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Abstract

Accurate clinical assessment of a patient’s response to treatment for glioblastoma multiforme (GBM), the most malignant
type of primary brain tumor, is undermined by the wide patient-to-patient variability in GBM dynamics and responsiveness
to therapy. Using computational models that account for the unique geometry and kinetics of individual patients’ tumors,
we developed a method for assessing treatment response that discriminates progression-free and overall survival following
therapy for GBM. Applying these models as untreated virtual controls, we generate a patient-specific ‘‘Days Gained’’
response metric that estimates the number of days a therapy delayed imageable tumor progression. We assessed treatment
response in terms of Days Gained scores for 33 patients at the time of their first MRI scan following first-line radiation
therapy. Based on Kaplan-Meier analyses, patients with Days Gained scores of 100 or more had improved progression-free
survival, and patients with scores of 117 or more had improved overall survival. Our results demonstrate that the Days
Gained response metric calculated at the routinely acquired first post-radiation treatment time point provides prognostic
information regarding progression and survival outcomes. Applied prospectively, our model-based approach has the
potential to improve GBM treatment by accounting for patient-to-patient heterogeneity in GBM dynamics and responses to
therapy.
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Introduction

Glioblastoma multiforme (GBM) is an aggressive, highly

invasive brain tumor with dynamic and spatial features that vary

widely between patients [1,2,3,4]. To make informed decisions

about a patient’s course of treatment, clinicians must be able to

accurately assess patient response to surgical resection, chemo-

therapy and radiotherapy; however, this assessment is challenging

because of the variability in proliferative and invasive dynamics of

the disease. To provide estimates of a patient’s progression-free

survival (PFS) and overall survival (OS) following therapy, we

developed a new, model-based response metric that accounts for

the unique dynamics of each patient’s tumor. Our metric, called

‘‘Days Gained,’’ differs from established response metrics such as

the Macdonald [5], Response Evaluation Criteria in Solid Tumors

(RECIST) [6], and Response Assessment in Neuro-Oncology

(RANO) criteria [7] in that it accounts for 1) the presence of tumor

cells peripheral to the abnormalities observed on clinical imaging;

2) irregularities in tumor shape; and 3) patient-specific rates of

tumor growth. The first feature allows us to gauge the extent of a

tumor’s invasive characteristics beyond the threshold of MRI

detection. The second incorporates the full 3D geometry of the

tumor into the measure of response. The third provides an

estimate of how large the tumor would have been at a certain time

if left untreated. By incorporating the individually measured rate

of tumor growth into our response metric, we reduce type II errors

in identifying patients that respond to therapy. For example, a fast

growing tumor that has a robust, pathological response to therapy

might be classified as clinically progressing if one only considers

the change in tumor burden between the pre-treatment and post-

treatment MRIs (as specified by established response criteria).

Instead, our method allows a comparison between the patient’s

tumor burden at a post-treatment time point and the expected tumor
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burden predicted by our model - a more complete and accurate

assessment of a therapy’s effectiveness.

The strength of existing response metrics, such as RANO, lies in

their utility to confirm progression or response at the time of

clinical follow-up in a standardized way. These metrics are also

widely used to identify patients for clinical trials by retrospectively

confirming tumor progression. In contrast, we created the Days

Gained metric in the hopes of providing prognostic information to

help clinicians optimize a patient’s course of treatment [8]. In the

longer term, we are interested in developing novel clinical tools

that can quantify the effectiveness of a given therapy on a patient-

by-patient basis, can provide predictive information to assist post-

therapy decision-making, and can identify therapy-resistant

patients as candidates for clinical trials immediately following

treatment. The current study, which demonstrates the discrimi-

nating power of our Days Gained metric, represents a key step

towards developing the predictive, patient-specific modeling tools

that we envision.

Our metric is computed from patient-specific, mathematical

models of GBM dynamics that simulate the proliferative and

dispersive kinetics of each patient’s tumor. These models are based

on an established line of research aimed at forecasting tumor

dynamics by integrating data from clinical imaging into patient-

specific simulations [3,4,9,10,11,12,13,14]. To generate a simula-

tion from which we can compute a patient’s Days Gained score,

we first initialize our model using patient-specific data from both

the enhancing (visible on T1-weighted gadolinium enhanced MRI

– T1Gd) and non-enhancing (visible only on T2-weighted MRI –

T2) sections of the tumor [15,16,17]. Incorporating both sections,

we are able to simulate a continuous distribution of tumor cell

densities throughout the brain, including values below the

threshold of MRI detection. Thus, we are able to generate a full

spatial description of the disease distribution (Figures 1a and 2). To

simulate the expansion of the tumor in 3D, we compute the rate of

tumor growth from two pre-treatment MRI scans and incorporate

this rate into the equations that govern the simulated tumor

dynamics [13,15]. These simulations of tumor growth estimate the

glioma cell density throughout the brain at post-treatment time

points as if the tumor were untreated (Figure 2). Each of our

patient-specific models therefore acts as an untreated virtual control

(UVC) against which actual, post-treatment tumor data can be

compared to estimate a patient’s response to a given treatment.

In this study, we explored the ability of our model-based

approach to discriminate progression-free and overall survival

outcomes among our patients based on MRI scans taken after the

completion of first-line, standard-of-care radiation therapy. We

applied our Days Gained metric to estimate the amount of time

that therapy delayed tumor growth for each patient and found that

Days Gained scores separated our study population into two

distinct groups with significantly different progression and survival

outcomes. Our results indicate that Days Gained scores computed

at the time of the first post-radiation scan discriminate time to

progression and overall survival, and offer a novel assessment of a

patient’s response to therapy. They also demonstrate how a

personalized response metric can predict clinical outcomes among

GBM patients and, more broadly, illustrate the discriminating

power of patient-specific computational modeling, an emerging

field currently making inroads into various clinical settings [18].

Materials and Methods

Ethics statement
All research involving human subjects was approved by the

University of Washington and University of California, Los

Angeles institutional review boards. Written informed consent

was obtained for the collection of all patient data, and the

investigation was conducted according to the principles of the

Declaration of Helsinki.

Patients
We collected routine clinical MRIs from 33 newly diagnosed

GBM patients at the University of Washington (UW) Medical

Center (n = 30) and the University of California Los Angeles

(UCLA) Medical Center (n = 3). Inclusion in the study required

the existence of two pre-treatment MRIs and at least one MRI

taken following radiation therapy. Patients ranged in age from 40–

89 years (median 57), with Karnofsky Performance Scores [19]

between 60 and 100 (median 90), and Radiation Therapy

Oncology Group Recursive Partitioning Analysis classifications

of III (n = 5), IV (n = 16), or V (n = 12) [20]. Table 1 presents the

clinical characteristics of our patient group. To accurately

compute each patient’s tumor growth rate, we required a

minimum of five days between the patient’s two pre-treatment

MRI observations [10]. This interval is routine for GBM patients

because day-of-presentation (diagnostic) MRI scans and day-of-

surgery guidance scans are typically taken several days apart.

All patients received radiation treatment and chemotherapy,

although exact courses of treatment varied between patients

(Table 1). Twenty-five patients (73%) underwent craniotomy with

surgical resection of tumor. Nine patients’ resections were sub-

total, 16 were image-verified gross-total. The remaining eight

patients underwent biopsy only.

Mathematical model
The foundational methods for generating our patient-specific

UVC simulations are well-documented [3,4,9,10,11,12,13,14].

Two patient-specific parameters control the model’s dynamics: the

tumor’s net diffusive capacity (D) and the tumor’s net proliferation

rate (r). We compute D and r using volumetric measures of tumor

burden on T1Gd and T2 MRIs at two pre-treatment time points.

With these parameters identified, we can simulate the growth of

the tumor to the post-treatment time point, accounting for its

unique diffusive and proliferative dynamics and the complex

architecture of the brain. We have previously shown that these

parameters are directly linked to features of tumor aggression

including hypoxia visible on [18F]-fluoromisonidazole PET [14],

are prognostically significant [4], and can be used to quantitatively

predict a patient’s response to radiation therapy [10]. The work

presented here continues our investigation into the prognostic

power of our modeling approach.

The current study incorporates several recent advancements in

our modeling work. This is the first investigation we have

conducted on a substantial number of patients using anatomically

accurate, patient-specific GBM simulations that grow within the

constraints of the patient’s unique brain geometry. We recently

published a study where we simulated patient-specific tumor

models within the patient’s brain anatomy for two patients [16];

however, our previous studies have either used spherical tumors

that grow without spatial constraints [3,4,17], or within a

canonical, rather than patient-specific, brain geometry [15,21,22].

Additionally, we developed a novel method for setting the initial

cell densities in our simulations so that our UVCs more accurately

represent the complex 3D geometry of each patient’s tumor.

Previously, we started simulations within the brain geometry from

a single point source, but this technique requires significant

computational time to grow the tumor from a single voxel to its

pre-treatment size and does not always reflect the complex 3D

geometry of the tumor as seen on pre-treatment imaging. We now
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begin simulations with a tumor geometry that reflects what is

observed on the patient’s second pre-treatment T1Gd and T2

MRIs (Figure 3) prior to surgical intervention. This method

matches the 3D spatial characteristics of the tumor just prior to

therapy and still yields simulation turnaround times comparable to

those of a clinical laboratory service.

Specifically, our method for setting the initial tumor cell

densities for our simulations begins by reconstructing the T1Gd

enhancing volume of the tumor from the patient’s second pre-

treatment MRI scan. We then erode away the tumor volume by

iteratively removing the tumor’s perimeter. We continue until the

tumor’s T1Gd spherically-equivalent (SE) radius has been reduced

by 20%. We then iteratively erode the tumor volume as observed

on the registered T2-weighted MRI until we reduce its SE radius

by the same number of millimeters as the T1Gd radius. Next, we

merge the T1Gd and registered T2 scans and set the cell density

distribution within the tumor. All voxels within the T1Gd tumor

region are set to 80% of the total cell carrying capacity of the

tissue. Voxels within the T2 region but outside the T1Gd region

are set using a Gaussian-based curve computed based on the

voxel’s distance from the T1Gd and T2 volume perimeters. We

used a similar method to set the densities of voxels outside the

T1Gd and T2 region, but in this case the curve was a function of

the SE T1Gd and T2 radii and was independent of the voxel’s

distance from the T1Gd perimeter. For this region we computed

the voxel’s distance from the T2 perimeter, then set its density

using the SE Gaussian curve.

We tested a number of approaches for setting the initial

conditions of our simulations and found that the method described

here provided the closest spatial match between simulation and

data when the eroded tumor (the initial condition) grew to the size

observed at the second pre-treatment time point. Figure 3 shows

the spatial match between three of our UVC simulations and their

corresponding pre-treatment scans. Our method produces tight

spatial matches to complex tumor geometry, independent of

tumor size and imaging modality. However, Figure 3c shows that,

because we iteratively eroded away the perimeter of the tumor

when computing our initial conditions, our spatial matches

decrease in accuracy with highly anisotropic tumors.

Image processing
We extracted tumor volumes from T1Gd and T2 patient MRIs

using semi-automated segmentation software developed in MA-

TLABH (R2010b, The MathWorks, Natick, MA) [23]. This

software facilitates tumor volume measurement by employing a

background subtraction algorithm. The subtraction helps auto-

mate the tumor segmentation process because it allows a user to

Figure 1. Growth of an untreated virtual control (UVC) tumor for a 57 year-old patient with a left fronto-parietal lobe glioblastoma.
a: Volumetric images of the untreated virtual control at six time points where Day 0 is the time of the patient’s first pre-treatment MRI scan.
Pseudocoloring indicates the tumor cell density, normalized to the maximum cell density of the tissue. b: T1Gd spherically-equivalent radius time
curve from same simulation showing how the Days Gained score is computed. c: Post-treatment T1Gd MRI slice showing actual tumor (red outline)
and perimeter of the simulated tumor’s T1Gd-enhancing region at the same time point (cyan outline). Image oriented according to radiological
convention: patient left is on the right.
doi:10.1371/journal.pone.0051951.g001
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identify the tumor region with a polygon of interest, and an

automated edge detection algorithm selects the imaging abnor-

mality within the enclosed area.

We performed all simulations within the geometry of the

patient’s second pre-treatment T1Gd MRI scan. In creating the

initial conditions for the simulation we registered the second pre-

treatment T2 scan to the T1Gd scan using the Statistical

Parametric Mapping MATLAB toolbox [24].

The Untreated Virtual Control and the Days Gained
metric of response

We applied our UVC simulations to find new response metrics

that would offer an assessment of a patient’s response to therapy by

taking into account the unique spatial and kinetic characteristics of

each patient’s tumor. For each patient in our study, we computed

the growth of their UVC to the time of their first post-radiation

scan and then found the time point on the UVC’s growth curve

where it best matched the actual post-treatment tumor size. The

patient’s Days Gained score is the amount of time between this

time point and the final (post-radiation) time point on the curve

(Figure 1b). In cases where therapy reduced the tumor to a size

smaller than what was computed on the UVC growth curve, we

used a linear interpolation between the values at the first and last

simulation iterations to compute the Days Gained score. This is

consistent with the radial expansions predicted by the model and

already observed in a spectrum of gliomas [11,25].

Our UVC simulations provide a number of outputs for

quantifying patient response to treatment. Each UVC can be

used to estimate the tumor volume as it would be observed on

T1Gd and T2 imaging and provide an estimate of the total

number of tumor cells distributed throughout the brain at any time

between the pre- and post-treatment time points. Thus, we have

several metrics available for computing a Days Gained score. Out

of the metrics we examined, we found that the T1Gd spherically-

equivalent (SE) radius discriminated patient survival most signif-

icantly [8]. Thus, our focus here is on the predictive value of Days

Gained scores based on this output. We compute the T1Gd SE

radius from the volume of the simulated tumor that would appear

on T1Gd imaging (assumed to be those voxels with cell densities

greater than or equal to 80% of the tissue’s cellular carrying

capacity - 1.0e8 cells/cm3) [3,15]; the SE radius is the radius of

this volume, assuming a spherical geometry.

Statistical analyses
We performed iterative Kaplan-Meier analyses to find optimal

Days Gained thresholds that would maximally discriminate our

patient group based on PFS and OS. We computed PFS as the

interval between the patient’s start of cytotoxic therapy and the

confirmation of progression using standard criteria as gathered

from radiology reports. We computed OS as the interval between

the patient’s date of diagnosis and their date of death. We censored

observations at the time of last follow-up if the outcome in question

was not observed. To ensure that our analyses included a

substantial number of patients with and without the observed

outcome, we limited it to cases where both groups discriminated

by the Days Gained threshold contained at least 20% of our total

patients. We used the ‘‘survival’’ package for R software (2.10.1, R

Foundation for Statistical Computing, Vienna, Austria) to perform

the Kaplan-Meier analyses (log-rank test). We considered p values

less than or equal to 0.05 to be significant.

Results

Days Gained scores from untreated virtual control
simulations

Figure 1a provides an example of a simulation of one patient’s

UVC from the pre-treatment initial condition to an estimate of the

untreated tumor burden at the time of the first post-treatment

scan. The figure illustrates the ability of our modeling approach to

simulate a tumor’s asymmetric 3D geometry within the confines of

Figure 2. Comparisons between T1Gd MRI data and untreated
virtual control (UVC) prediction at post-treatment time point.
Patient was 58 years old and underwent biopsy followed by conformal
radiation therapy with concurrent temozolomide chemotherapy. Top
row: MRI data. Middle row: Actual tumor perimeter (red) with
superimposed UVC-predicted tumor perimeter (cyan). Bottom row: full
distribution of UVC cell densities showing invasion peripheral to
abnormality. Outermost blue cell density profile represents a very low,
but non-zero, threshold. Perimeter of actual tumor outlined in white.
doi:10.1371/journal.pone.0051951.g002

Table 1. Clinical characteristics of patients.

Number of patients 33

Age in years (median, range) 57, 40–89

KPS at diagnosis (median, range) 90, 60–100

RTOG RPA classification III (n = 5), IV (n = 16), V (n = 12)

Resection treatment

Biopsy only 8 (24%)

Sub-total resection 9 (27%)

Gross-total resection 16 (48%)

Radiation therapy dose in cGy (median,
range)

6020, 5000–6900

Patients that received temozolamide
concurrent with radiation on Stupp
protocol [29]

21 (64%)

Patients that received BCNU concurrent
with radiation

4 (12%)

Days between end of radiotherapy and
next MRI scan (mean, range)

28, 1–72

doi:10.1371/journal.pone.0051951.t001

A Model-Based Response Metric for Glioblastoma

PLOS ONE | www.plosone.org 4 January 2013 | Volume 8 | Issue 1 | e51951



the patient’s unique brain anatomy. Figure 1b shows the time

course of the UVC’s simulated T1Gd SE radius from which we

computed the patient’s Days Gained score and Figure 1c

compares the model-predicted, untreated tumor burden to the

actual imageable burden as visualized on T1Gd MRI at the first

post-treatment time point. Overall, Days Gained scores ranged

from 277 to 512 days with a mean of 134 and standard deviation

of 111 (negative scores indicate the tumor grew faster than would

be predicted by the UVC during the therapy period).

Figure 2 provides a spatial visualization comparing a patient’s

actual post-treatment MRI to their UVC predictions. To visualize

this comparison we isolated the 2D slice within the 3D UVC

prediction that corresponds to the imaged MRI slice and

superimposed the simulated and actual data. The middle row

shows the isocontour for the patient-specific UVC specific to the

T1Gd threshold of detection (cyan contour), highlighting the

difference between the predicted T1Gd abnormality in the

absence of treatment and the actual T1Gd abnormality (red

outline) following treatment. The bottom row displays the

variation in cell density within the simulated tumor, revealing

substantial peripheral invasion.

Discriminating power of the Days Gained metric
Through our Kaplan-Meier analyses, we found that 100 days is

the optimal Days Gained threshold for discriminating PFS and

117 days is the optimal threshold for discriminating OS among

our patients. At these thresholds, the Kaplan-Meier analyses based

on PFS (Figure 4a) and OS (Figure 4b) both show highly

significant differences between patients scoring below the thresh-

old and those scoring at or above it: PFS analysis p,0.005, OS

analysis p = 0.002. As illustrated in Figure S1, there were various

Days Gained thresholds that revealed significant differences

between PFS and OS outcomes of our patient population. This

indicates that our results are robust across a range of Days Gained

thresholds and that patients who are more responsive to therapy

(those who had larger Days Gained scores) are at an advantage

with regard to progression and survival outcomes.

Discussion

Our results show that Days Gained scores computed using

patients’ first post-radiation T1Gd scans discriminate PFS and OS

among our study population. As a prognostic indicator of PFS and

OS, our metric has potential for clinical use during the course of

therapy for GBM. It is our hope that Days Gained will eventually

provide an early and reliable assessment of a patient’s treatment

response at the pivotal time point immediately following radiation

therapy. Better individual characterization of treatment response

will lead to truly personalized therapies and ultimately improve

patient outcomes. Because our metric can recognize those patients

that are less responsive to their course of treatment, Days Gained

may also be useful for early identification of candidate patients for

clinical trials. We encourage discussion and debate on the issue of

how best to incorporate Days Gained scores into the clinical

decision-making process for GBM treatment.

In future studies we plan to test the robustness of our new metric

by computing patients’ Days Gained scores at multiple post-

treatment time points and examining whether our PFS and OS

predictions remain prognostic throughout the course of therapy.

We also plan to extend our patient cohort beyond the exploratory

set investigated here. Additionally, we aim to determine whether

our metric can elucidate patient characteristics that are predictive

of response to therapy and survival times. For example, we may

find that long-surviving patients with low Days Gained scores have

certain molecular features that cannot be assessed by imaging

alone. With such characteristics identified, clinicians will be better

able to use them to tailor therapies on a patient-by-patient basis.

We recognize that several patients in our study showed survival

times extending beyond what is typically seen in GBM cases. We

therefore examined whether the subset of seven patients surviving

longer than three years contained a disproportionate number of

individuals with the IDH-1 mutation, a condition that confers a

more favorable prognosis for GBM [26]. IDH-1 status, deter-

mined by mutation-specific immunohistochemistry, was available

for five of these seven patients, none of which were mutants. This

suggests that the prognostic value of our response metric, as

illustrated through our progression-free and overall survival

results, is not due to a biasing presence of IDH-1 mutated

patients. Additionally, we found no significant differences in the

clinical characteristics listed in Table 1 between the long-surviving

patients and the remaining cohort members.

We also recognize that pseudo-progression [27] may have

affected our results; many of the post-radiation scans used to

compute our Days Gained scores were taken within the post-

therapy window where pseudo-progression is likely to be seen.

Regardless, our method remained sufficiently robust to discrim-

inate early true-progression and reduced survival following

therapy. Pseudo-response, a spurious decrease in contrast-enhancing

tumor burden that results from anti-angiogenic therapy [7,28], is

another potential confounder for our method as it could falsely

raise Days Gained scores. However, none of our patients received

anti-angiogenic therapy during the treatment interval we investi-

Figure 3. Spatial comparisons between baseline pre-treatment MRI (red outline) and simulation results (cyan outline) seeded with
our initial condition. a: large tumor on T1Gd MRI. b: smaller tumor on FLAIR MRI. c: Highly anisotropic tumor growth on T2-weighted MRI. Our
simulations produce tight spatial matches to a range of tumors (a and b), but decrease in accuracy for tumors with high anisotropy (c).
doi:10.1371/journal.pone.0051951.g003
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PLOS ONE | www.plosone.org 5 January 2013 | Volume 8 | Issue 1 | e51951



gated for this study, and it is therefore unlikely that pseudo-

response impacted our results. Anti-angiogenics are often applied

as treatment following tumor recurrence, and future studies that

address the prognostic power of Days Gained during this period

will have to account for pseudo-response.

As shown in Figure 3, the spatial matches between our

simulations and actual tumor geometry can decrease for tumors

with high anisotropy. Although this limitation may be important to

consider in subsequent studies that analyze the complex geometry

of tumors, we do not anticipate that it significantly affected our

results here. In this study we used the tumor’s spherically-

equivalent radius as the geometric feature for computing Days

Gained scores, a metric that minimizes the effects of anisotropy.

Had we studied more spatially localized measurements of

difference between the model-predicted imageable disease burden

and that observed on clinical imaging, anisotropic growth may

have more directly affected our results. By applying the spatially

simplified metric of spherically-equivalent radius, our results are

less affected by differences in anisotropic growth patterns.

We anticipate that our Days Gained metric will have general

applicability to GBM patients, and potentially, all patients with

contrast-enhancing gliomas. Our study cohort underwent a variety

of cancer treatments between their pre-treatment and post-

radiation scans, including subtotal resection, gross-total resection,

and chemotherapy. Therefore, our metric generalizes to a range of

clinical scenarios involving different therapy combinations. Addi-

tionally, the metric relies only on data that is routinely collected in

the management of glioblastoma; only two pre-treatment and one

post-treatment MRI scans are required to compute a Days Gained

score. More broadly, although we have focused our study on GBM

treatment, our model-based approach may be applicable to a

wider range of cancer treatment scenarios where patient-specific

tumor kinetics are known, and where diffuse invasion makes it

difficult to assess a patient’s response to therapy.

Our study illustrates the potential of the emerging field of

integrated, patient-specific modeling to impact clinical decision-

making and patient outcomes. The next challenge is to translate

our computational approach into the clinical setting. Given

sufficient manpower for segmenting images, we can currently

generate our spatially-resolved virtual controls in the same amount

of time required for a clinical laboratory service. We continue to

automate our data processing and simulation pipelines, and are

currently exploring different software deployment options for

bringing our simulation technology into the clinical environment

so that providers can make use of our models and our response

metric.

Supporting Information

Figure S1 Color map of p-values from iterative Kaplan-Meier

analyses on progression-free survival (PFS) and overall survival

(OS). White boxes correspond to statistically significant values.

The analyses revealed a range of Days Gained thresholds that

separate patients into groups with significantly different PFS and

OS outcomes. The most significant p-values for PFS and OS were

at the 100 and 117 Days Gained thresholds, respectively.

(TIF)
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