4 seconds (p,.01, fixed effects analysis corrected for

multiple comparisons). Similarly, GLM analysis of the Both

condition revealed no regions that varied with reward rank.

However, post-hoc analysis again revealed that reward rank was

negatively correlated with insula activity at t+4 seconds (p,.01,

fixed effects analysis corrected for multiple comparisons).

Influence of social information on brain activity and
switching behavior

As described above, the GLM analysis revealed several regions

in which activity was significantly correlated with social informa-

tion. We used hierarchical logistic regression to identify which of

these regions significantly predicted switching behavior above and

beyond the information provided in each social condition. Because

activity was most robust in the Choices condition, we used the

regions identified in that condition (see Figure 2C) for the

hierarchical regressions. This also allowed us to keep the regions of

interest for these analyses consistent across the social conditions.

For data from the Choices condition, AIC metrics indicated that

models incorporating brain activity possessed significantly more

explanatory power than that employing only the average

probability of switching and the group alignment metric

(Figure 4A depicts the results of these tests for each region). This

was true for all regions tested, with the insula accounting for the

most variance (p,10214 for the model employing only the average

probability of switching, p,1024 for the model including group

alignment, corrected for multiple comparisons). Similarly, for data

from the Rewards condition, brain activity in every region tested

provided significantly more explanatory power than the models

employing only the average probability of switching and the

reward rank metric (Figure 4B), with the insula again accounting

for the most variance (p,10212 for the model employing only the

average probability of switching, p,1024 for the model including

reward rank, corrected for multiple comparisons). Analysis of the

data from the Both condition demonstrated that only the insula,

thalamus, and dACC provided explanatory power significantly

greater than the model using only the average probability of

switching and the social information metrics (Figure 4C), with the

insula once again accounting for the most variance (p,10222 for

the model employing only the average probability of switching,

p,.05 for the model including social information, corrected for

multiple comparisons). Because the insula was the strongest

predictor of switching for each of the social conditions, we further

examined the results of the regressions using insula activity to

determine the direction and distribution of effects across partic-

ipants.

We hypothesized that lower values for the social information

metrics (group alignment and reward rank) would correspond to

higher probabilities of switching; that is, that switching would be

more frequent when participants were misaligned with the group,

or possessed a low rank in earnings. We further hypothesized that,

since insula activity increased with marginality, additional activity

in this region would be correlated with higher probabilities of

switching. Beginning with data from the Choices condition, the

hierarchical logistic regression revealed that the beta values for the

effects of social information (Figure 5A) were significantly less than

zero (p,10216), indicating that lower values for the group

alignment metric (corresponding to greater marginality) were

indeed associated with higher probabilities of switching. That is,

the less aligned participants’ previous choices were with those of

other group members, the more likely they were to switch buttons.

Conversely, beta values for the effects of insula activity were

significantly greater than zero (Figure 5B, p,10211), indicating

that greater activity in the insula was associated with higher

probabilities of switching.

A comparable analysis of the Rewards condition produced

similar effects: beta values for reward rank were significantly less

than zero (Figure 6A; p,10212), indicating that lower rankings

were associated with higher probabilities of switching. Beta values

for insula activity were again significantly greater than zero

(Figure 6B; p,10212) indicating, as in the Choices condition, that

greater insula activity was associated with a greater probability of

switching.

Finally, we applied the same analysis to the Both condition by

including the group alignment and reward rank metrics in the

regression (Figure 7A). Analysis revealed that the beta values for

group alignment were significantly less than zero (p,10215), as

they had been in the Choices condition. However, beta values for

reward rank were only marginally less than zero (p = .07) while

BOLD activity in the insula yielded beta values that were once

again significantly greater than zero (Figure 7B; p,10212),

indicating that switching behavior was influenced more by others’

choices and insula activity than by relative earnings when both

types of social information were available.

Neural Substrates of Social Influence
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Figure 3. Bilateral insula exhibits graded response to group alignment. After performing the statistical tests described in Figure 2, we
examined the time course of the MR signal exhibited by the bilateral insula in the Choices condition. Time courses corresponding to each decision
were categorized according to their group alignment values and plotted for the five levels of alignment. The average BOLD signal was highest for
choices for which group alignment was lowest (ANOVA at t+4 seconds: p,1024). Error bars represent standard error of the mean (SEM). Similar
effects were observed for the other regions shown in Figure 2C (note that because participants’ decisions were not systematically in register with the
onset of image acquisition, linear interpolation was used to align the time-courses of the BOLD signal across decisions for averaging).
doi:10.1371/journal.pone.0052630.g003

Table 1. Activations for group alignment analysis in the
Choices condition.

Brain Region MNI Coordinates p value Voxels

R Insula (30, 16, 214) p,1024 279

L Insula (230, 20, 210) p,1023 168

R Thalamus (10, 0, 10) p,1024 340

L Thalamus (26, 0, 2) p,1023 267

R DLPFC (54, 8, 14) p,1024 1009

L DLPFC (242, 0, 26) p,1023 480

dACC (6, 36, 30) p,1024 399

R Parietal (34, 248, 38) p,1024 1055

L Parietal (230, 252, 42) p,1024 565

Activations are shown for regions surpassing a statistical threshold of p,.05
(corrected for multiple comparisons using cluster-mass correction). L, left
hemisphere; R, right hemisphere. Coordinates and statistical values are shown
for the voxel of highest significance within each cluster.
doi:10.1371/journal.pone.0052630.t001

Table 2. Activations for group alignment analysis in the Both
condition.

Brain Region MNI Coordinates p value Voxels

R Insula (34, 24, 210) p,1024 170

L Insula (230, 24, 22) p,.005 70

R DLPFC (54, 12, 14) p,1024 519

L DLPFC (242, 4, 30) p,1024 264

dACC (2, 32, 38) p,.005 78

R Parietal (38, 252, 46) p,.01 212

L Parietal (226, 272, 30) p,.01 195

Activations are shown for regions surpassing a statistical threshold of p,.05
(corrected for multiple comparisons using cluster-mass correction). L, left
hemisphere; R, right hemisphere. Coordinates and statistical values are shown
for the voxel of highest significance within each cluster.
doi:10.1371/journal.pone.0052630.t002
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Discussion

In this study, we used two alternative forced choice tasks that

have been used extensively in previous research on decision

making to examine the influence of social information and identify

the neural systems that mediate this influence. The design of the

experiment allowed us to generate two types of veridical yet

quantifiable social information on a trial-by-trial basis, to control

the type(s) of information to which participants had access during

decision making behavior, and to measure the extent to which this

information influenced participants’ decisions to align themselves

with the group. We found that social information was correlated

with neural responses in a set of brain regions that showed greater

activity when participants were misaligned with the group.

Importantly, activity in these regions – and most notably, the

insula – predicted subsequent behavior above and beyond social

information alone. Our results suggest that the insula and, to a

lesser extent, other brain areas (including portions of the dACC

and basal ganglia) play an important role in detecting when an

individual’s behavior differs from that of other group members,

and in initiating behavior that realigns the individual with the

group.

Previous studies have examined the neural correlates of

responding to a social partner’s behavior, and found responses

in a similar set of brain regions. In an imaging study employing the

‘‘ultimatum game,’’ the DLPFC and insula responded to unfair

monetary offers made by a social partner [18], with insula activity

differing according to the acceptance or rejection of the offer. Our

results parallel these: the DLPFC and insula were both among the

regions responsive to misalignment with the group, and the insula

was the region most strongly associated with the behavioral

response to this social standing. Research conducted using another

two-person economic exchange task revealed that insula activity

increased as participants were trusted with less money by social

partners, and as participants themselves gave less money in return

[17]. Again, responses in the insula were sensitive to social

information indicating deviation from or subordination within the

interaction. However, there are two important differences between

these studies and the work presented here.

Figure 4. Comparison of explanatory power across regions. Using hierarchical logistic regression, beta values were fitted to BOLD signals that
accounted for the most variance in each participant’s button switching behavior. These beta values were calculated for each of the regions shown in
Figure 2C, and the means of these beta values are shown for each region and social condition. The values for Akaike’s Information Criterion obtained
when incorporating these BOLD signals were compared to those obtained when including behavioral metrics, and the results of these statistical tests
are shown above each beta (paired t tests corrected for multiple comparisons). (A) Beta values for the Choices condition. Although BOLD signals from
all regions shown in Figure 2C produced significantly better fits than those using behavioral metrics alone, the insula accounted for the most
variance. (B) Beta values for the Rewards condition. As in the Choices condition, all regions tested produced significantly better fits than those using
behavioral metrics only, with the insula again outperforming the other regions. (C) Beta values for the Both condition. In this case, only the insula,
thalamus, and dACC produced significantly better fits than those using behavioral metrics alone, with the insula once again accounting for the most
variance in switching behavior.
doi:10.1371/journal.pone.0052630.g004

Neural Substrates of Social Influence

PLOS ONE | www.plosone.org 7 January 2013 | Volume 8 | Issue 1 | e52630



First, because group members’ earnings in our tasks were

independent and insula activity was independent of absolute

reward, our findings additionally show that the social phenomena

to which the insula responds can be independent of primary

reward gained by the participant. Second, the roles in these prior

experiments were asymmetric – the actions available to one

participant were not the same as those available to the other, and

therefore prevented the possibility of realigning to an observed

behavior. The combination of these facts with the smaller number

of decisions experienced by participants (ten in each of the

aforementioned studies, compared with 150 per task in our

experiment) may help to explain why our paradigm revealed

additional regions that were parametrically sensitive to compo-

nents of social influence.

Prior research has also investigated the neural correlates of

group influences on decision making. In one study by Berns et al.

[19], participants made perceptual judgments while a group of

confederates gave answers that were often incorrect. Analysis

revealed that the decision to conform to the majority was

associated with elevated BOLD responses in parietal cortex. This

effect is paralleled by the activity of the parietal cortex in our study

(see Figure 2), although this region did exhibit as strong an effect as

the insula. Berns et al. interpreted their findings as evidence that

social information biased computation in the parietal cortex,

which was already strongly activated by the perceptual judgments.

Our tasks did not require perceptual discriminations, which may

explain the diminished involvement of parietal cortex.

In another experiment, participants rated the attractiveness of a

series of faces, with each choice followed by the rating from a

group of participants [10]. In this study, deviations from the

group’s judgment led to elevated BOLD responses in the dACC;

we similarly observed BOLD responses in this region that were

sensitive to negative social standing in a graded fashion. This effect

is similar to that observed by Burke et al. [14], who found that

ACC activity was elevated when participants made decisions that

contravened those recommended by a human partner. Klucharev

et al. also found significant insula activation in response to

deviations from the group’s judgment, a finding paralleled by

Figure 5. Hierarchical logistic regression of switching behavior in the Choices condition. (A) Behavioral data alone. Using behavioral data
from the Choices condition, the group alignment metric was used to predict when participants switched buttons. The beta values (n = 121 values,
arbitrary units) for group alignment were significantly less than zero across participants (p,10216), indicating that most participants consistently
chose to switch when they were out of alignment with the group. (B) Behavioral data and insula activity. Insula activity for each choice (at time
t+4 seconds, where t is the time at which a decision was submitted) was incorporated into the regression model, to test the degree to which this
explained switching behavior beyond that explained by group alignment alone. The beta values (n = 121 values, arbitrary units) for insula activity
were significantly greater than zero across participants (p,10211), indicating that for most participants increased insula activity was associated with a
greater probability of switching, independent of information about group alignment.
doi:10.1371/journal.pone.0052630.g005
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another study which found that the anterior insula was activated

when participants contravened advice given to them during an

economic decision making task [16]. Two additional studies

showed that activity in the insula exhibited an interaction between

the amplitude of a social judgment and the susceptibility of

participants’ behavior to social influence [8,9].

Our findings are also consistent with those of other previous

experiments investigating the effects of changes in social standing

during multi-person interactions. One study examining the neural

correlates of social rejection [6] showed that the dACC was more

active when participants were excluded from a group. In another

study that examined the effects of potential losses of social

standing, participants were placed in a group with two other

individuals and ranked based on their ability to make correct

perceptual judgments [20]. Both the insula and dACC exhibited

greater activity when participants performed worse than group

members previously deemed to be less skilled. Finally, a third study

demonstrated the sensitivity of the dACC to social judgments

coming from peers, although this activity was not sensitive to the

valence of these judgments [7]. Our findings parallel these

observations, indicating that such responses occur even when

social judgments, social hierarchies, or ingroup/outgroup distinc-

tions are not explicit.

Taken together, these findings provide strong evidence in

support of a network of brain areas – including insula and dACC –

that are responsive to information about social standing. However,

in these previous studies, neural activity was observed as a

consequence, or correlate of social information. Our findings go

beyond this, to show that neural activity in these regions can

predict subsequent decision making, consistent with – but also

above and beyond – the influence of social information. This

strengthens the idea that these regions mediate the influence of

social information on behavior that promotes social alignment.

Previous work has also examined the insula using non-social

tasks, and has suggested a role for the insula in action selection, as

opposed to outcome processing [35]. The association between

Figure 6. Hierarchical logistic regression of switching behavior in the Rewards condition. (A) Behavioral data alone. Using behavioral data
from the Rewards condition, the reward rank metric was used to predict when participants switched buttons. Two participants exhibited beta values
more than three standard deviations from the mean beta values, and were excluded (leaving n = 112 values, arbitrary units). The beta values for
reward rank were significantly less than zero across participants, indicating the degree of association with switching (p,10212), indicating that lower
reward rank was associated with an increased probability of switching. (B) Behavioral data and insula activity. Insula activity for each choice (at time
t+4 seconds, where t is the time at which a decision was submitted) was incorporated into the regression model, to test the degree to which this
explained switching behavior beyond that explained by reward rank alone. The beta values (n = 112 values, arbitrary units) for insula activity were
significantly greater than zero across participants (p,10212), indicating that for most participants increased insula activity was associated with
increased probability of switching independent of information about reward rank.
doi:10.1371/journal.pone.0052630.g006
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insula activity and switching behavior suggested by our findings

provides quantitative support for this claim, demonstrating that

insula activity predicted behavioral outcome above and beyond

the effects of social information.

The simple, two alternative forced choice decision making tasks

used in our study were chosen in part because they are amenable

to (and have previously been subjected to) computational

modeling, with the goal of extending these models to address the

influence of social information on decision making. Ongoing work

has begun to address this goal, revealing ways in which social

information can be incorporated into simple reinforcement

learning models to predict behavior [21–23]. An important goal

in future work will be to integrate such computational efforts with

neuroimaging findings of the sort reported here, to better

understand the computational functions subserved by the neural

mechanisms that mediate the influence of social information on

decision making behavior.

Supporting Information

Text S1 Supporting methods. Additional details are given

regarding the structure of the individual decision-making tasks, as

well as the organization of the data used in the hierarchical logistic

regression.

(DOCX)

Figure S1 Reward functions for the multi-person deci-
sion-making tasks. For a single trial, reward was determined

by two variables: (1) whether button ‘‘A’’ (red line) or ‘‘B’’ (blue

line) was most recently pressed, and (2) the percentage of the last

twenty choices allocated to button ‘‘A’’ (X axis, 0% to 100%,

plotted in increments of 5%). The dotted black line depicts the

average reward received for each %A. Two of the six tasks were

mirrored versions of the ‘‘simple rising optimum’’ and ‘‘complex

rising optimum’’ tasks, and are not shown.

(TIF)

Figure 7. Hierarchical logistic regression of switching behavior in the Both condition. (A) Behavioral data alone. Using behavioral data
from the Both condition, group alignment and reward rank were used to predict when participants switched buttons. Three participants exhibited
beta values more than three standard deviations from the mean beta values, and were excluded (leaving n = 112 values, arbitrary units). Beta values
for group alignment were significantly less than zero across participants (p,10215), indicating that, as in the Choices condition, misalignment with
the group was associated with a greater probability of switching. The beta values for reward rank were only marginally different from zero (p = .07).
(B) Behavioral data and insula activity. Insula activity for each choice (at time t+4 seconds, where t is the time at which a decision was
submitted) was incorporated into the regression model, to test the degree to which insula activity explained switching behavior beyond that
explained by group alignment and reward rank. The beta values (n = 112 values, arbitrary units) for insula activity were significantly greater than zero
across participants (p,10212), indicating that for most participants increased insula activity was associated with a greater probability of switching
independent of social information of either type.
doi:10.1371/journal.pone.0052630.g007
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