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Abstract

Transcriptome sequencing (RNA-Seq) overcomes limitations of previously used RNA quantification methods and provides
one experimental framework for both high-throughput characterization and quantification of transcripts at the nucleotide
level. The first step and a major challenge in the analysis of such experiments is the mapping of sequencing reads to a
transcriptomic origin including the identification of splicing events. In recent years, a large number of such mapping
algorithms have been developed, all of which have in common that they require algorithms for aligning a vast number of
reads to genomic or transcriptomic sequences. Although the FM-index based aligner Bowtie has become a de facto
standard within mapping pipelines, a much larger number of possible alignment algorithms have been developed also
including other variants of FM-index based aligners. Accordingly, developers and users of RNA-seq mapping pipelines have
the choice among a large number of available alignment algorithms. To provide guidance in the choice of alignment
algorithms for these purposes, we evaluated the performance of 14 widely used alignment programs from three different
algorithmic classes: algorithms using either hashing of the reference transcriptome, hashing of reads, or a compressed FM-
index representation of the genome. Here, special emphasis was placed on both precision and recall and the performance
for different read lengths and numbers of mismatches and indels in a read. Our results clearly showed the significant
reduction in memory footprint and runtime provided by FM-index based aligners at a precision and recall comparable to
the best hash table based aligners. Furthermore, the recently developed Bowtie 2 alignment algorithm shows a remarkable
tolerance to both sequencing errors and indels, thus, essentially making hash-based aligners obsolete.
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Introduction

Novel possibilities and challenges have been introduced to

genome analysis by the emergence and rapid distribution of next

generation sequencing (NGS) technologies. In contrast to tradi-

tional Sanger sequencing, the NGS counterpart relies on multiple-

fold coverage of each sequenced base by many short sequencing

reads. What took the International Human Genome Consortium

over a decade and an estimated $300 million to complete, is now

feasible within one day’s time and at a fraction of this price. Due to

falling sequencing costs, NGS technologies have been extended to

many more applications apart from genome sequencing, in

particular transcriptome sequencing and quantification.

Previously used hybridization-based methods for quantification

and characterization of transcripts require careful design of the

array platform and knowledge about the transcriptome under

investigation. Furthermore, they suffer from cross-hybridization

effects and have a limited dynamic range [1]. Earlier sequencing-

based approaches to transcript quantification such as Serial

Analysis of Gene Expression (SAGE) or Cap Analysis of Gene

Expression (CAGE) had the advantage of providing count-based

measures of transcript abundance, however due to high per-base

sequencing costs, high throughput could only be achieved at the

expense of small, often ambiguously mapping tag sizes. Further-

more, since transcripts were merely identified by their 39- or 59-

terminal tags, these methods were oblivious to variations within

the transcript. High-throughput RNA sequencing (RNA-seq)

overcomes these limitations and provides a single methodology

to assess transcript sequence, structure and abundance.

The mapping of sequencing reads to their sequence origin is the

first step upon which any subsequent analyses are based. A specific

challenge for the sequencing of eukaryotic transcriptomes is the

mapping of reads from spliced transcripts to the genome. As read

lengths increase, the number of reads spanning exon junctions

increases such that alignment to an unspliced reference becomes

impractical. Accordingly, a large number of mapping approaches

have been developed in recent years to address this problem,

including TopHat [2], SpliceMap [3], MapSplice [4], RUM [5],

RNASEQR [6] and ContextMap [7]. While these approaches

differ in their strategies for mapping reads crossing splice junctions

or the use of only an alignment to the genome (e.g. TopHat,

MapSplice and ContextMap) or also to the transcriptome (e.g.

RUM and RNASEQR), all of these require specialized alignment

algorithms to actually align the sequencing reads to the genome or

transcriptome. For instance, RUM [5] and RNASEQR [6] start

with read alignments to the reference transcriptome and genome

and then identify novel splice junctions only from the reads not

aligned in the first step.
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Due to this importance of read alignment for any application

of NGS technologies, many software tools for short read

alignment have been published. Although standards such as

MAQ [8] and in particular Bowtie [9] exist in the field, they

are not unchallenged and many more alignment algorithms

have been developed (see the Methods section for an overview).

Remarkably, however, developers of mapping algorithms for

RNA-seq have mostly ignored more recently published align-

ment algorithms and almost exclusively use Bowtie as internal

alignment program. While the usage of the same alignment

algorithm in all of the mapping approaches listed above makes

it easier to perform an unbiased comparison of the different

strategies in identifying spliced reads (see [5] and [7] for recent

evaluations of mapping algorithms), it completely overlooks the

possibility of improving both alignment accuracy and runtime

performance of any of these strategies by exchanging the

internal aligner. This highlights the need for a comprehensive

comparison of alignment algorithms with a particular focus on

RNA-seq data.

Although newly proposed alignment algorithms are generally

compared against a few selected other algorithms, there exist

few comparative studies on a wider range of algorithms which

could provide some guidance in the choice of the algorithm.

Recently, Ruffalo et al. published a study comparing accuracy

and runtime on genome alignments for increasing genome sizes

and eight commonly used alignment algorithms [10]. Unfortu-

nately, only algorithms based on reference indexing either by

hash tables or FM-index were included and no algorithms using

read indexing were evaluated. Furthermore, accuracy was only

evaluated in terms of correctly and incorrectly mapped reads

and the sensitivity of the algorithms was ignored. In addition,

standard parameters appear to have been used and the

influence of the parameter choice on alignment quality was

not determined. Finally, as the evaluation was focused on

genome alignment, one aspect was not evaluated that becomes

relevant for RNA studies in case a mapping algorithm is used

that involves transcriptome alignments, such as e.g. RUM or

RNASEQR. In this case, the corresponding alignment algo-

rithms have to be able to handle the inherent redundancy

resulting from several transcripts of the same gene.

In this study, we address all of these points by performing a

comprehensive analysis of 14 algorithms including also read

indexing based approaches in the context of RNA-seq

experiments. Please note that this is not an evaluation of

approaches for assigning reads to their correct position in the

transcriptome, but of the underlying alignment algorithms that

may be used and, thus, does not focus on splicing detection. For

each algorithm, we first determined optimal parameters on

smaller training sets for varying read lengths and evaluated

stability of the results with parameter changes. On larger test

sets, we then evaluated recall and precision as well as runtime

and memory requirements. To realistically simulate the condi-

tions observed in RNA-Seq experiments, reads were simulated

from transcript sequences. Furthermore, as many of the fastest

and best-performing RNA-seq mapping approaches involve

transcriptome alignments, simulated reads were aligned to the

transcriptome. Our results confirm the superior performance of

FM-index based alignment approaches postulated previously

and furthermore show that the recently developed representa-

tives of this category have overcome the vulnerability to

deviations from the reference sequences due to sequence

insertions and deletions.

Materials and Methods

Alignment Algorithms
Methods for NGS alignment follow one of two major

algorithmic approaches, namely such based on hash tables as

known from BLAST and more recent developments based on

compressed prefix or suffix array-like structures (FM-index).

Hash table based aligners. Algorithms using hash tables

build upon quick seeding of alignment candidates which are then

extended or discarded using more precise alignment algorithms. In

order to quickly find seed locations, either the reference genome

(BFAST [11], Novoalign (http://www.novocraft.com), Mosaik

(http://code.google.com/p/mosaik-aligner), GNUMAP [12],

SHRiMP [13]) or the reads (MAQ [8], RMAP [14], RazerS

(www.seqan.de/projects/razers.html)) are split and stored in a

hash table. In contrast to BLAST which compares all positions

within a window, NGS aligners enhance sensitivity and robustness

by using spaced seeds, i.e., multiple windows in which some

positions are allowed to deviate from the reference sequence. As a

consequence, multiple seed masks are required to cover various

permutations of match and mismatch positions. Several strategies

exist for the creation of split seed masks. BFAST uses empirically

derived optimal seed masks for given read and genome sizes.

MAQ generates an exhaustive list of seed masks to allow for

retrieval of any sequence with at most k mismatches at the expense

of using
2k

k

� �
hash tables and aligners such as RMAP and

SHRiMP use variations of q-gram filtering which gives bounds on

the size and number of perfect matches in two strings of given

length and total number of edit operations. RMAP takes

advantage of this property in order to reduce the number of hash

tables and SHRiMP introduces gap-tolerant seeding [13,14].

Common to all hash table based aligners is the attempt to reduce

the search space to a minimum without discarding correct

alignment locations. Once seeds are selected, each of the candidate

locations is examined by variations of dynamic programming

alignment algorithms.

FM-index based aligners. Prefix- and suffix tree based

algorithms sacrifice error tolerance for extremely fast retrieval of

perfect matches. Since all prefixes/suffixes are represented by top-

down paths in such a tree, substring matching corresponds to

finding a path representing the query, starting at the root [15].

The drawback of using these algorithms is the prohibitively large

memory requirement for the uncompressed tree structure, with

constants of 15–20 bytes per base of the reference [16].

Subsequent developments took advantage of suffix arrays

enhanced by additional information for linear-time substring

matching, reducing memory requirements to less than 10 bytes per

base [17]. This family of algorithms did not become popular until

the development of the FM-index which is a compressed, yet

searchable suffix array-like structure [15] from the Burrows-

Wheeler transform [18] of the genome. Bowtie [9] is the first and

most widely used representative of this class and uses an index of

about 2.4 GB for the human genome. BWA [19] and SOAP2 [20]

are further popular aligners of this category which greatly

outperform implementations using non-compressed structures.

The most recent addition is Bowtie 2 [21], which was developed

with a particular focus on gapped read alignment. Following

seeding of exact substring matches, the algorithms differ substan-

tially in their way of handling mismatches and gaps. The most

widely used FM-index based alignment algorithms Bowtie and

BWA simply use a distance cutoff for the alignment of the entire

read to the genome. Bowtie 2 combines the ultrafast FM-index-

based seeding with efficient extension by dynamic programming in
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order to obtain gapped alignments. Usage specifics of the

evaluated mapping algorithms are further described in the

Supporting Information (Text S1).

Selection of Alignment Software for Evaluation
Popular mapping algorithms were selected based on community

discussions and the software wiki on http://seqanswers.com.

Other criteria for inclusion were free availability, handling of

standard formats for input and output, operability in batch mode,

active maintenance and documentation that allowed to set up a

functional installation with a reasonable effort. Furthermore, an

attempt was made to select aligners such that the major

algorithmic classes described above were covered. Table 1 lists

and categorizes the mapping tools that underwent full evaluation.

A comprehensive list of examined software including evaluated

parameters and algorithms that could not be evaluated can be

found in Text S1.

Simulation of RNA Sequencing Reads
RNA-Seq reads were simulated based on the ENSEMBL

human transcriptome (GRCh37) using dwgsim 0.1.2 from the

DNAA package (http://dnaa.sf.net). Paired-end reads of 36, 72

and 100 bp with an inner distance (distance between the 39

ends of the reads) of 250 bp (standard deviation 50 bp) were

sampled uniformly from the transcripts using the empirical

sequencing error models provided by MetaSim (http://ab.inf.

uni-tuebingen.de/software/metasim/). The error model derived

from 62 bp Illumina reads was used for the 36 and 72 bp reads,

and the error model derived from 80 bp Illumina reads for the

100 bp reads. Default parameters were used otherwise. Novel

structural variants were not generated as our study focused on

nucleotide-level performance of the evaluated aligners which are

not designed to address other tasks than sequence matching.

Simulation was based on the transcriptome rather than the

genome for a realistic simulation of RNA sequencing experi-

ments and in order to avoid a bias from features that are not

generally encountered in RNA-Seq experiments, e.g. repetitive

heterochromatin sequences.

Experimental Setup
As NGS alignment is a computationally expensive task,

exhaustive evaluation of alignment parameters on full-size

experimental data sets is infeasible. Therefore, we applied a two-

step process in which optimal parameter settings from a pre-

defined parameter space (Text S1) were first identified on a smaller

training set and then performance was evaluated using these

optimal parameter settings on a larger test set. Training and

testing was performed independently for each read length

evaluated. The training sets contained 500,000 paired end reads

each of length 36, 72 and 100 from annotated transcripts on

human chromosome 21 (2,212 transcript sequences). The test sets

contained 5 million 36, 72 and 100 bp paired end reads,

respectively, from transcripts of chromosomes 1-22 excluding

chromosome 21 (197,611 transcript sequences). Chromosome 21

was not included in the test set to avoid overlaps in the transcripts

on which the simulated reads were based on. Reads were then

aligned back to the transcript sequences they were simulated from.

Following alignment of the simulated reads to the transcriptome,

positions were mapped back to the genome in order to distinguish

multiple isoform mappings to the same genomic location from

ambiguous mappings to multiple different locations. The full

experimental setup is illustrated in Figure 1.

Performance Measures
Precision and recall. Alignment quality was assessed in

terms of alignment precision and recall. Precision evaluates which

fraction of aligned reads is aligned correctly and recall evaluates

which fraction of overall reads were correctly recovered. Recall

was ignored in the previous evaluation of alignment algorithms by

Ruffalo et al. [10]. However, as alignment algorithms may obtain

high precision at the cost of very low recall or vice versa, we aimed

to evaluate the trade-off between the two performance measures

for each algorithm.

To calculate precision and recall, the number of true and false

positive alignments was determined. Here, only alignments to

distinct genomic positions were evaluated. Alignments mapping

the read to the correct genomic location were counted as true

positives (TP). Alignments of a read to an incorrect location

counted as false positives (FP). Reads that could not be aligned to

the correct position counted as false negative alignments (FN). If a

read was aligned only to wrong positions, it increased the FN

count by one and the FP count by the number of its wrong

alignments. Thus, the sum of TP and FN yields the number of

reads. Since every read had exactly one correct location of origin

and should therefore be mappable, there was no measure for true

negative alignments. Note that for this purpose, all alignments

provided by the algorithm for the specific parameter choice were

evaluated. No additional cut-off was applied except filtering

parameters provided by the algorithms themselves. Thus, if an

alignment algorithm identified multiple locations for a read, the

correct alignment was counted as a true positive and all other

alignments to distinct genomic locations as false positives. In

general, however, the number of false positive alignments for a

particular read was at most 1.

Precision and recall were calculated using the following

equations:

Table 1. Alignment software undergoing complete
evaluation.

Algorithmic Class Aligner Version

Hash Table Based Algorithms

Read Indexing MAQ 0.7.1

RazerS 1.1

RMAP 2.05

Reference Indexing BFAST 0.6.4e

Genomemapper 0.4.3s

GNUMAP 2.2.3

Mosaik 0.7.1

mrFast 2.0.0.5

Novoalign 2.07.06

SHRiMP 2.1.1

Prefix/Suffix Matching Algorithms

FM-Index Based Bowtie 0.12.7

Bowtie 2 2.0.0-beta7

BWA 0.5.9-r16

SOAP2 2.21

Popular alignment tools for whole-genome applications were chosen to
represent the major algorithmic classes.
doi:10.1371/journal.pone.0052403.t001
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precision~
TP

TPzFP
and recall~

TP

TPzFN
:

We also calculated the F -measure, which evaluates the trade-off

between precision and recall:

F~
2 � precision � recall

precisionzrecall

When multiple parameter sets for one aligner resulted in equal

F -measures in the training step, the best combination was

determined as the one having a minimal geometric mean of

runtime and memory ranks.

Impact of parameter choice on alignment quality. In

addition to alignment quality for the best parameter, the large

number of parameter combinations tested allowed us to investigate

the impact of parameter changes on alignment performance.

Dispersion of the F -measure for different parameter settings was

used as a measure of sensitivity to changes in parameter values.

The ratio between average absolute deviation to the median was

chosen as measure of dispersion DF :

DF ~
1

DPD

X
p[P

DF(p){�FF D
�FF

with P being the parameter space searched for each aligner and �FF
the median of the F -measure over P. Thus, dispersal was

calculated over the F-scores obtained for any evaluated parameter

combination.

Runtime and memory requirements. Alignment software

was installed and run on the BioQuant computer cluster (CentOS

5.4686_64 2.6.18, openMPI 1.2.7rc2 managed by Torque/Maui)

with gcc 4.1.2. If multithreading was supported, 8 cores were used.

Runtime and memory usage were capped at 10 CPU days and

16 GB, respectively. Total CPU time and memory usage were

extracted from PBS job scheduler reports. In particular, for

memory usage we extracted the maximum memory used during

execution of the job. As the resource usage was only sampled at

specific intervals, this value should be considered only as an

approximation.

Results

Performance on Training Set
Optimal parameter combinations for each of the 14 evaluated

aligners and paired-end reads of three different lengths were

determined by testing all permutations that appeared to have an

impact on alignment quality. The search space was constrained

based upon literature research and the respective software

documentation. A total of~7000 parameter combinations (includ-

ing alignment quality thresholds provided by the algorithms) were

evaluated on the training set of 500,000 reads simulated from

chromosome 21. The optimal parameter sets from the training

runs along with corresponding performance measures are shown

in Table S1. The F -measures for the optimal parameters on the

training set ranged between 0.996 (Bowtie2) and 0.7 (RazerS,

RMAP). Precision and recall of most aligners were well balanced

and memory and runtime requirements varied considerably,

Figure 1. Workflow of alignment evaluation. Reads were simulated from chromosome 21 of the ENSEMBL human transcriptome using dwgsim
and aligned to the transcriptome with various parameter combinations for each alignment tool. The best parameter combination for each aligner was
selected based on F -measure first and runtime and memory consumption second in case of ties. The best parameters were then used to evaluate the
alignment algorithms on larger test sets simulated from chromosomes 1-22, excluding chromosome 21.
doi:10.1371/journal.pone.0052403.g001
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without an apparent trade-off between the two or with alignment

quality. As neither the genome size nor the number of reads were

varied at this stage, there was no apparent difference between the

two classes of hash table based aligners.

Parameter Stability
The evaluation of different parameter permutations also

allowed us to assess the robustness of the alignment quality to

parameter variations. While a large number of parameters (and

combinations thereof) promise tunability of the algorithm to a

specific problem, the danger of overwhelming the user with

complexity should not be underestimated. Ideally, parameter

variation should allow the user to trade precision for recall or to

alter runtime and memory properties without affecting overall

performance. Table 2 shows the dispersion values of the F -

measure over the chosen parameter space for the 72 bp read set.

Low dispersion (DF ) as observed for Bowtie 2 or RazerS indicates

that the choice of parameters has only little impact on alignment

performance. Algorithms with a high DF value, such as BFAST,

Novoalign and SOAP2 had a particularly wide distribution of

alignment quality.

This is exemplified by precision-recall analysis of Bowtie 2 and

SOAP2, two aligners with extremely low and high F -measure

dispersion, respectively (Figure 2). Precision remained largely

unaffected for both aligners, however SOAP2 had a widely

scattered recall distribution. These results also illustrate the

importance of evaluating both precision and recall. In terms of

precision there is little difference between the algorithms and

parameter settings and only the evaluation of recall showed this

large variation. Remarkably, the high DF value of mrFast also

results from a dramatic drop in recall if the -best flag is not used,

which restricts the output to the alignment with the minimum edit

distance. This is rather counter-intuitive, as one would expect a

large number of false positives but not false negatives if more

alignments are outputted. One possible explanation is that in

paired-end mode the usage of the -best flag has additional effects

such as the utilization of the average paired-end span. Thus,

although dispersion makes no statement about the overall

performance of the alignment software, it provides an indication

whether optimal performance can be achieved without in-depth

understanding of algorithmic details.

Overall Performance
The best-performing parameter combinations on the training

set for each alignment algorithm and read length were applied to

the test sets of 5 million paired-end reads each simulated from

chromosomes 1-22 (excluding chromosome 21). The results of this

large-scale test are shown in Table 3. In most cases, if the overall

alignment quality in terms of F -measure was reduced this was due

to a lower recall, i.e. a high proportion of reads that could not be

aligned to any location. This is observed most strongly for RMAP,

which has above-average precision (w0.91) but very low recall

(v0.53). Remarkably, there was no correlation between F-

measure on the one hand and runtime and memory requirements

on the other hand. The latter two depended mostly on the

algorithmic design principle (read or reference hashing or FM-

index), while high F-measures were observed for algorithms of all

types.

Unfortunately, RazerS on the 72 or 100 bp test sets as well as

MrFast on all tests sets exceeded the 16 GB memory cap and, thus,

could not be evaluated. Similarly, GNUMAP, Mosaik and

SHRiMP required more than 10 CPU days and could also not

be evaluated. As the latter three algorithms used reference

indexing, it is not surprising that the size of the reference

constituted the problem and not the size of the read set to be

aligned. A test set of the same size, but only sampled from

chromosome 1 transcripts and aligned only this chromosome,

could be aligned within the time and memory limits by all three

algorithms (Table S2).

Although runtime and memory requirements varied widely

among hash table based aligners, both hashing strategies were

clearly outperformed with regard to memory consumption and

runtime by the FM-index based approaches. These generally

required less than 1.5G memory and 1 h runtime even for the

100 bp set to obtain a comparable precision and recall. Among

these, Bowtie in particular was characterized by very low memory

consumption and runtime at a reasonable alignment quality, thus

supporting the wide-spread use of Bowtie within many RNA-seq

mapping approaches. However, Bowtie’s alignment recall was

surpassed by both Bowtie 2 and BWA, in particular for longer

reads. In contrast to Bowtie, their recall actually improved with

read length, likely due to the fact that they were developed with a

particular focus on longer sequencing reads. Here, BWA

outperformed Bowtie 2 for the longest 100 bp reads, whereas

Bowtie 2 had a much higher recall for the short 36 bp reads. This

improved alignment accuracy for long reads compared to Bowtie,

however, came at the cost of a significantly increased runtime by a

factor of w2 and w4 for BWA and Bowtie 2, respectively. It

should be noted here that although read length is constantly

increasing, alignment of very short reads still remains important

for RNA-seq as many transcriptome mapping approaches predict

novel splice sites by aligning smaller fragments of reads.

Table 2. Parameter Sensitivity.

Aligner Parameters Tested DF

Hash Table Based
Algorithms Read Indexing

MAQ 145 0.05

RazerS 162 0.003

RMAP 48 0.1

Reference Indexing

BFAST 6 0.40

Genomemapper 216 0.07

GNUMAP 324 0.03

Mosaik 108 0.01

mrFast 7 1.07

Novoalign 288 0.22

SHRiMP 432 0.06

Prefix/Suffix
Matching Algorithms FM-Index Based

Bowtie 180 0.04

Bowtie 2 864 0.004

BWA 16 0.04

SOAP2 72 0.37

Dispersion DF of the F -measure across all parameter settings tested for each
alignment algorithm is shown for the 72 bp read length training set from
human chromosome 21. DF describes the sensitivity of an alignment algorithm
to parameter changes. For BFAST and Mosaik, not all available parameters were
investigated due to the modular structure of the application.
doi:10.1371/journal.pone.0052403.t002
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Error Tolerance
In the previous study by Ruffalo et al. [10] error tolerance of

alignment algorithms was evaluated but only depending on the

overall error rate in the simulated read set. However, for any fixed

error rate, the set of reads is a mixture of reads with different

number of mismatches to the reference. Thus, in this study we

aimed to analyze the performance of the algorithms for a specific

number of errors or indels in the reads. For this purpose, we

determined for each read the number of sequence mismatches or

indels, i.e. its error profile. The applied error model and some

aligners distinguished between the number of point mutations and

the number of sequencing errors by their different distribution

throughout the read, however, SNPs were extremely rare

compared to sequencing errors, hence their impact on alignment

quality was not considered separately.

Figure 3 shows the impact of errors on alignment quality for the

simulated 72 bp read set from chromosomes 1-22 (excluding 21)

for each alignment algorithm using the optimal parameters on the

training set, excluding only those algorithms which exceeded the

memory or runtime cap. Results for other read lengths are similar.

The highest number of mismatches and indels in a correctly

aligned read was 12 and 6, respectively. A total of 12 reads

(0.0001%) were not aligned by any of the algorithms due to

extensive deviation from the reference. Generally, we found that

precision of the alignments was only little affected by the number

of errors. In contrast, the number of reads that could actually be

aligned, i.e. the recall, often dropped drastically with increasing

number of errors. Interestingly, distinctive differences could be

observed for sequence mismatches on the one hand and indels on

the other. Due to the high rate of sequencing errors in NGS

applications, alignment algorithms are generally designed to be

robust to a small number of single-base mismatches depending on

the parameter settings. As a consequence, for most algorithms

recall stayed relatively constant in the range of mismatches that

were tolerated by the algorithm but then dropped significantly as

soon as this range was left.

In contrast to simple mismatches, few algorithms tolerate indels

by being designed to handle gapped alignments. As a conse-

quence, recall of most algorithms was impaired considerably by

indels. Remarkable tolerance to indels, with near-constant

performance as indel counts increased, was shown by BFAST,

Bowtie 2 and BWA. While the baseline recall of BFAST was

already rather low at 0.81, Bowtie 2 and BWA combined this high

indel tolerance with very high recall values. In contrast to BWA,

Bowtie 2 not only tolerated indels extremely well but also

sequencing errors. Among the ultrafast FM-index based alignment

algorithms, Bowtie was most vulnerable to indels. Here, already

one indel resulted in a reduction of recall to as little as 0.2. This

reduced error and indel tolerance likely explains the reduction in

overall recall compared to Bowtie 2 and BWA. It also suggests that

it is advisable to replace Bowtie by Bowtie 2 or BWA within a

Figure 2. Influence of parameter selection. Precision (x-axis) and recall (y-axis) are shown for SOAP2 (black triangles) and Bowtie 2 (gray
diamonds) alignment tools at a read length of 72 bp. Different parameters had only little impact on the alignment performance of Bowtie 2 whereas
the recall of SOAP2 was scattered widely. This is reflected by the high F -measure dispersion value of SOAP2.
doi:10.1371/journal.pone.0052403.g002
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Table 3. Evaluation on test set.

Aligner Reads Precision Recall F Memory Runtime

Hash Table Based Algorithms Read Indexing

36 0.913 0.908 0.911 3.1G 2:20 h1

MAQ 72 0.922 0.918 0.920 3.4G 2:20 h1

100 0.925 0.920 0.923 3.7G 2:30 h1

36 0.883 0.980 0.929 8.8G 77:05 h

RazerS 72 – – – –3 –4

100 – – – –3 –4

36 0.912 0.483 0.631 5.4G 18:00 h

RMAP 72 0.919 0.503 0.650 6.0G 10:30 h

100 0.920 0.524 0.668 6.0G 7:05 h

Reference Indexing

36 0.898 0.577 0.703 5.2G 2:20 h

BFAST 72 0.898 0.801 0.847 6.0G 9:30 h

100 0.910 0.819 0.862 6.3G 18:10 h

36 0.853 0.953 0.900 3.7G 3:10 h

Genomemapper2 72 0.870 0.967 0.916 3.8G 32:40 h

100 0.877 0.971 0.921 3.8G 20:10 h

36 – – – – –4

GNUMAP2/Mosaik1 72 – – – – –4

100 – – – – –4

36 – – – –3 –

mrFast 72 – – – –3 –

100 – – – –3 –

36 0.914 0.914 0.914 2.6G 1:45 h

Novoalign 72 0.921 0.919 0.920 2.6G 3:20 h

100 0.924 0.923 0.924 2.6G 4:20 h

36 – – – – –4

SHRiMP 72 – – – – –4

100 – – – – –4

Prefix/Suffix Matching Algorithms FM-Index Based

36 0.908 0.895 0.902 750M 0:30 h

Bowtie 72 0.919 0.896 0.907 750M 0:30 h

100 0.923 0.874 0.898 750M 0:35 h

36 0.912 0.911 0.912 1.3G 2:10 h

Bowtie 2 72 0.920 0.919 0.920 1.3G 3:20 h

100 0.923 0.922 0.923 1.3G 2:30 h

36 0.912 0.875 0.893 1.3G 0:35 h

BWA 72 0.921 0.915 0.918 1.5G 1:10 h

100 0.955 0.955 0.955 1.6G 1:00 h

36 0.891 0.853 0.872 2.9G 0:15 h

SOAP2 72 0.886 0.751 0.812 2.9G 1:00 h

100 0.907 0.834 0.869 2.9G 1:00 h

Evaluation of optimal alignment parameters on 5 million reads from chromosomes 1-22, excluding 21. Runtime and memory caps were set at 10 CPU days and 16G,
respectively. Processes exceeding these limits were killed and partial results were not evaluated. Superscripts indicate the following:
1Runtime and memory consumption could not be recorded accurately because of the modular structure of the application which makes the automated evaluation of all
parameter combinations difficult;
2Supports only single-end alignment;
3Exceeded the memory cap of 16G;
4Exceeded the runtime cap of 10 CPU days.
doi:10.1371/journal.pone.0052403.t003
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mapping approach in case a substantial number of indels is

expected and the additional runtime overhead can be tolerated.

Discussion

In this study, we performed a comparison of read alignment

algorithms with a particular focus on RNA-seq applications. This

is not an evaluation of mapping methods, which also identify

spliced reads and have been evaluated elsewhere [5,7], but aims at

evaluating the underlying alignment algorithms that are required

for any mapping approach. To better reflect the characteristics of

RNA-seq experiments, simulation of reads was based on transcript

sequences and not genome sequences. As at least for known

transcripts alignment of reads to the transcriptome generally

outperforms de-novo splicing detection approaches [5,6], align-

ment algorithms were evaluated on the task of transcriptome

alignment.

A major difficulty in comparing the performance of different

aligners is to set up a fair comparison in terms of the task and

parameters chosen as well as evaluation metrics. In particular, the

Figure 3. Sensitivity of alignment algorithms to errors and indels. The dependence of alignment precision (dotted lines � � �), recall (dashed
lines {{) and F -measure (solid lines –) on the number of sequencing errors (gray) and indels (black) was evaluated for each alignment algorithm
analyzed in this study. In this figure, results are shown for the 72 bp long reads from the test set (5 million reads), excluding those algorithms which
exceeded the memory and runtime cap. Alignment algorithms were sorted by algorithmic design: (A) Read indexing based aligners, (B) Reference
indexing based aligners, (C) FM-Index based aligners.
doi:10.1371/journal.pone.0052403.g003
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choice of the parameters can influence the results dramatically. In

the recent study by Ruffalo et al. [10], for instance, only default

parameters appear to have been evaluated. As the choice of

parameters also influences runtime and memory consumption, we

aimed to evaluate a more realistic setting in which parameters

were tuned to the task at hand. To avoid a bias in parameter

selection, optimal parameters were trained on a smaller training

set and these optimal parameters were then used for evaluation.

In this way, we found that the largest differences regarding

alignment quality were not observed in the precision of the

alignments but in recall, in particular with increasing error rates.

This fits well with the results of Rufallo et al. [10] who observed

that alignment accuracy generally increased if low-quality

alignments were discarded. In our study, no additional filtering

of low-quality alignments were performed but parameter settings

of the alignment algorithms were explored in the training step that

determine the number and quality of outputted alignments. For

Bowtie, for instance, such parameters settings would be the

maximum number of mismatches allowed in the seed region and

the total number of mismatches allowed in the alignment. Thus,

alignment quality was determined only by the alignments which

fulfill these constraints for the evaluated algorithm. This highlights

the importance of making use of the filtering parameters of

alignment algorithms and analyzing recall in addition to precision.

The most striking differences we found in this study concerned

the memory and runtime requirements of hash table based

aligners compared to the FM-index based algorithms Bowtie,

Bowtie 2, BWA and SOAP2. The latter algorithms generally

performed as good as the best hash-table based aligners on

standard tasks with a resource profile that can be provided by a

desktop machine. This shows that the unquestioned use of Bowtie

by all state-of-the-art mapping approaches is largely justified as

even more recently developed hash-based aligners (e.g. SHRiMP)

cannot compete with FM-index based ones in runtime or memory

requirements.

Interestingly, analysis of error profiles demonstrated that hash

table based aligners can now be replaced by FM-index based

aligners even for applications where a large number of mismatches

or indels are expected. This includes, for instance, sequencing of

species for which only a closely related genome is known or cancer

transcriptomics in which differences from the reference are

expected and relevant to pathology. Among FM-index based

aligners, BWA and, in particular, Bowtie 2 showed a remarkable

robustness to insertions and deletions. Thus, although both create

an overhead in memory and runtime compared to Bowie, one of

them might nevertheless be a better choice in applications in

which a substantial number of indels is expected. In this way, they

provide a trade-off between the high tolerance to errors and indels

of some hash-based aligners and the dramatically reduced runtime

and memory requirements of Bowtie.

This analysis also illustrates the importance of evaluating

alignment quality compared to the actual number of mismatches

and indels in a read and not the average error rate. Our results

showed that the reduction of recall due to mismatches and indels is

not a gradual process. Instead, as long as the number of differences

between read and reference is below a certain amount that can still

be tolerated by the algorithm only little changes are observed.

However, as soon as this amount is exceeded, recall generally

drops dramatically. Furthermore, as only 11% of reads in our

analysis had 4 or more base mismatches and only 0.2% of reads

contained indels, error- and in particular indel-tolerance had only

a small effect on average alignment quality.

Conclusions
In summary, this study is relevant for scientists involved in the

analysis of RNA-Seq data in several respects. First, it provides a

comprehensive evaluation of the performance of state-of-the-art

algorithms from all major algorithmic classes used for read

alignment. Second, it provides guidance with regard to the choice

of algorithm and parameters. Although the task at hand may differ

from the situations simulated in this study, the relative perfor-

mance of the algorithms with regard to alignment quality, runtime

and memory consumption as well as their weaknesses and

advantages can be extrapolated from this study to other tasks.

Third, this study establishes a procedure for identifying optimal

parameters using a smaller training set and highlights the

importance of evaluating both recall and precision and considering

the actual number of mismatches and indels in a read instead of

overall error rates. Finally, even if the the alignments algorithms

are not used as stand-alone procedures but as integral parts of

sophisticated mapping approaches for identifying spliced reads,

assessment of their performance is of major importance. As

alignment algorithms are generally used in a generic fashion,

exchanging the underlying alignment procedure for a better

performing one provides one straightforward way to improve the

overall performance of a mapping strategy. Here, our study

supports to some degree the de-facto standard of using Bowtie as

alignment algorithm within RNA-seq mapping pipelines, but also

illustrates the potentials of replacing it by other FM-index based

algorithms such as BWA and, in particular, Bowtie 2.
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