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Abstract

Current accounts of attentional capture predict the most salient stimulus to be invariably selected first. However, existing
salience and visual search models assume noise in the map computation or selection process. Consequently, they predict
the first selection to be stochastically dependent on salience, implying that attention could even be captured first by the
second most salient (instead of the most salient) stimulus in the field. Yet, capture by less salient distractors has not been
reported and salience-based selection accounts claim that the distractor has to be more salient in order to capture
attention. We tested this prediction using an empirical and modeling approach of the visual search distractor paradigm. For
the empirical part, we manipulated salience of target and distractor parametrically and measured reaction time interference
when a distractor was present compared to absent. Reaction time interference was strongly correlated with distractor
salience relative to the target. Moreover, even distractors less salient than the target captured attention, as measured by
reaction time interference and oculomotor capture. In the modeling part, we simulated first selection in the distractor
paradigm using behavioral measures of salience and considering the time course of selection including noise. We were able
to replicate the result pattern we obtained in the empirical part. We conclude that each salience value follows a specific
selection time distribution and attentional capture occurs when the selection time distributions of target and distractor
overlap. Hence, selection is stochastic in nature and attentional capture occurs with a certain probability depending on
relative salience.
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Introduction

Visual attention can be allocated in a stimulus-driven (bottom-

up) or an observer-guided (top-down) fashion [1], with both

sources of control combining to determine which location or

object in the field is attended. The process of selection often is

investigated in the realm of visual search. In this paradigm, the

task is to find a pre-defined target among distractors and

(depending on the task) indicate its presence or absence or make

another decision based upon its features. Attentional selection in

the search process has been subject to a variety of experimental

studies [2–5] as well as computational models [6–10].

A variant of the visual search paradigm that permits attentional

selection to be investigated precisely is the visual search distractor

paradigm [11,12]. In this paradigm, a task-relevant target

singleton and an irrelevant distractor singleton (both carrying

unique features compared to all other stimuli) are surrounded by

homogeneous non-target stimuli. An example would be a display

containing a predefined target, a grey tilted bar, and a distractor, a

colored vertical bar, amongst grey vertical non-target bars. The

task is to find the target while ignoring the distractor. Typically,

the item with the highest feature contrast is selected first or

‘captures attention’ initially, as evidenced by reaction time (RT)

interference (for distractor-present compared to -absent trials)

when the distractor is characterized by a higher feature contrast

(relative to the non-targets) than the target [3,11–16], but not

when it has a lower feature contrast [11–13]. On this basis, it has

been claimed ‘‘that the initial shift of attention [is directed] to the

most salient singleton’’ [3] and ‘‘that the bottom-up salience signal

of the stimuli in the visual field determines the selection order’’ [3].

In terms of functional architecture, stimulus-driven selection in

visual search is thought to be mediated by an attention-guiding

‘master’ [17], ‘activation’ [6], or ‘salience map’ [18–20], which

codes the physical distinctiveness of each location in the field in

terms of its total feature contrast against the surrounding locations:

the more a stimulus differs from those in its surround (e.g. a bar

tilted by 45u, as compared to 7u, amongst vertical bars), the

stronger its salience signal. A winner-take-all mechanism then

selects that location on the salience map for focal-attentional

allocation which exhibits the highest level of activation. In terms of

the computations involved, existing models assume that after low-

level feature extraction, a center-surround algorithm returns

contrast images for each feature channel; these feature contrast

maps are later combined to form the feature-independent salience
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map, which serve as the basis for the attentional selection

mechanism [18]. Although, in principal, attention is guided to

the location with the highest activation, salience models typically

assume noise to influence some stage(s) of salience computation

[19,20]. Noisy coding turns selection into a stochastic process: the

more salient the target, the higher the probability that it is the first

item selected. The assumption of noise influencing attentional

guidance is shared by prominent models of visual search

[6,8,10,21].

Noise turns computed salience into a random variable with a

certain distribution and an expected value. Consequently, these

models require a differentiation of the concept of ‘salience’: salience

may refer (i) to the expected value of the distribution of salience

estimates, which corresponds to the distinctiveness of each item

from its surround, as captured by contrast images or image

statistics [22–24]; or (ii) to the actual outcome of the salience

computation process on a given trial, which is subject to variability

(due to noise) and can thus deviate from the expected value. To

illustrate this differentiation, it is instructive to linken salience-

based selection to motion (direction) discrimination treated as a

decision process [25]. Discrimination of motion direction within

random dot kinematograms is a frequently used paradigm in the

modeling of decisions [26]. Typically in this paradigm, some 100

dots are moving within a bounded area (some 3u of visual angle in

diameter): a proportion of dots move coherently to either the left

or the right, while the remaining dots have random trajectories.

The observer’s task is to indicate the direction of the coherent

motion. The decision model [25] presupposes the existence of

motion-sensitive cells whose rate of firing is proportional to the

coherence of motion in a specific direction. For the left versus right

decisions, the relevant cells are those tuned to leftward and,

respectively, rightward motion within their receptive fields. Hence,

when a patch of dots is presented with a proportion of dots moving

coherently e.g. to the right, signal detection models of this decision

assume that the cells of both types exhibit activity, which is noisily

distributed around different means. In particular, with rightward

coherent motion in a random dot kinematogram, the activity

induced in ‘right cells’ would be distributed around a mean value

greater than that of the activity induced in ‘left cells’. The higher

the proportion of coherently moving dots in the display, the farther

apart the means of the two activity distributions are. A decision

could be made by drawing one sample of evidence from the ‘left’

unit and one from the ‘right’ unit, choosing that direction which

shows a higher level of evidence [27]. Decision models that do not

only describe the outcome of decisions (as is the case with signal

detection models), but also the distribution of decision times

assume that the noisy activity of the motion-sensitive cells is

integrated, or accumulated, over time. The output of this

accumulation process, the decision variable, is constantly com-

pared against a decision criterion, until the decision is made. That

is, the noisy activity of motion detectors (e.g. in MT) is

accumulated into a decision variable (presumably in the lateral

intraparietal sulcus, LIP), based on which the decision is made.

We propose a similar logic for salience-based selection. Instead

of two motion detectors for the two relevant directions in a

random-dot motion discrimination task, we posit salience detectors

for each location of visual space which are sensitive to feature

contrast. These detectors have previously been assumed to be

noisy. Instead of a signal detection theory-based decision, such as

in Guided Search 2.0 [10], we propose that each detector’s activity

is accumulated into a decision variable over time. All these

decision variables are constantly compared against a criterion,

with the first accumulator whose activity reaches the criterion

leading to attentional selection of the respective location.

Accordingly, this model of selection does not only describe the

outcome, but also the time course of selection decisions. That is,

salience-based selection, rather than being taken to consist of the

two successive steps, namely ‘salience computation’ followed by

‘attentional selection’, is considered as dynamic process in which a

noisy signal is accumulated over time that triggers a selection

decision.

Thus, as becomes apparent from the above considerations,

there are two conceptually different notions of salience. The

construct of physical feature contrast, which corresponds to

motion coherence in the random dot kinematogram, is represent-

ed as sensory data by the activity of salience detectors in the brain

(analogous to the activity of motion detectors representing motion

coherence). This momentary neural representation is distributed

around its mean, that is, it is a noisy signal. Because the expected

salience value, that is the mean of the neural salience represen-

tation, is not linearly related to physical feature contrast [28,29], it

needs to be estimated. This estimation is the intent of current

salience models [22–24]. However, relevant for selection on a

given trial is the accumulated signal of the neural representation,

which is the decision variable. For clarity, in the remainder of the

article, we refer to the concept of expected salience value as

stimulus salience and the actual or accumulated estimate as selection

salience, because the latter is the basis for attentional selection on a

given trial. Stimulus salience is related to physical stimulus

properties: for instance, a horizontal bar among vertical bars has

a higher stimulus salience than a bar tilted by 30u. Solely based on

the value of stimulus salience, focal-attentional selection would

have to favor the horizontal bar. However, owing to noise in the

computation process, the resulting estimates (i.e. selection salience)

are distributed around the expected value of stimulus salience.

Hence, if the distributions of selection salience for horizontal and

30u orientation contrasts overlap, first selection of the 30u bar is

possible in principle: the selection salience of the 30u bar can be

higher on a given trial than that of the horizontal bar. Stimulus

and selection salience do not usually have to be differentiated in

standard visual search (detection) tasks with only one salient target

being present – because, despite noise, the stimulus salience

distributions of target and non-targets virtually never overlap and

the selection salience of a non-target can never be higher than that

of the target. However, this differentiation becomes important

when two conspicuous stimuli are presented, but only one is task-

relevant: if selection salience is higher for the irrelevant (distractor)

stimulus, even though its stimulus salience is lower than that of the

relevant (target) item, it will nevertheless be attentionally selected

first.

Thus, because of the noisy salience computation, in the

distractor visual search paradigm, attentional capture would occur

when the distractor has a higher selection salience than the target.

A distractor can have a higher selection salience if its stimulus

salience is higher, equal, or even lower compared to that of the

target, depending on the overlap between the distributions of the

target’s and the distractor’s selection salience. Consequently, (i) the

occurrence of attentional capture would be proportional to the

relative stimulus salience of the target and the distractor and (ii)

distractors even less stimulus salient than the target would capture

attention in a proportion of trials. This implies that if the

proportion of attentional capture events is high, RT interference

would be large; and if it is low, interference would be small.

Note, however, that this hypothesis has never been tested

directly. Most studies of attentional capture have used only

singleton distractors that were more salient than the target [14,30–

33], and so cannot address this issue at all. On the other hand,

there are a few studies that have contrasted (at most) two stimulus
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salience conditions [11–13,34]. But even then, one cannot logically

make any inferences about the stochastic dependency of selection

(order) on stimulus salience (quite apart from the fact that

interference effects heavily depend on the sample that is drawn

from all possible stimulus salience values, that is the studies with

two settings are likely to have contrasted only extreme, low and

high, values of stimulus salience). In other words, although salience

and visual search models assume noise in the selection process

accounting for attentional capture by less stimulus-salient dis-

tractors, there is, to our knowledge, as yet no empirical evidence

for this assumption. Testing this assumption would require varying

the salience of targets and distractor parametrically, rather than

(just) dichotomically.

On this background, the present study was designed to test the

hypothesis of stochastic dependency between stimulus salience and

attentional selection [10,21], using a combined approach of

behavioral evidence and quantitative modelling [18–20]. In the

behavioral part, we parametrically manipulated the stimulus

salience of pop-out targets and pop-out distractors – so as to be

able to (i) examine the occurrence of attentional capture across a

greater range of stimulus salience values and (ii) determine the

quantitative relationship between stimulus salience and attentional

selection, that is, selection salience. For achieving these aims, it was

necessary to quantify the difference in stimulus salience between

targets and distractors – which we did by means of a visual search

go/no-go detection task in which each of the pop-out stimuli,

whether it served as a target or a distractor in the visual search

distractor task, was presented as a single, to-be detected pop-out

stimulus (i.e., without an irrelevant pop-out stimulus being present

in the display). The detection RTs measured in this task served as

estimates for stimulus salience. The difference in stimulus salience

between a given target-distractor pair in the visual search distractor

task was then quantified in terms of the difference in their

associated detection RTs when they were presented alone in the

visual search detection task. This procedure permitted us to compare

stimulus salience across different dimensions.

Given that noise in the salience computation process turns

attentional selection into a stochastic process, we expected (i) RT

interference to be dependent on the relative stimulus salience and

(ii) even less stimulus-salient distractors (compared to the target) to

interfere, that is capture attention, in some proportion of trials. By

contrast, if salience is not a random variable, as suggested by some

authors [11,12], or noise is too small to affect attentional selection

between two salient stimuli, attentional capture should occur only

with distractors more stimulus-salient than the target. In order to

verify that RT interference by less salient distractors is indeed

caused by attentional capture, we recorded eye movements in an

additional experiment with distractors less salient than the target.

As a second step, we computationally modeled the results of the

behavioral visual search distractor experiment; specifically, we

modeled selection salience in the distractor paradigm based on the

stimulus salience parameters estimated from the behavioral data in

the detection task (see also [35]). The model we implemented is

based on two-stage models of visual search, which assume that

stimulus salience is computed spatially in parallel for all items in

the display (stage 1) and then focal attention is allocated to the item

with the highest selection salience value (stage 2). Note, that our

model only describes the first step of this process: the salience-

based decision as to what location in space attention should select.

The second step, including attentional engagement and stimulus

identification, is outside the scope of the present model. The only

model that (to our knowledge) has made the distinction between

stimulus salience and selection salience explicit is Guided Search

[10]. GS assumes that the selection salience value is stochastically

related to stimulus salience, that is pre-attentive salience coding for

each item in the display is subject to noise, necessitating a signal-

detection-type decision [36] as to which item to transfer to the

second, focal-attentional processing stage. Signal detection models,

in general, account for response proportions, such as those of hits

and false alarms, but not for the temporal duration of the

underlying decisions. Likewise, GS makes statements only about

the proportion of selection decisions directed to the target versus to

a non-target, but not the time-course with which the decisions are

made. However, pop-out targets can differ in the speed with which

they are singled out, that is they can be equivalent in terms of

selection proportion (the target is always selected first), but differ in

the time it takes until the item is selected. Behaviorally, it has been

demonstrated that targets that pop out (i.e., that have flat RT/set-

size functions) can differ in detection RTs [37–40]. For example,

among vertical bars, both a target tilted by 45u and one tilted by

12u pop out, but differ in their associated detection RTs. Töllner,

Zehetleitner, Gramann, and Müller [41] demonstrated that such

differences in RTs are indeed attributable to differences in

selection times: the latency of the so-called N2pc component of

the EEG, which is assumed to reflect the transition from pre-

attentive to post-selective stimulus processing [42,43], increased as

a function of decreasing stimulus salience of the pop-out target.

Given this finding and the notion that a selection decision is based

on the accumulated sensory evidence [25], we considered it

important to take into account the time course of selection

decisions in our model; that is, we simulated the data of the visual

search distractor paradigm in a new model of salience-based

selection that assumes a time course of selection decisions and thus

permits the proportion of capture trials to be predicted for a given

salience difference (derived from the respective detection RTs)

between target and distractor.

In summary, the present study had two goals, one empirical and

one theoretical. Empirically, it was designed to test two central

predictions of visual search and salience models: in a distractor

paradigm, (i) RT interference should be proportional to the

difference in stimulus salience between target and distractor, and

(ii) interference should also be observed with distractors less

stimulus-salient than the target. Furthermore, assuming that this

RT interference is actually caused by attentional capture (rather

than some filtering cost [44]) less stimulus-salient distractors should

also be found to capture the eyes. Theoretically, the study was

intended to computationally model the conceptual distinction

between stimulus salience (as estimated by RTs in a search

detection task without distractors) and selection salience, the noisy

estimate of stimulus salience computed by the pre-attentive visual

system. To this end, the data of the behavioral visual search

distractor experiment were modeled, based on the behaviorally

estimated stimulus salience parameters. The model makes

predictions about which item is selected first, rather than about

RT interference.

Behavioral Reaction Time Experiment

Methods
Ethics statement. Participants gave their written informed

consent. The study was approved by the ethics committee of the

Department of Psychology, LMU Munich, in accordance with the

Code of Ethics of the World Medical Association (Declaration of

Helsinki).

Participants. Fifteen paid (J 16) volunteers, with a median

age of 27 (range 20–50) years, five of them male, all dextral and

with visual corrected-to-normal acuity, participated in this study.

Attentional Capture by Less Salient Distractors
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Stimulus presentation and data acquisition. The exper-

iment was conducted in a sound-insulated room, and was

controlled by a program purpose-written in C++. Stimuli were

presented on a 190 View Sonic Graphics Series G 90 fB monitor at

a resolution of 1,0246768 pixels and a refresh rate of 85 Hz;

viewing distance was approximately 57 cm. Participants respond-

ed using their left and right index fingers, respectively, to press one

of two vertically arranged buttons on a purpose-built response pad.

RTs and response accuracy were recorded online.

The display consisted of 39 vertical broken grey bars presented

on black background and arranged on three imaginary concentric

circles (1.88u, 3.25u, and 4.63u of visual angle in radius, with 8, 12,

and 18 bars, respectively) around the center of the screen, which

was occupied by another bar. Bars were 0.25u61.13u in size and

had a 0.13u-gap randomly located at the top or the bottom of each

bar. Targets differed from non-targets in orientation (7, 8, 9, 14

and 45u tilted from vertical), and distractors differed from non-

targets in luminance (13.8, 14.8, 17.9, 19.4, and 25.5 cd/m2 for

distractors and 5.25 cd/m2 for non-targets). A pilot experiment

was conducted to ensure that target and distractor salience was

sufficient for these stimuli to ‘pop out’ from the search array, that

is, their associated detection times were independent of the

number of non-targets in the display (see Text S1 and Table S1).

Design and procedure. Two 1-hr sessions were carried out

on consecutive days, at the same time of day. The first part of each

session was the distractor experiment; the second part was a post-

experiment for stimulus salience measurement (for the latter, see

Baseline salience measurement). The within-subject design of the

distractor experiment was 2 (distractor present vs. absent)65

(target salience)65 (distractor salience) factorial, resulting in 25

salience difference conditions. A target was present on all trials; a

distractor occurred randomly in 50% of the trials. Target and

distractor were placed randomly at the 12 possible positions on the

second circle to keep eccentricity constant. All salience difference

conditions were presented in random order within blocks.

Participants completed 20 blocks of 50 trials each day, yielding a

total of 2,000 trials and 40 trials per salience difference condition.

Each trial started with a white fixation dot (radius = 0.05u)
presented for a duration uniformly distributed between 900 and

200 ms, that was superseded by the search display which remained

present until response (Figure 1A). Participants were instructed to

indicate, as quickly and accurately as possible, the gap location

(top or bottom) of the target by pressing the upper or lower button,

respectively. In case of an error, visual feedback was provided,

followed by an additional 500-ms blank screen before the next

trial. At the end of each block, participants were informed about

their mean RT and error rate.

Baseline salience measurement. Because salience is not

linearly related to physical contrast [29], we used a behavioral

measurement of salience, which was collected in a post-experiment

after each session of the distractor experiment. Stimuli were the

same as in this experiment. All target orientation and distractor

luminance contrasts from the distractor experiment (Figure 1B)

were presented as (to-be-detected) targets randomly intermixed

with target-absent displays (as in the distractor experiment, targets

never occurred on the outer circle). The design was 2 (target

presence vs. absence)62 (dimension luminance vs. orientation)65

(contrast) factorial. Dimensions were blocked, contrasts were

mixed within blocks. Participants’ task was to indicate the presence

of an orientation or luminance target via button press; response

was to be withheld if no target was present. Four blocks consisting

of 80 trials were performed each day, yielding a total of 640 trials

and 32 trials per contrast condition. The stimulus display was

presented until response or a maximum of 1,200 ms. Error

feedback was provided visually, immediately after the false

response.

Using these detection RTs as our measure of stimulus salience,

we calculated the salience difference between stimuli by subtract-

ing distractor salience from target salience. For example, if a target

was detected at a rate of 300 ms and an distractor at a rate of

400 ms, then their salience difference was 2100 ms. Note that

items of higher salience are associated with shorter RTs; negative

salience differences indicate a distractor less salient than the target,

and positive differences a distractor more salient than the target.

This salience difference measure served as independent variable in

the distractor experiment.

Data analysis. Only correct-response trials were used for

analysis (distractor experiment: 96.5%; baseline salience measure-

ment: 99.0%), excluding RTs shorter than 150 and longer than

1,500 ms in the distractor experiment (0.8%) and shorter than 150

and longer than 1,000 ms in the baseline salience measurement

(0.2%). The first 20 trials (first 10 trials of the baseline salience

measurement) of each session and the first 3 trials of each block

served as practice trials and were also excluded from analysis. RT

interference was calculated by subtracting mean RTs for target-

only trials from mean RTs for target-plus-distractor trials.

Statistical data analysis was carried out with R software [45].

Regression analyses were conducted with n = 25 salience difference

conditions (aggregated across 15 participants); t-tests for RT

interference of less salient distractors were conducted with n = 15

participants.

To test for the dependency of RT interference on relative

salience between target and distractor, we used nonlinear least-

square estimation for regression function fitting. The nonlinear

function followed the form:

Y~
a

1ze
{

d{p
g

� � , ð1Þ

where a is the asymptote or maximum RT interference, d the

salience difference, p the inflection point, and g the growth factor

of the function.

Goodness of fit comparison of the regression functions was

carried out using Bayes Information Criterion [46], which is

calculated according to

BIC~{2 log Lzk log n, ð2Þ

where L is the maximum likelihood of the data under the

regression function, k the number of parameters to be estimated,

and n the number of observations. Smaller BIC values indicate a

better model fit.

Results and Discussion
We investigated the order of attentional selection in a distractor

experiment with a unique, orientation-defined pop-out target

present on all trials and a unique, luminance-defined pop-out

distractor randomly interspersed in half the trials (Figure 1A; for

stimulus pop-out characteristics, see Text S1 and Table S1).

Target orientation and distractor luminance were manipulated

such that the salience difference between the two items was varied

parametrically in 25 steps (Figure 1B). Stimulus salience was

estimated in a post-experiment (Baseline salience measurement) in

which no distractors were presented and targets could be defined

in the orientation or the luminance dimension. The times required

to detect these targets served as salience estimates for the stimuli in

the distractor experiment (Figure 2). We used the mean salience

Attentional Capture by Less Salient Distractors
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difference values of all participants to predict RT interference on

distractor-present, compared to distractor-absent, trials using

nonlinear regression functions. RT interference in this task is

commonly attributed to automatic prior selection of the distractor,

and absence of interference to direct selection of the target [12].

Figure 3A presents the observed RT interference (for correct-

response trials), averaged across participants (mean RT [6 SEM]

on distractor-present trials = 660 [612.9] ms; mean RT interfer-

ence = 28 [64.4] ms), for luminance-defined distractors and

orientation-defined targets as a function of their salience differ-

ence. RT interference was strongly correlated with the salience

difference (n = 25; Pearson’s r = .91 [t(23) = 10.8, p,.001]), indic-

ative of the order of selection (‘target first’) being dependent on

relative object salience. This relationship already exhibits the

expected characteristics: (i) the magnitude of interference varies

with the salience difference between target and distractor, and (ii)

distractors considerably less salient than the target do interfere

with search.

Next, we fitted two nonlinear regression functions to the data,

one with the inflection point free to vary (R1) and one in which it

was fixed to 0 ms salience difference (R2). We then compared the

functions’ goodness of fit by examining their Bayes Information

Criterion values [46], where smaller BIC values indicate a better

fit. Regression function R1 yielded an asymptote of 73 ms, an

inflection point of 7 ms, and a growth factor of 29 ms. For the

nonlinear regression function R2, where the inflection point was set

to 0 ms, the RT interference asymptote was estimated to be

67 ms, and the growth factor to be 26 ms salience difference. BIC

value comparison confirmed regression function R2 (with the

inflection point set to 0 ms) to fit the data better than R1

(BICR1 = 178 vs. BICR2 = 175; see Table 1 for details).

Figure 1. Experimental design and stimuli. (a) A search display, consisting of 39 broken grey bars arranged around three imaginary concentric
circles, was presented in the center of the screen, on a black background. There was always an orientation target; and in half of the trials (randomly
determined), there was also a luminance distractor. Each trial started with a white fixation spot that was hidden while the display was presented until
response. Inter-stimulus-intervals varied randomly in the range 9006200 ms. While ignoring a bright distractor, participants searched for a tilted
target bar and decided, via a speeded button press, whether the gap was located at the top or the bottom of the bar. This response decision required
focal attention to be allocated to the target. (b) 25 Salience difference conditions resulted from 5 orientation (7, 8, 9, 14, 45u) and 5 luminance (13.8,
14.8, 17.9, 19.4, and 25.5 cd/m2) contrasts.
doi:10.1371/journal.pone.0052595.g001
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These results argue in favor of a proportional first selection of

the distractor dependent on its salience difference to the target.

The function where the inflection point was set to 0 ms indicates

that equally salient targets and distractors are equally likely (50%)

to be selected first. First-selection probability for a given item then

increases as its relative salience increases. The shift of the inflection

point into the positive range in regression function R1 indicates

that at the point at which selection probability is equal for both

items, the target is actually less salient than the distractor (rather

than the two stimuli being equi-salient). This might reflect an

influence of top-down control, permitting the target to compensate

for this discrepancy in relative salience. However, reconsidering

our measure of relative salience, it is possible that target and

distractor salience is not the same in the distractor experiment as

measured in the baseline salience measurement. There are three

possibilities of how they may differ between tasks. First, if a

stimulus is presented alone as in the baseline salience measure-

ment, the display is more homogeneous compared to when an

additional distractor is presented – in which case salience might be

overestimated in the baseline salience measurement relative to the

distractor experiment. However, because this would apply to both

the target and the distractor, this should not affect relative salience

in the distractor experiment. A second reason for diverging relative

salience in the distractor experiment derives from the fact that

stimulus salience was measured after the distractor experiment.

One might argue that assigning the role of target to the orientation

dimension (and that of distractor to the luminance dimension) in

the distractor experiment induces ‘priming’ for orientation-defined

singletons, resulting in an overestimation of target salience and an

underestimation of distractor salience in the subsequent baseline

salience measurement. The implication is that at 0 ms salience

difference, the distractor would actually be more salient than the

target and the true point of equal salience would lie in the negative

range of salience differences. However, according to Maljkovic

and Nakayama [47], priming effects for the orientation dimension,

as an aftereffect of having been assigned the target role in the

distractor experiment, should dissipate within a few trials in the

baseline salience measurement. Third, stimulus salience might be

different in the distractor experiment because of top-down

weighting [48–51]. When both stimuli are presented together, as

in the distractor experiment, the weight of the target might be up-

modulated and that of the distractor down-modulated. That is, the

salience values determined in the baseline salience measurement

would be under-estimates for targets and over-estimates for

distractors. If this was the case, true equality of salience should

be in the positive range of salience differences and the distractor

would be even less salient than the target at the point of 0 ms

salience difference. To test for the latter two possible types of

salience estimation errors, we fitted regression functions with

varying inflection points from 210 to 15 ms salience difference

and calculated the corresponding BIC’s. As figure 4 shows, BIC

was lowest for a regression function with the inflection point in the

positive range of salience differences. This implies that at 0 ms

salience difference, in the distractor experiment, the distractor is

still less stimulus-salient than the target and top-down weighting

shifts the point of equal salience difference into the positive range.

Figure 2. Empirical data of the baseline salience measurement and data fitted by the accumulator salience model. Left panel: five
salience levels of orientation targets. Right panel: five salience levels of luminance targets. Symbols depict RT quantiles of each condition as follows:
o = .1, D= .3, + = .5, 6= .7, and e = .9. Lines represent RTs generated by the model. Fitted RTs differ from empirical RTs by 5 ms on average (range: 0
to 28 ms). Additional parameter estimates were Ter = 300 ms, ser = 70 ms, a = .08, and b= .294.
doi:10.1371/journal.pone.0052595.g002
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Consequently, our measure of salience difference is rather

conservative, that is RT interference by less salient distractors is

actually even higher than we have assumed here.

The nonlinear regression function already implies that dis-

tractors less salient than the target do interfere with search. To

examine RT interference by less salient distractors more closely,

we conducted t-tests for all salience differences for which the

distractor was significantly less salient (criterion of 0 ms salience

difference) than the target. These tests confirmed there are indeed

distractors less salient than the target that produced significant RT

interference (Figure 3A).

Overall, the findings of RT interference being sigmoidally

related to relative salience and of less salient distractors capturing

attention, are compatible with visual search and salience models

[10,18–24] that assume that the salience coding and, thus, the

selection process is subject to internal noise.

Computational Model
A second, theoretical goal of the present study was to develop

and test a computational model of how stimulus salience translates

into selection salience, that is, a model accounting for the variation

in the outcome of the selection process based on stimulus salience

– concretely by simulating the data of the distractor paradigm.

Figure 3. Behavioral interference and modeled proportion of
capture as a function of salience difference. (a) Empirical RT
interference, averaged across participants, represents the RT difference,
in ms, between distractor-present and distractor-absent trials. Salience
difference, averaged across participants, was derived from detection
times in the baseline salience measurement requiring a simple target-
present vs. target-absent decision (see Methods of Behavioral reaction
time experiment). Negative x-values indicate distractors less salient, and
positive x-values distractors more salient than the target. Dots represent
mean values of RT interference for each salience difference condition
(n = 25); arrows indicate the associated standard errors. Red dots
indicate significant RT interference by distractors significantly less
salient than the target (t-tests: p,.05). Solid curve: regression function
curve R2. (b) Proportion of capture in the distraction experiment was
predicted by salience difference, derived from fitting empirical salience
difference values. Again, dots represent mean values of RT interference
for each salience difference condition (n = 25). The curve depicts the
nonlinear relationship according to R2.
doi:10.1371/journal.pone.0052595.g003

Table 1. Parameter estimates of the model predictions fitted
to empirical and modeled data.

Variable

Unstandardized
estimate S.E. t p CI BIC

Human data

R1 178

Asymptote 73 9.66 7.53 .001 58–117

Inflection point 7 10.26 0.65 .263 210–48

Growth factor 29 5.79 5.79 .019 18–47

R2 175

Asymptote 67 2.90 23.09 ,.001 61–73

Inflection point 0

Growth factor 26 3.39 7.57 ,.001 19–34

Model data

R2 242

Asymptote 0.95 0.04 24.87 ,.001 0.87–1.03

Inflection point 0

Growth factor 42 5.01 8.39 ,.001 32–55

Note: n = 25. Estimate for empirical data in ms; asymptote estimate for modelled
data in proportions. Ri = Nonlinear regression function. S.E. = Standard Error. t
and p = value and probability of the t statistic associated with parameter
estimate. Degrees of freedom: R1: 23, R2: 22. CI = 95% confidence interval.
BIC = Bayes Information Criterion.
doi:10.1371/journal.pone.0052595.t001

Figure 4. Course of BIC dependent on the inflection point of
the regression function. Regression functions were fitted according
to formula (1), with the inflection point as fixed parameter. Inflection
points are specified in ms of salience difference.
doi:10.1371/journal.pone.0052595.g004
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Importantly, the model we devised makes predictions about the

item that is selected first (rather than directly about RT

interference) and takes noise and the time course of selection,

based on stimulus salience, into account. Selection is assumed to

involve a decision between all stimuli in the display and the

dynamics of selection processes to be stochastic in nature [10,19–

24], with the outcome being dependent on stimulus salience and a

noise component.

In more detail, the model assumes that the salience map

develops over time probabilistically (Figure 5). Each item in the

visual scene is represented by a sensory-evidence accumulator unit,

the drift rate of which corresponds to stimulus salience.

Accumulation is assumed to be a leaky and noisy process [52].

That is, sensory evidence does not accumulate infinitely, but

comes to settle eventually around an asymptotic value (mathe-

matically the proportion of the drift rate to leak). A selection

decision is triggered as soon as sensory evidence for a specific

location exceeds a threshold. In this model, stimulus salience

determines the drift rate with which sensory evidence is

accumulated, and selection salience is the accumulating, or

accumulated, sensory evidence. In contrast to this dynamic

process, which is continuous over time, conventional models of

visual salience essentially envisage a snapshot-like topographic

representation of the (physical) feature contrasts present in the

scene, which serves as the basis for selection decisions: the location

of maximum contrast is attentionally selected by a winner-take-all

mechanism, the time course of which is usually not modeled

explicitly.

For simulating the results of the distractor experiment, in a first

step, we fitted the model to the empirical baseline salience

measurements in order to obtain parameter estimates for stimulus

salience; in the next step, these parameters were used to simulate

selection salience in terms of the probability of a distractor versus a

target being selected first.

Methods
We implemented the selection salience map using leaky

accumulators [52]. That is, all items on the screen are represented

by leaky accumulators that race against each other for selection;

the item that first exceeds a threshold criterion is then selected.

Model parameters are drift rate n, leakage b, and threshold a. At

each time step, sensory evidence of accumulator I is updated

according to the formula:

dxi~½ni{bxi�hzN(0,s)
ffiffiffi
h
p

, ð4Þ

where h is the step size, which is set to 1 ms in the model fits, and

N(0, s) denotes a Gaussian distribution with mean 0 and standard

deviation s. Within-trial variability is normally distributed with

s= 0.1. Salience computation terminates as soon as one

accumulator exceeds the selection threshold, resulting in a decision

time of attentional selection (tsel). Observed reaction time is usually

considered to be the sum of decision time and time of non-

decision-related processes such as basic encoding time between

retina and primary visual cortex as well as the time necessary after

the decision has been made for the motor commands to be

transmitted to and innervate the effector muscles. Non-decision

times (denoted Ter), which incorporate the time necessary for

stimulus encoding and response production, are usually assumed

to be distributed uniformly [53] with range ser. Note that,

potentially, the model could also be turned into a winner-take-all

‘network’ by adding lateral inhibition between each accumulator.

In this case, over time, there would eventually be only one

accumulator active, with the activities of all other accumulators

driven to (near-) zero. As concerns the selection times for the first

item, the main question at issue in the present study, such a model

would yield similar results.

In pop-out search, accumulators for non-target stimuli can be

left out of the simulation, because non-targets are effectively never

selected – as evidenced by search time for pop-out targets being

independent of the number of non-targets [38]. That is, for the

baseline salience measurement, in which only a target (but no

distractor) was presented amongst the non-targets, the selection

salience map model is reduced to one accumulator racing towards

its threshold. In the distractor experiment, by contrast, a pop-out

target and a pop-out distractor were presented simultaneously. In

the model, this is represented by two accumulators racing against

each other, with the drift rates of the two accumulators

corresponding to target and distractor stimulus salience, respec-

tively.

The simulation proceeded in two steps: first, the model

described above was fit to the data of the baseline salience

measurement to obtain drift rates corresponding to the different

levels of stimulus salience induced by the 10 possible ‘targets’, as

well as estimates of the other parameters (b, a, Ter, and ser); second,

these estimated parameters were then used to simulate the

proportion of capture trials in the distractor experiment.

From the empirical data of the baseline salience measurement,

RT distributions were characterized by the .1, .3, .5, .7, and .9

quantiles. These were calculated per observer per condition and

then pooled across all observers [53]. Model parameters consisted

of one selection threshold a, leakage b, non-decision time Ter and

its range ser, and additionally one drift rate ni per salience

condition. For each parameter set, 50,000 replications of the

random walk process were simulated (see equation 4); that is, for

each salience condition, the model produced 50,000 model RTs.

From these, the model .1, .3, .5, .7, and .9 quantiles as well as the

error rates were computed. An error was recorded if the

accumulator failed to reach the selection threshold within

1,200 ms (as in the empirical experiment). For each parameter

set, the weighted least squares (WLS) was calculated according to

4(pcth{pcex)2z
X

i

wipcex½Qth(i){Qex(i)�2, ð5Þ

where pc stands for percent correct and the indices th and ex denote

the modeled (theoretical) and empirically measured (experimental)

statistics, respectively; Q(i) signifies the .1, .3, .5, .7, and .9 quantile

RTs, and wi is a weight which was set to 2 for the .1 and .3

quantiles, to 1 for the .5 and .7 quantiles, and to 0.5 for the .9

quantile [54]. That is, the squared differences between empirical

and model percent-correct scores and, respectively, empirical and

model quantiles are calculated, and the latter differences are

weighted more strongly for lower than for higher quantiles,

because estimates for higher (especially the .9) quantiles are more

variable than those for ‘faster’ quantiles. A Nelder-Mead simplex

optimization algorithm [55] implemented in R [45] was used to

minimize the WLS cost function. The fitting procedure com-

menced with manually selected starting variables and was run for

200 iterations ten times in a row, each time using the optimization

result from the previous run as starting values for the next run in

order to avoid local minima. Local minima are likely to be avoided

by this procedure, because during the simplex optimization, the

step sizes with which the parameter space is sampled become

adaptively smaller. When restarting the algorithm, the step size is

increased again, thus providing the potential for escaping from a
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local minimum [56]. Finally, the optimization procedure was run

with maximally 5,000 iterations to yield the final set of parameters.

Those parameters which fitted best to the baseline salience

measurement data were then used to simulate capture in the

distractor experiment. The model was based on the assumption

that in cases of both, a target and a distractor being present, two

accumulators race against each other for selection, one with a drift

rate corresponding to target stimulus salience and the other with a

rate corresponding to distractor stimulus salience; the accumulator

which first reaches the selection threshold wins the race. Capture

was then operationalized as the proportion of trials in which the

distractor accumulator completed the race before the target

accumulator. For each combination of target and distractor, the

selection threshold a, the leakage b, and the two salience values

were taken from the fit of the baseline salience measurement data

and 40 races were simulated (the same number of trials as were

used in the empirical study).

Results and Discussion
As RT interference is an indirect measure of the order of

attentional selection, the underlying mechanism can only be

inferred. Therefore, to strengthen our hypothesis about the

relationship between salience and order of selection, we compu-

tationally implemented the proposed salience-based selection

mechanism (Figure 5), estimated target salience from the

(behavioral) baseline salience measurement, and simulated inter-

Figure 5. Stochastic model of salience-based selection. (a) For each location in the visual field, salience is accumulated over time t = {t1, t2,…,
tk} by leaky accumulators. Gray jagged lines represent sample paths of sensory evidence accumulation over time, influenced by noise. Mean
accumulation behavior is indicated by solid black lines. Salience asymptotes s (st = target salience, sd = distractor salience, snt = non-target salience)
indicate maximum salience when time is infinite and noise absent; asymptotes correspond to the salience values of map locations computed by
deterministic models. (b) Selection time distributions (t = target, d = distractor) indicate selection time variation due to noise. Overlap of these
distributions (red area) marks the range within which a distractor may be selected first even if it is less salient than the target. (c) The final salience
pattern evolves over time, as illustrated by heat maps at different points in time.
doi:10.1371/journal.pone.0052595.g005
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ference for the distractor experiment. RTs generated by the

salience model yielded a close fit to the empirical RT distributions

(Figure 2) for the various orientation and luminance targets in the

baseline experiment: reduced salience slowed search and increased

the spread of the RT distributions. The goodness of fit is

remarkable given that across the ten different target conditions,

only one parameter (the drift rate, corresponding to salience) was

free to vary, whereas the parameters a (selection threshold), b
(leakage of the accumulator), Ter (non-decision time), and ser

(variability of Ter) were kept constant.

Importantly, when simulating the data of the distractor

experiment using the fitted parameters from the baseline salience

measurement, the predicted proportions of capture were similar to

the observed RT interference (Figure 3B): the salience model

simulates distractors less salient than the target to capture

attention, the proportion of capture events to depend sigmoidally

on salience difference, and capture to occur in half the trials with

distractor of equal salience relative to the target. This qualitative

similarity is reinforced by comparing the fits of nonlinear

regression function R2 to the simulated and the empirical data:

the inflection point and growth factor parameters of the nonlinear

fits did not differ, as indicated by the overlapping confidence

intervals (see Table 1). Keeping the leakage parameter b constant

at zero does not qualitatively alter the fit of the baseline

experiment or the proportions of interference. However, there

are two conceptual arguments for assuming leakage. First, without

leakage, evidence would accumulate towards infinity over time,

which is implausible with respect to the limitedness of neuronal

firing rates. Second, with leakage, sensory evidence averages to an

asymptote which is proportional to the salience values calculated

by conventional, ‘static’ salience algorithms.

Behavioral Eye Movement Experiment

Although RT interference has been attributed to attentional

capture in most previous studies [11–13,15], there is also the

possibility that RTs are slower on distractor compared to target-

only trials not because attention is first captured by the distractor,

but because the distractor draws on the same processing resources

as the target and thus slows target selection. Conceivable

mechanisms of slowing are filtering [57] or competitive interac-

tions [58] to be resolved in favor of the target. Whatever the

precise mechanism that may underlie such slowing effects, in the

present context, the critical question is whether or not the RT

interference produced by distractors less salient than the target is

the result of attentional capture. Empirical RT data cannot answer

this question (RT interference may be caused by slowing,

attentional capture, or both), and although our modeling results

demonstrate that a capture account could explain the pattern of

RT interference effects, it does not rule out alternative accounts in

terms of non-capture slowing. Given this, we examined for

attentional capture of the eye by (less salient) distractors in an eye-

tracking experiment. Involuntary capture of the eye by a distractor

is commonly taken as a strong indicator of attentional capture

[59]. Accordingly, the finding of oculomotor capture would

corroborate attentional capture as a source of RT interference. In

the eye-tracking experiment, participants’ task was to make a

direct saccade to the target, while a less salient distractor could be

present in the display.

Methods
Methods were the same as in the RT distractor experiment,

unless stated otherwise.

Participants. Eight paid (J 8) volunteers, with a median age

of 23 (range 20–39) years, one of them male, seven dextral, and

with visual corrected-to-normal acuity and normal color vision,

gave written informed consent to participate in this experiment.

Stimulus presentation and data acquisition. Stimuli were

generated using a ViSaGe system (Cambridge Research Ltd., UK)

with a purpose-programmed Experimental Toolbox for MATLAB

(The MathWorks, Inc.). Stimulus displays were presented on a 22-

inch Mitsubishi Diamond Pro 2070SB CRT monitor with a screen

refresh rate of 120 Hz and a screen resolution of 1,0246768 pix-

els. Eye movements were recorded at a sampling rate of 1000 Hz

by means of an EyeLink 1000 Desktop Mount eye tracker (SR

Research Ltd., Canada) positioned below the display monitor.

Participants viewed the monitor from a distance of about 70 cm;

to minimize head movements, a chin and forehead rest were used.

Eye movements were recorded from the right eye; however,

stimulus displays were viewed binocularly.

Grey vertical bars (without gaps) of 0.25u61.35u of visual angle

were arranged on three imaginary concentric circles (2u, 4u, and 6u
of visual angle in radius, with 6, 12, and 18 bars, respectively).

Targets differed from non-targets in orientation (22u tilted from

vertical, randomly to the right or left), and distractors differed from

non-targets in color (distractor 1: 180/100/106, distractor 2: 171/

104/110 RGB). All stimuli were matched for luminance.

Design and procedure. The experimental session started

with the eye-tracking experiment, after which the baseline salience

measurement was conducted. The eye-tracking experiment

implemented a 2 (distractor absent vs. present)62 (distractor

salience) factorial within-subject design, with two salience differ-

ence conditions. To ensure reliable differentiation between target

and distractor fixations for the data analysis, distractor positioning

was restricted in the following way: the target position was chosen

randomly out of the 12 possible positions on the middle circle; the

distractor position was then chosen to be shifted by three or five

positions to either the left or the right from the target position

(each in a random 25% of the distractor-present trials). There were

80 trials per salience condition. This resulted in 320 trials overall,

which were presented in 4 blocks of 80 trials each. All salience

difference conditions were presented in random order within

blocks.

The task was to make a speeded saccade to the target.

Observers were instructed to fixate the fixation cross at the trial

start until the appearance of the search display, and then to make a

direct saccade to the (orientation) target, while ignoring the (color)

distractor. In case the first saccade went nevertheless to the

distractor, participants were instructed to direct the next eye

movement to the target. In addition, they were told that after

having made a saccade to the target, they should fixate it until the

disappearance of the search display.

Each trial started with a fixation cross (0.5u60.5u) for 1,000 ms.

Then, the search display appeared and remained visible for

1,000 ms. The intertrial interval, in which a black (blank) screen

was displayed, was of a random duration between 700 ms and

1,100 ms. Observers were encouraged to use this interval for

briefly closing and resting their eyes, so that they could minimize

blinks during the subsequent trial. Additionally, participants could

take short breaks between experimental blocks. Prior to each block

of trials, a nine-point calibration of the eye tracker was conducted.

Baseline salience measurement. Salience measurement

was the same as for the reaction time experiment, unless stated

otherwise. Apparatus and stimuli were the same as in the eye-

tracking experiment, that is, the to-be-detected targets were either

‘oriented’ or ‘colored’. Six blocks consisting of 40 trials were

performed, yielding a total of 240 trials and 40 trials per target
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condition. Each trial started with the presentation of a white

fixation cross (0.5u60.5u) for a random duration ranging from

700 ms to 1,100 ms. Thereupon, the search display was presented

and remained visible until response or a maximum duration of

1,000 ms.

Data analysis. For the analysis of the baseline salience

measurement, error trials (0.9%) and target-absent trials were

excluded. In addition, RTs shorter than 150 ms and longer than

three standard deviations above an observer’s mean per target

type were discarded as outliers (0.8% of all trials). For the analysis

of the eye-tracking data, trials were excluded on which search

display onset occurred during a saccade or the eye-tracker failed to

track the observer’s pupil (4.3%). Saccade latencies were

calculated as the time between onset of the search display and

the initiation of the observer’s first saccadic eye movement. Trials

with initial saccade latencies below 80 and above 600 ms were

excluded (2.9%). The remaining data underwent a drift correction:

Before the onset of the search display (i.e. at the end of the fixation

cross display), gaze was assumed to have rested on the fixation

cross. Thus, for drift correction, the eye’s deviation from the

fixation cross was subtracted from the subsequent gaze position

data for this trial. The initial saccade after search display onset was

then assigned to the target or the distractor if it landed within 3u of

visual angle of the respective (target or distractor) location. Initial

saccades that went neither to the target nor to the distractor were

not included in the subsequent analysis (2.8% of the remaining

trials).

Salience difference, which again served as independent variable,

was computed as in the RT distractor experiment. To ascertain

that each distractor was less salient than the target in the baseline

experiment and whether the percentages of distractor fixations

were greater than zero in the eye-tracking experiment, one-sided t-

tests were calculated on the sample of eight participants.

Results and Discussion
The eye-tracking experiment was designed to examine whether

the interference by less salient distractors observed in the RT

distractor experiment was the result of attentional capture;

participants’ task in this experiment was to make a speeded

saccade to the orientation-defined target, while a color-defined,

but less salient distractor could be present at the same time.

Distractor color was manipulated in two steps. As in the RT

experiment, stimulus salience was estimated in a post-experiment

(baseline salience measurement). The times required to detect these

(orientation- and color-defined) stimuli served as salience estimates

for the stimuli in the eye-tracking experiment.

Detection times were significantly faster for the orientation

target (M = 376 ms; SD = 37) compared to both color distractor 1

(M = 399 ms, SD = 54; t[7] = 22.1, p,.05) and color distractor 2

(M = 414, SD = 54; t[7] = 23.3, p,.01). Hence, both distractors

were considerably less salient than the target.

For the eye-tracking experiment, we calculated mean percent-

ages of target and distractor fixations (based on distractor-present

trials) for the two distractor types. Figure 6 presents these as a

function of the salience difference between target and distractor.

With color distractor 1 (salience difference of 224 ms) in the

display, 22.5% of the initial saccades went to this distractor rather

than to the target. With color distractor 2 (salience difference of

239 ms), there were 13.3% oculomotor capture trials. The

capture rate was significantly above zero for color distractor 2 as

well as for color distractor 1 (t[7] = 5.1, p,.001 and, respectively,

t[7] = 5.7, p,.001). Thus, even though both color distractors were

less salient than the target (as established in the baseline salience

measurement), they led to a considerable amount of capture

events. This implies that distractors less salient than the target do

give rise to involuntary attentional capture (as well as distractors

more salient than the target).

The initial saccade latencies, irrespective of saccade destination,

were examined in an ANOVA with the single factor distractor

condition (three levels: absent, color distractor 1, color distractor

2). The latencies were somewhat shorter for distractor-absent trials

(M = 249 ms, SD = 20) than for trials with a color distractor

(distractor 1: M = 256 ms, SD = 29; distractor 2: M = 256 ms,

SD = 31), but these differences were not reliable (F[2,14] = 1.9,

p = .19). The same was true when only the latencies of initial target

fixations were examined: latencies were slightly, but not signifi-

cantly, shorter for distractor-absent trials (M = 249 ms, SD = 20)

than for trials with a color distractor (distractor 1: M = 259 ms,

SD = 31; distractor 2: M = 256 ms, SD = 34; F[1,9] = 2.4, p = .16,

Greenhouse-Geisser-corrected).

Finally, we examined how long the eyes rested on the distractor

when it was selected prior to the target. The mean fixation

duration was 131 ms for color distractor 1 and 154 ms for color

distractor 2. The 95% confidence intervals ranged from 95–

160 ms for color distractor 1 and from 95–214 ms for color

distractor 2. This means that the time required to identify the

foveated item as a non-target and to prepare the next saccade

varied between 95–214 ms.

This time can be related to the maximum RT interference in

the behavioral distractor experiment. There, the asymptote of the

sigmoidal relationship between salience difference and RT

interference was about 80 ms. That is, distractors much more

salient than the target, which are presumably selected first in

100% of all trials, lead to RT interference of approximately 80 ms.

This time is in a similar range (albeit somewhat faster) to the

durations of first fixations on distractors. Note, though, that the

focus of the present study and model is on the capture of attention,

Figure 6. Capture of the eye by less salient distractors. Empirical
proportion of capture by the distractor, averaged across participants,
represents the proportion of first eye movements landing on the
distractor position. Salience difference, averaged across participants,
was derived from detection times in the baseline salience measurement
requiring a simple target-present vs. target-absent decision (see
Methods of Behavioral eye-tracking experiment). Negative x-values
indicate distractors less salient than the target. Dots represent mean
values of proportion of capture for each salience difference condition
(n = 2); arrows indicate the associated standard errors.
doi:10.1371/journal.pone.0052595.g006
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rather than the subsequent processing steps which include

identification of the selected item as a distractor, selection of the

next salient location, disengagement of attention, and execution of

the covert or overt attention shift. These processing stages

subsequent to attentional capture have only rarely been discussed

in the literature [3] and should be the subject of future research.

The two methods presented here (fixation durations and

maximum RT interference) may serve as two possibilities of how

to estimate the duration of the subsequent processing stages.

General Discussion

Theories of attentional selection, such as salience and visual

search theories [10,18–21], assume attention to be automatically

attracted by the most salient location. An additional assumption of

these theories is noise operating during the computation process.

This assumption of noise requires the distinction between stimulus

salience, determined by physical stimulus properties, and the

salience estimate for selection which is susceptible to noise –

selection salience. Although there are empirical studies providing

evidence for attentional capture by the most salient stimulus

[11,12,14], there has been no previous study in which salience of a

target and salience of a distractor were varied parametrically, to

demonstrate that noise influences the process of selection between

two competing locations and turns salience into a stochastic

variable such that even less salient stimuli lead to RT interference

because they may be selected prior to the most salient ones. Note

that the assumption of noise influencing the selection process is

also at the heart of the redundant-signals paradigm. Here, two

salient features share the same location while racing for selection

[60,61].

The aim of the present study was to test the predictions by visual

search and salience models that noise influences the selection

process such that (i) selection salience (based on which a selection is

made) varies as a function of relative salience between target and

distractor and (ii) distractors less stimulus-salient than the target

capture attention. Further, by implementing the distinction

between stimulus and selection salience computationally, we

aimed at modelling the empirical results of the distractor visual

search experiment.

By manipulating stimulus salience of targets and distractors

parametrically, we found distractor interference to be sigmoidally

related to salience difference between targets and distractors and

even distractors less salient than the target to interfere with search

and capture attention. These results are in accordance with

salience [18–20] and visual search models [8,10,21], which assume

noise during the selection process. This, at the same time, suggests

that experimental manipulations of previous studies [11,12,14,16]

were insufficient to recognize the stochastic dependency between

salience and attentional capture and hence claimed that the most

(stimulus-) salient item is invariably selected first. Parametric

salience manipulation, by contrast, revealed a gradual increase of

RT interference with increasing distractor salience relative to the

target, where a less salient distractor can be selected before the

more salient target. These results point to a stochastic relationship

between stimulus salience and selection, which is predicted by

visual search and salience models, but was not shown in relevant

empirical studies [11,12,14,16].

Attentional Selection as Decision Process
For the computational implementation of the distinction

between stimulus and selection salience, we considered attentional

selection as a decision between the target and the distractor (non-

targets were considered negligible in the competition for selection,

because it was ensured that all target and all distractor stimuli were

found efficiently, i.e. popped-out) and used decision mechanisms

to model selection salience on the basis of stimulus salience. The

idea to implement attentional selection as a decision process is

grounded on the assumption that search does not involve a one-

step decision [62–64], but rather a chain of decisions [10,65,66].

In this chain, first, one of n possible locations has to be selected

(where n is the number of possible target locations in the display);

second, a two-alternative identification decision between ‘target’

and ‘distractor’ has to be made; third, a decision concerning the

response-relevant feature (here the gap location) is necessary for

task completion; and fourth, the correct button has to be selected

for the response (here upper or lower).

As input for the selection salience modelling, we used the

stimulus salience estimates measured in the detection experiment.

Selection salience was then computed by the race of the two

accumulators of target and distractor with their drift rates

corresponding to the stimulus salience of both stimuli. In other

words, the model was first fit to the RT distributions in the salience

baseline measurement, which was designed to provide estimates of

the drift rate parameters corresponding to the stimulus salience

values of the various (orientation and luminance) target stimuli.

This procedure of taking empirical data as input for the model to

simulate visual search performance was also used by Purcell et al.

[35]. When, second, using these empirical stimulus salience

parameters to simulate the data of the distractor experiment, the

proportion of simulated capture (i.e. trials on which the distractor

was selected first) did not differ from that of empirical RT

interference and increased with increasing relative stimulus

salience between target and distractor. The model also simulated

capture by less salient distractors, as indicated in the RT distractor

experiment and demonstrated in the eye-tracking experiment.

The present approach of considering salience-based attentional

selection as decision process (with a decision being made in favor

of the stimulus with the highest selection salience), is only one way

to conceive of salience. An alternative approach is that adopted by

image-based salience models [22–24], which implement the

construct of salience in terms of image statistics that are computed

by center-surround algorithms. In this case, however, the most

salient item is invariably selected, unless some noise filter is added

on top of the computed salience. For the computation process

itself, stimulus salience and selection salience are always identical

in these models, that is, noise is not an inherent component of the

computation process, but a ‘technical’ add-on following the

computation of salience. A more theoretical, rather than technical,

approach was taken in developing cognitive concepts of salience to

explain specific patterns in visual search performance [10,17,21].

Here, the core function of salience (or activation) maps is their role

in guiding attention to a specific location. Another perspective that

has been taken to consider salience is the neurophysiological one

[19,67–70]. Here, the spike rates of neurons in the lateral

intraparietal area or the frontal eye field are considered to form a

salience map and marking locations for focal-attentional alloca-

tion. Some attempts have already been undertaken to combine the

various constructs of salience: Li [20] presented a salience model

based on neuronal network modelling of V1 that combines the

cognitive, neurophysiological, and image statistics perspectives.

Purcell et al. [35] combined the decision with the neurophysio-

logical approach by feeding neuronal spike trains as salience signal

to a stochastic accumulator model that simulated a decision in a

visual search task. The variety of perspectives from which salience

can be considered demonstrates that when various studies talk

about salience, the authors do not necessarily have the same

concept in mind. Thus, clearly, it is necessary to precisely define
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the concept under consideration, in order to frame predictions

about behavior.

Relation to Biased Competition
As mentioned above, RT interference due to distractor presence

can have several possible sources. Either the distractor could

capture attention and the target would be selected only as the

second item, yielding a cost on RT; or the distractor could slow

down selection of the target, even if the target is selected first.

Here, we discuss these two theoretical possibilities with respect to

the concept of biased competition [58,71,72]. The core assump-

tion of biased competition is the idea that stimuli compete for

neuronal representation. The competition for this representation

can be biased by both top-down (intentional) and bottom-up

(environmental) factors. The bottom-up factor relevant in this

context is salience [73]: the more salient a stimulus is, the stronger

it competes for neural representation. There are two possibilities of

how this account can be linked to the distractor visual search

paradigm.

First, biased competition could account for no-capture slowing

of target selection. Target and the distractor compete for neural

representation. Thus, when a distractor is present, fewer resources

are available for the target. Even if the target is selected first, its

selection time would be slower in the presence, compared to the

absence, of a distractor. This could be implemented in our model

in terms of lateral inhibition between the different accumulators

[52,74]. That is, each accumulator receives excitatory input from

the salience signal derived from its stimulus and, additionally,

inhibitory input from the other accumulators. However, while

such a wiring scheme would implement the biased-competition

mechanism sketched above, our eye movement experiment

yielded little indication that the time required for direct (first)

selection of the target is dependent on distractor presence (or

distractor salience).

Second, our decision model – which assumes an accumulator

for each stimulus in the visual field, with the drift rate of each

being proportional to the stimulus salience – can be considered as

an implementation of the bias in competition imposed by stimulus

salience [73]. In the model, competition takes the form of a race,

amongst the accumulators, against a threshold: that item is

attentionally selected that drives the accumulator which crosses the

threshold first, where the driving input depends on stimulus

salience.

In summary, both variants of biased competition (yielding target

slowing and distractor capture, respectively) can be implemented

in our salience decision model. However, our eye movement data

suggest that primarily the latter mechanism is responsible for the

RT interference caused by a competing distractor, whether the

distractor is more or less salient than the target.

Relation to Top-down Modulations of Salience
The focus of the present study was on bottom-up modulations of

salience by physical feature contrast. Top-down modulations of

salience are well documented in the literature [10,48,50] and have

also been discussed in relation to attentional capture [49,75,76].

Specifically, it is assumed that when a dimension (e.g. orientation)

is task-relevant, salience signals from this dimension are up-

modulated to some degree. At the same time, salience signals from

irrelevant or to-be-ignored dimensions (e.g. luminance or color)

are down-modulated. Our data support this view, in that the

salience difference at which the target and the distractor are

equally likely to be selected actually requires the distractor to be

somewhat more salient than the target, as measured in the baseline

experiment (because in the distraction experiment, top-down

weights enhance the target and reduce the distractor salience). The

present model can easily be extended to incorporate top-down

weighting: the drift rates would be slightly increased for features in

the target-defining dimension and decreased for features in the

distractor-defining dimension, implementing task-dependent top-

down modulations of salience.

Conclusion
We conclude that attentional selection can be understood as a

‘decision’ and, consequently, with regard to the concept of

salience, a distinction has to be made between stimulus salience,

which is computed from physical stimulus properties, and selection

salience, which contains the noisy estimate of stimulus salience that

is relevant for attentional selection. Following this distinction, the

dependency between attentional selection and salience is stochastic

in nature. As an empirical consequence, attentional capture by an

irrelevant distractor occurs as long as the selection time

distributions of target and distractor overlap, and distractors less

salient than the target can also capture attention.
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