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Abstract

Accumulating evidence has revealed that the resting-state functional connectivity (RSFC) is frequency specific and
functional system dependent. Determination of dominant frequency of RSFC (RSFCdf) within a functional system, therefore,
is of importance for further understanding the brain interaction and accurately assessing the RSFC within the system. Given
the unique advantages over other imaging techniques, functional near-infrared spectroscopy (fNIRS) holds distinct merits
for RSFCdf determination. However, an obstacle that hinders fNIRS from potential RSFCdf investigation is the interference of
various global noises in fNIRS data which could bring spurious connectivity at the frequencies unrelated to spontaneous
neural activity. In this study, we first quantitatively evaluated the interferences of multiple systemic physiological noises and
the motion artifact by using simulated data. We then proposed a functional system dependent and frequency specific
analysis method to solve the problem by introducing anatomical priori information on the functional system of interest.
Both the simulated and real resting-state fNIRS experiments showed that the proposed method outperforms the traditional
one by effectively eliminating the negative effects of the global noises and significantly improving the accuracy of the
RSFCdf estimation. The present study thus provides an effective approach to RSFCdf determination for its further potential
applications in basic and clinical neurosciences.
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Introduction

Accumulating evidence has demonstrated that the frequency-

specific synchrony of cerebral activities in the absence of external

stimuli (i.e. resting-state functional connectivity, RSFC) plays an

important role in supporting neural communication and brain

functional integration [1,2]. With electrophysiological techniques,

the synchronization of neuronal activity has been widely observed.

The neuronal electrical signals have been generally classified into

several rhythm components which cover frequencies approxi-

mately from 0.01 to 500 Hz [2,3,4]. The amplitude, or power, of

these frequency-specific rhythms is strongly associated with the

extent of local synchronization in large neuron populations [5].

The power increase (i.e., synchronization) or decrease (i.e., de-

synchronization) in a specific rhythm has been noted to have a

specified functional significance. For instance, gamma rhythm

(30–100 Hz) is referred to be the mechanism which would account

for perceptual binding [3]. And alpha rhythm (,10 Hz) is

considered to be a neural baseline with ‘‘inattention’’ [5].

Coinciding with the local synchronization, the long-distance

synchronization, measured by the coherence between rhythms

from different recordings sites, also manifests a frequency specific

and functional dependent characteristic. For example, the

synchronization between temporal and parietal cortex evolves in

the lower beta frequency band (12–18 Hz) during multimodal

semantic processing; the synchronization between frontal and

parietal cortex in the theta (4–8 Hz) and alpha frequency band

associated with processing of internal mental context or top-down

processing [6]. Taking advantage of brain imaging techniques with

fine spatial resolution (e.g. fMRI), study goes further into the

dominant frequency of the RSFC (RSFCdf) within specific brain

functional systems. Literature has revealed that RSFCdf tends to

show a difference between various functional systems. For

example, the connectivity in the sensorimotor systems was found

to be predominant at a low frequency band, usually below 0.1 Hz

(0–0.1 Hz in [7], 0.01–0.06 Hz in [8], and 0–0.08 Hz in [9]). The

dominant frequency band of the connectivity between bilateral

amygdala, however, was relatively broader and higher (0–0.14 Hz

in [8] and 0–0.25 Hz in [9]). The neurophysiological basis of this

functional system dependence has been investigated by the studies

delving into the relationship between hemodynamic and neuronal

activities during the resting state. It has been revealed that,

although multiple EEG rhythms (i.e. delta, theta, alpha, beta, and

gamma rhythms) were all correlated with the hemodynamic

fluctuations in one functional network [10,11], the dominant

rhythms were quite different between different functional systems.

For example, the brain activities in the attention network were
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strongly correlated with power changes of alpha rhythm

[12,13,14], while the activities in the default mode network were

more correlated with power changes of the beta rhythm [10,13].

All the evidence above collectively suggests that the interaction

between spatially distinct cerebral activities is not only frequency

specific but also functional system dependent. Determination of

RSFCdf of a functional system is of importance for understanding

the brain interaction within the system. In addition, with the

increased appreciation of the RSFC investigations in both basic

and clinical neurosciences, accurate RSFCdf is also essential to

assess the extent of RSFC within a specific functional system in

order to avoid a biased conclusion.

In recent years, a promising noninvasive imaging technique,

functional near-infrared spectroscopy (fNIRS), has been success-

fully utilized to assess RSFC in a resting-state brain

[15,16,17,18,19,20,21,22]. In assessing RSFCdf, fNIRS holds

distinct merits. First, the high sampling rate of fNIRS avoids

aliasing of the high frequency noise to the low frequency

spontaneous fluctuations that we are interested in [23,24], making

the determination of RSFCdf more accurate. Second, the fNIRS

signal represents local brain activity directly below the probes, thus

avoid the conductive effect in EEG studies. This property is a

desirable property for assessing RSFCdf within a specific functional

system. Third, the silent environment of the fNIRS scanning

excludes the potential confounding led by MRI scanning noise in

RSFCdf evaluation, not only for auditory related systems, but also

for higher functional systems such as attention. Additionally,

fNIRS measures three types of hemodynamic parameters (i.e. oxy-

Hb, deoxy-Hb, and total-Hb), and thus provides the possibility of

understanding the frequency characteristics of RSFC more

comprehensively [25]. Finally, fNIRS scanning has fewer

constrictions on subjects, allowing fNIRS to study populations

not amenable to fMRI, such as infants, young children, the elderly

and patients [25,26,27].

However, an obstacle that hinders fNIRS from potential

RSFCdf investigation is the noise interferences. Systemic physio-

logical fluctuations, such as pulsation- and respiration-related

fluctuations as well as low frequency vasomotion waves, usually

exhibit high covariance across fNIRS measuring channels due to

their common vasculature-related origins [26,28]. Such high

spatial covariance may result in an additional synchronization in

fNIRS signals between two measurement regions, thus reducing

the spatial specificity of the target neuro-related RSFC [15,16,19].

Moreover, these systemic physiological fluctuations usually cover a

broad frequency band and have complex noise structure in the

frequency domain [26,28], which will degenerate the accuracy of

the detection of the dominant frequency. Another artifice in

fNIRS data originates from head motion, usually caused by the

physical displacement of the optical probe from the scalp. Motion

artifact, with large jumps in the fNIRS data, usually occurs in a

phase-lock manner across a large measuring area due to the rigid

helmet [26,29]. In addition, the motion-induced large jump

usually occurs rapidly and randomly in the whole recording

period, resulting in irregular and widely distributed frequency

attributes. Though efforts have been made to address this

problem, such as fitting the probe to the head as firmly as possible

by using a cap or frame and placing optical fibers at right angles to

the scalp surface, the motion artifact cannot be completely

eliminated, particularly in studies of patients, infants or children.

The motion artifact thus may also interfere with the RSFCdf

analysis due to its relatively wide distribution in spatial domain and

complex time-frequency structure.

To solve the problem, a novel conception was initially proposed

that functional system specific spatial information can be used to

reduce the adverse effect of these global noises on the detection of

the dominant frequency of RSFC in the functional system. [24]. In

this paper the effect of various global noises on detection of the

RSFCdf was quantitatively evaluated. Then a functional system

dependent and frequency specific analysis method was formally

proposed to eliminate these interferences. The validity of this

method is proved by using fNIRS data from both simulation and

real experiments.

Theoretical Analysis

The proposed computational framework consists of three basic

parts: (1) construction of a spatio-frequency connectivity matrix, (2)

spatially weighted coherence analysis, and (3) determination of

dominant frequency of RSFC.

Spatio-frequency Connectivity Matrix
Several metrics have been employed in previous studies of

frequency characteristics of RSFC. Some studies used the cross-

correlation coefficient at multiple narrow frequency bands [8,23];

some decomposed correlation coefficient in frequency domain

[7,30]; while other studies adopted a coherence coefficient [23,31].

In this study, we also used the coherence coefficient in order to

setup our computational framework for scoring the frequency

characteristics of RSFC. The coherence coefficient quantifies the

frequency-specific degree of the time-invariant linear relationship

of brain activities (i.e. time series) between two separate spatial

units (i.e. brain areas) and is defined as follows [32]:

cxy(l)~
DGxy(l)D2

Gxx(l)Gyy(l)
ð1Þ

where cxy(l) is the coherence coefficient of brain activities

between area x and y at frequency l. Gxy is the cross-spectrum

of the brain activities between x and y; Gxx and Gyy, the

autospectrum of x and y, respectively:

Gxy(l)~Fx(l)Fy
�(l)

Gxx(l)~Fx(l)Fx
�(l)

Gyy(l)~Fy(l)Fy
�(l)

ð2Þ

where Fx and Fy is the Fourier transform of the brain activities at x

and y, respectively, and the asterisk indicates the complex

conjugate. The coherence coefficient cxy is a function of frequency

l and bounded between 0 and 1, where 0 indicates an absence of

any linear relationship between x and y, and 1 indicates that x is

perfectly related with y in a linear fashion.

Given a predefined seed channel x and any other channel y, the

coherence between the two channels at a given frequency l was

defined as cxy(l) as in (1). For all the channels y and frequencies l,

a two-dimensional matrix C was constructed as illustrated in

Fig. 1(A). Each column of C represents a frequency distribution of

the connectivity between the seed channel (i.e. x) and another

channel (i.e. y), denoted as cxy(:). As shown in Fig. 1(B), a higher

coherence value at a specific frequency indicates more contribu-

tion of this frequency to the connectivity between the two

channels. On the other side, each row of matrix C represents a

spatial distribution of the connectivity between the seed channel

and all other channels at a frequency l, denoted as cx(l). As

shown in Fig. 1(C), a higher coherence value at a specific channel

suggests higher connectivity between this channel and the seed

channel at the given frequency l. Therefore, the matrix C is a
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spatio-frequency representation of RSFC in nature, denoted as the

spatio-frequency connectivity matrix.

Spatially Weighted Coherence Analysis
In the proposed method, we took advantage of a predefined

probability map (i.e., p) to introduce the spatial information of the

interesting functional system (e.g. motor system) and calculate a

spatially weighted sum of the coherence coefficient at each

frequency as follows:

cSW (l) ~
X

y

wy(l)|cxy(l) ð3Þ

wy(l)~
py{�ppffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

y

(py{�pp)2|
P

y

½cxy(l){�ccx:(l)�2
r

where �pp and �ccx: represent the mean value of the map p and cx:

across all the measurement channels y, respectively. The p can be

defined either functionally (i.e., based on the pattern of task

activation) or anatomically (i.e., based on anatomical landmarks)

[33,34]. cSW (l) is the spatially weighted coherence coefficient at

frequency l with weight of wy(l). cSW is a natural representation

of the similarity between the frequency-specific connectivity map

cx: and the template p (detailed discussion is provided in the Text

S1). A higher value of cSW (l) suggests a greater contribution of the

spontaneous brain activity to the RSFC in the functional system of

interest. In contrast, a lower value suggests insignificant neuro-

related RSFC.

For the frequencies which are dominated by the global noises in

fNIRS data (e.g., systemic physiological fluctuations and motion

artifacts), as discussed in Introduction section, there should be an

intense and widespread coherence among all the measurement

channels. Such global characteristic of the connectivity map is

quite different from the locally distributed template p, and a low

spatially weighted coherence coefficient value can thus be

expected. For the frequencies where the global noises and the

spontaneous fluctuations are both present dominantly, the

connectivity map should be elevated globally due to the noise

interference, but the spatial pattern of functional system specific

distributions in the map will remain in theory. In this condition, a

high cSW value can be obtained, in line with expectations. As a

result, the spatially weighted coherence reduces the noise

interference and improves the specificity of the resultant frequency

characteristics of RSFC.

Determination of Dominant Frequency of RSFC
To quantify the dominant frequency of RSFC, we proposed a

non-parametric procedure to compute the statistical significant of

RSFCsw
df value. First, we built a null distribution of RSFCsw

df by

collecting all the RSFCsw
df values in the frequencies which were

mainly contaminated by the random instrumental noise. Specif-

ically, in consideration of the frequency distribution of the

principle physiological noise and the spontaneous brain activity,

the ultra-high frequency band ($3 Hz) were selected to obtain the

null distribution in this study. Then, based on the null distribution

of RSFCsw
df , a p value was assigned for each RSFCsw

df value at all

frequencies. Finally, the successive frequencies (more than 3

frequency points) with significant RSFCsw
df values (p,0.05) was

defined to be the dominant frequency of RSFC for the functional

system of interest (denoted as RSFCsw
df ).

To quantity the accuracy of the RSFCsw
df determination, we

estimated its specificity and sensitivity in all the following

simulative experiments as follows:

Figure 1. Spatio-frequency connectivity matrix. (A) A schematic diagram of spatio-frequency connectivity matrix, with the horizontal axis
labeling all the channels and the vertical axis indexing all the frequencies. (B) Frequency distribution of the connectivity between a channel y and the
seed channel. It corresponds to one column of the spatio-frequency connectivity matrix. (C) Spatial map of connectivity to the seed channel at a
specific frequency point. It is redrawn from one row of the spatio-frequency connectivity matrix.
doi:10.1371/journal.pone.0051584.g001

ð4Þ
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specificity~
RSFCsw

df \RSFCideal
df

RSFCideal
df

sensitivity~
I{RSFCsw

df |RSFCideal
df

I{RSFCideal
df

ð5Þ

where the ideal frequency band of RSFC (i.e. RSFCideal
df ) was set

as 0.01–0.1 Hz in all the following simulated data sets as shown in

Fig. 2(A). I was set as 0–0.25 Hz as the whole frequency range in

which the specificity and sensitivity were assessed. Furthermore,

considering the possible effect of the biased threshold selections on

the resultant RSFCsw
df , a receiver operator characteristic (ROC)

approach was also proposed to further evaluate the specificity and

sensitivity of the proposed method [20].

For comparison, we also evaluated the performance of the

traditional coherence analysis method. In the traditional

coherence method, the connectivity within a certain functional

system (e.g., the motor system) is directly represented by the

coherence between the averaged time courses from two

representative ROIs in the system (e.g. the left and right

primary motor areas) [23,32]. It has no consideration of spatial

information to reduce the adverse effect of the global noises.The

coherence coefficient (cROI1{ROI2(l)) between two ROIs was

calculated against the frequency l as the formula (1). The

dominant frequency of RSFC estimated by the traditional

method (denoted as RSFCtr
df ) was determined by the same

method as for RSFCsw
df .

Experiments

A series of simulated and real fNIRS experiments were

conducted in this study. In general, each set of simulated data D
was composed of three basic parts: the spontaneous fluctuations

DSF , the global noise DGN , and the instrumental noise DIN (i.e.

D~DSF zDGNzDIN ).

Specifically, the components of spontaneous fluctuations were

generated using the following model:

DSF ~TSF |SSF ð6Þ

TSF is the basic temporal profile of the spontaneous fluctuations

at low frequencies (0.01–0.1 Hz) [35] (as shown in Fig. 2(A)). It

has15 min length with a sampling rate of 10 Hz (9000 time

points). SSF represents the spatial characteristics of the spontane-

ous fluctuations (as shown in Fig. 2(B)). The sign ‘‘6’’ denotes the

exterior product. For additional details, please see the Text S2.

The instrumental noise DIN was generated as a spatial-specific

Gaussian noise with a signal-to-noise ratio (SNR) of 1 [36]. For the

global noise DGN , two categories (the systemic physiological noise

DGN{1 and the motion artifact DGN{2) were simulated separately

using their own temporal and spatial characteristics as detailed in

the following sessions.

Global Noise 1: Systemic Physiological Noise
To evaluate the potential influence of the systemic physiological

noises, such as pulsation- and respiration-related oscillations as

well as low frequency vasomotion waves, on the RSFCdf

determination, a comprehensive systemic physiological noise was

Figure 2. The simulated dataset. (A, C, E) Temporal-frequency characteristics of the simulated dataset. (B, D, F) Spatial characteristics of the
simulated dataset. DGN{1 denotes the spontaneous fluctuations, DGN{1 the global noise 1 (i.e., the systemic physiological noises), andcROI1{ROI2

the global noise 2 (i.e., the motion artifact).
doi:10.1371/journal.pone.0051584.g002
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simulated at each measuring location k as follows:

Dk
GN{1~TGN{1(tzPk

GN{1)|Sk
GN{1 ð7Þ

where TGN{1 represented the basic temporal profile of the

systemic physiological noises as shown in Fig. 2(C). As we know,

the systemic physiological noises cover a broad frequency band.

Among them, the very-low frequency fluctuations (,0.04 Hz),

Mayer waves (around 0.1 Hz), and respiration-related oscillations

(,0.25 Hz) might overlap with the spontaneous hemodynamic

activities in the frequency domain [26,37,38]. The pulsation-

related fluctuations (,1 Hz) are, however, believed to be at higher

frequency locations without any overlapping. To comprehensively

investigate the possible effects of the systemic physiological noises

on the frequency characteristics of RSFC, a frequency range of

0,0.15 Hz for the physiological noises, which is wider than the

range for spontaneous fluctuations (0.01,0.1 Hz), was designed to

simulate both, overlapping and non-overlapping, situations

between DGN{1and DSF . For the spatial characteristics of the

systemic physiological noises, although they have highly spatial

covariance across measurement channels, they remain different in

both phase delay and amplitude across channels [28,39,40].

Therefore, complicated spatially global attributes were considered.

Two global but spatially inhomogeneous distribution maps

(PGN{1 and SGN{1) were generated to simulate the relative phase

delay and amplitude difference respectively, as shown in Fig. 2(D).

For additional details, please see the Text S2. In order to cover the

complex situations of the temporal and spatial characteristics of

the systemic physiological noises encountered in real circumstanc-

es, the simulated data sets were randomly generated 100 times.

Global Noise 2: Motion Artifact
To assess the influences of motion artifact on the RSFCdf

determination, the motion artifact DGN{2 was generated as

follows:

DGN{2~TGN{2|SGN{2 ð8Þ

where TGN{2 was the basic temporal profile of motion artifacts

generated with a temporal random occurrence as shown in

Fig. 2(E). SGN{2 was the spatial distribution of the amplitude of

the motion artifacts which may be different across channels due to

the different curvature of the probe at different head positions, as

shown in Fig. 2(F) [41]. For additional details, please see the Text

S2. Also, the DGN{2 was randomly generated 100 times

considering the random nature and individual variability of the

motion artifacts.

Template
In the proposed method, the spatial template p plays a key role

in eliminating the adverse effect of the global noises. Thus it is

important to evaluate the robustness of the method to the possibly

over- or under-estimated size and shifted location of the functional

system of interest (represented as p). In order to simulate the biased

estimation of size, the simulated functional system indicated as the

two ROIs in Fig. 2(B) was expanded (shrunk) 0%, 10% and 20%

of the original size respectively. As for the biased estimation of

location, the simulated functional system was shifted horizontally

from the original location 0%, 10% and 20% respectively. For

each case, the RSFCsw
df was calculated, and the influence was

evaluated.

Real Resting-state fNIRS Experiment
Twenty-one subjects were recruited from Beijing Normal

University. Informed consent was obtained before the experiment

according to the procedure approved by the Review Board at

State Key Laboratory of Cognitive Neuroscience and Learning,

Beijing Normal University. All subjects participated in two sessions

of fNIRS measurements. The former was 11-min resting state

session, and the latter was a sequential bilateral finger tapping task

(see detailed descriptions in [21,22]). The fNIRS measurements

were conducted with a 52-channel ETG-4000 Optical Topogra-

phy System (Hitachi Medical Co., Tokyo, Japan) at a sampling

rate of 10 Hz. The 17 emitter and 16 detector optodes were

plugged into a holder and covered the bilateral sensorimotor areas

according to the international 10–20 system [42]. Sixteen subjects

were involved in this study according to the exclusion standard in

our previous study (right-handed and rescanned after one week)

[21,22]. The concentration changes of HbO signal were computed

with the modified Beer–Lambert law [43]. For the localizer task

data, the data were high-pass filtered (.1/60 Hz) after discarded

the first 30 s data. The group-level task activation map (t-map) was

obtained based on the general linear model [16] and the channel

with the greatest activation (ch24) was chosen as the seed-channel.

For the resting state data, the first 20 s and the last 40 s signals

were discarded due to unstable. The proposed computational

framework was applied to the remained 10 min data to assess the

dominant frequency of RSFC within the sensorimotor area. The

anatomical localization of the sensorimotor area (Fig. 2(B) in [21])

was used as the spatial template after it was smoothed by a 3-by-3

kernel matrix in order to reduce the anatomical variability across

subjects [44].

Results

Global Noise 1: Systemic Physiological Noise
In the first simulative experiment, the data was generated as

D~DSF zDGN{1zDIN and was used to evaluate the possible

influence of the systemic physiological noise on the RSFCdf

determination. The results from both the traditional coherence

method and the proposed one are shown in Fig. 3. For the

traditional method, the two averaged time courses (shown in

Fig. 3(A)) are calculated from the two ROIs in the simulated

functional system (shown in Fig. 2(B)) respectively, and the

coherence between them (cROI1{ROI2) represents the frequency-

specific RSFC of the corresponding functional system. The

averaged cROI1{ROI2 curve over 100 times of random simulations

is plotted in Fig. 3(B) with the standard deviation represented as

the black line. The coherence at frequency .0.25 Hz were not

plotted because of very low values. The resultant RSFCtr
df (the blue

horizontal bar) is located from 0.000160.0008 Hz to

0.151060.0032 Hz (mean6std), manifestly beyond the ideal

RSFCideal
df (0.01–0.1 Hz, marked as the green area) at both the

lower (marked as the yellow area) and higher (the orange)

frequencies. This is nearly identical to the primary frequency band

of the simulated systemic physiological noises (0–0.15 Hz, shown

in Fig. 2(C)). The specificity of RSFCtr
df is 0.59160.020

(mean6std), and the sensitivity is 1 for all the 100 times of

random simulations. This reveals a significant disturbance of the

systemic physiological noises to the RSFCdf determination by

using the traditional method. The spatio-frequency connectivity

matrix of the seed channel (the central pixel of the ROI1 in

Fig. 2(B)) as well as an enlargement of its low-frequency portion is

shown in Fig. 3(C). On this basis, along with the spatial template

(shown in Fig. 2(B)), the spatially weighted coherence (cSW ) is

Assessing Dominant Frequency of RSFC
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computed and plotted in Fig. 3(D) where the resultant RSFCsw
df is

represented by a red horizontal bar. The RSFCsw
df , from

0.009060.0026 to 0.103360.0041 Hz, was more proximal to

the ideal RSFCideal
df than the RSFCtr

df . Its specificity is

0.93160.026 (mean6std), much higher than RSFCtr
df , while the

sensitivity is equivalent to RSFCtr
df (0.99960.011). It indicates that

the proposed method successfully eliminates the adverse effect of

the globally distributed systemic physiological noises. Moreover, as

shown in Fig. 3(E), the proposed method (red line, the area under

the ROC curve [AUC] = 0.975) significantly outperforms the

traditional one (blue line, AUC = 0.862). This result further

confirmed that the proposed method has higher specificity as well

as sensitivity than that of the traditional one while identifying the

RSFCdf.

Global Noise 2: Motion Artifact
In the second simulative experiment, the data was generated as

D~DSF zDGN{2zDIN in order to investigate the influence of

the motion artifact. The results from both of the traditional and

the proposed methods are shown in Fig. 4. As shown in Fig. 4(A),

the resultant cROI1{ROI2, drawn on a semilogarithmic graph, are

significant over a quite broad frequency range. The corresponding

RSFCtr
df (blue horizontal bar) is located from 0.000260.0014 Hz

to 0.75460.173 Hz which is much broader than the ideal

RSFCideal
df (0.01,0.1 Hz, marked as the green area). The

specificity of the traditional method to the dominant frequency

of RSFC is 0.03760.178 (mean6std), although the sensitivity is 1.

Further power spectral analysis of the motion artifact shows that

the primary frequency components of the artifacts are also located

in the same frequency band as RSFCtr
df , demonstrating a heavy

influence of the global artifacts on RSFCdf determination by using

the traditional method. In contrast, as shown in Fig. 4(B), the cSW

from the proposed method are concentrated over a low frequency

range on a semilogarithmic graph. The RSFCsw
df is located from

0.007760.0039 Hz to 0.11360.032 Hz. Its specificity is

0.86660.197 (mean6std), much higher than RSFCtr
df , while the

sensitivity is equivalent to RSFCtr
df (equal to 1 for all the 100 times

of random simulations). The ROC results further validated that

the proposed method (AUC = 0.976) outperforms the traditional

one (AUC = 0.850) (shown in Fig. 4(C)). All these results show that

the proposed method can effectively reduce the influence of the

global artifact and thus achieve more accurate estimation of the

frequency band of RSFC.

Figure 3. RSFCdf results of the simulated experiment with contamination of the systemic physiological noise. (A) An example of the
average time course from the two ROIs (shown in Fig. 2B) for the traditional coherence analysis. (B) The mean coherence curve between the two ROIs
(i.e., cROI1{ROI2) over 100 times of stimulations derived from the traditional method. The coherences at frequency .0.25 Hz were not plotted

because of very low values. The black line represents the standard deviation. The green area indicates the RSFCideal
df (i.e., 0.01,0.1 Hz), and the

yellow and the orange area indicate the frequencies lower or higher than RSFCideal
df , respectively. The blue horizontal bar indicates the RSFCtr

df . (C)

An example of the spatio-frequency connectivity matrix (bottom layer) and an enlargement over the low frequency portion below 0.3 Hz (top layer).
(D) The mean spatially weighted coherence curve over 100 times of stimulations derived from the proposed method (i.e., cSW ). The black line
represents the standard deviation. The red horizontal bar indicates the estimated RSFCsw

df . (E) ROC curves for RSFCdf determination of the two

methods with blue for the traditional method and red for the proposed.
doi:10.1371/journal.pone.0051584.g003
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Template
The robustness of the proposed method to the possible

inaccurate predefined spatial template was evaluated and the

results are shown in Fig. 5. The resultant cSW for the over- or

under-estimation of the functional system’s size are plotted in

Fig. 5(A) and Fig. 5(B) respectively. Although the amplitudes of

cSW are slightly decreased, the RSFCsw
df is almost identical to the

ideal situation (0% deviation) with 10% and 20% deviation in size.

These results indicate that moderate deviation of the spatial

template has little impact on the final identification of the

RSFCdf . The resultant cSW for inaccurate estimation of the

system’s location is plotted in Fig. 5(C). Similar to the case of

inaccurate size of the template, the RSFCsw
df for different

deviations (10% and 20%) in position is almost consistent with

Figure 4. RSFCdf results of the simulated experiment with contamination of the motion artifact. (A) Semilog plot of the mean coherence
curve between the two ROIs over 100 times of stimulations derived from the traditional method (i.e., cROI1{ROI2). The black line represents the
standard deviation. The green area indicates the RSFCideal

df (i.e., 0.01,0.1 Hz), and the yellow and the orange area indicate the frequencies lower or

higher than RSFCideal
df , respectively. The blue horizontal bar indicates the RSFCtr

df . (B) Semilog plot of the mean spatially weighted coherence curve

over 100 times of stimulations derived from the proposed method (i.e., cSW ). The black line represents the standard deviation. The red horizontal bar
indicates the estimated RSFCsw

df . (C) ROC curves for RSFCdf determination of the two methods with blue for the traditional method and red for the

proposed.
doi:10.1371/journal.pone.0051584.g004
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those without deviation. Overall, the experimental results indicate

the robustness of our method to the over- or under-estimation of

the size and location of the functional system of interest

represented by the spatial template.

Real Resting-state fNIRS Experiment
For the real resting-state fNIRS experiment in the sensorimotor

area, a schematic diagram of the probe location is shown in

Fig. 6(A). By using the traditional method, the cROI1{ROI2 curve

between the bilateral sensorimotor areas (the left and right region

in green in Fig. 6(A)) is calculated for all the subjects. The averaged

cROI1{ROI2 curve across all the subjects is plotted on a

semilogarithmic graph as shown in Fig. 6(B), with the error bar

indicating the standard error across subjects. It is obvious that, the

cROI1{ROI2 is greater in the low frequencies (0,0.1025 Hz,

RSFCtr
df , indicated by the blue arrow) and the pulsation-related

frequencies (,1.3 Hz). For comparison, the averaged cSW curve

across subjects by using the spatially weighted coherence analysis is

plotted in Fig. 6(C). As opposed to the dominant frequency band

of cROI1{ROI2, the dominant frequency of the cSW (i.e., RSFCsw
df ,

indicated by the red arrow) is concentrated between 0.01 Hz and

0.0732 Hz. The significantly decreased connectivity at ultra-low

frequency (,0.01 Hz), low frequency (,0.1 Hz, the Mayer’s

wave), and the pulsation-related frequency (,1.3 Hz) might

suggests that the proposed method eliminates the various global

noise effectively.

Four typical frequency-specific connectivity maps are shown in

Fig. 6(C) in order to further demonstrate why the proposed

method can reduce the global noise disturbance to the RSFCdf

determination. In particular, the map in the top left, specific to the

frequency of 0.045 Hz, represents a symmetrical connectivity

pattern covering the bilateral sensorimotor areas which resembles

the anatomical location of the sensorimotor area (Fig. 6(A)). This

amazing spatial pattern, corresponding to a great cSW value,

suggests the great potential of the frequency of 0.045 Hz to

contribute to the synchronization of the neuro-related spontaneous

fluctuations. Conversely, the maps in the top right and the bottom

left with a very low cSW values, specific to the cardiac frequency of

1.3 Hz and the ultra-low frequency of 0.005 Hz, respectively,

shows high global connectivity. This phenomenon suggests that

the fluctuations at these frequencies mainly consist of several

globally distributed interferences not related to the neural

activities. At a ultra-high frequency (3 Hz, arbitrarily selected),

the map (the bottom right one) with a very low cSW value did not

show any meaningful connectivity, suggesting an instrumental

noise at this frequency.

Discussion and Conclusions

In this study, we provided a comprehensive assessment of the

interference of the global noise to the determination of the

dominant frequency of RSFC and proposed a functional system

dependent and frequency specific analysis method to eliminate the

adverse influences of the interference. To evaluate the perfor-

mance of the proposed method, we simulated the spontaneous

fluctuations contaminated by the two main types of noise which

are globally distributed in fNIRS dataset (i.e., the systemic

physiological interferences and the motion artifacts). The simula-

tions were close to the conditions in the real fNIRS experiment at

our utmost. The simulated experimental results clearly showed

that all types of global noises generated redundant correlations in

the frequency band unrelated to spontaneous neural activity and

resulted in a low specificity of RSFCdf results when spatial

information was not considered. This unfavorable phenomenon

hints that the RSFCdf results derived from the traditional method

should be interpreted with caution [23,45]. On the contrary, the

proposed method greatly eliminated the adverse effects of both of

the systemic physiological interferences and the motion artifacts

from the frequency characteristics of RSFC and yielded RSFCdf

results that were more specific to the spontaneous neural activities.

Such improvement is significant even in a worse scenario (e.g. the

amplitudes of the systemic physiological noise were two or three

times higher than the spontaneous one [46], which is not shown in

the text). Furthermore, based on the real resting-state fNIRS

dataset, the connectivity in the sensorimotor area derived from the

proposed method was concentrated at the low frequencies

(0.01,0.0732 Hz), whereas the results from the traditional

method was widely distributed and included several typical

physiological noise frequencies. This result further validates the

ability of the proposed method to improve the determination of

the RSFCdf.

In previous fNIRS-based RSFC studies, various methods have

been utilized for the general purpose of noise removal; however

Figure 5. The robustness of the proposed method to the possible inaccurate spatial template. (A) The cSW results with the expanded
spatial template in which the size of the functional system of interest is overestimated. (B) The cSW results with the shrunk spatial template in which
the size of the functional system of interest is underestimated. (C) The cSW results with the spatial template which inaccurate estimate the location of
the functional system of interest. The dotted line represents the case of template with 10% estimated errors. The dashed line indicates the case of
template with 20% estimated errors. And the solid line is for the original template without errors. The horizontal arrow indicates the estimated
RSFCsw

df range for each case.

doi:10.1371/journal.pone.0051584.g005
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none of the methods were intensive enough to address the problem

of the global interference mentioned above. A simple and widely

adopted approach is temporal filtering [16,19,23,45]. This method

removes noise components with ultra-low- and/or high-frequency

spectra from the measured signals, such as the long-term drift and

the cardiac pulsations. However, for noise components overlapped

with the neural activity related spontaneous fluctuations in

frequency domain (e.g., the Mayer’s wave, around 0.1 Hz),

band-pass filtering usually shows little effectiveness [26]. Another

approach is using additionally recorded noise as a reference and

removing it from the measurement data with a linear regression.

Such reference usually is the signal derived either from the short-

separation emitter–detector pairs [15] or from the auxiliary

instruments [47]. Both theoretical and practical considerations

limited this method in the fNIRS-based RSFCdf studies. On one

hand, the underpinning theoretical assumption of this method,

that the observed hemodynamic signal can be expressed as a linear

sum of the spontaneous fluctuations and the systemic physiological

terms, is not clearly proved [48]. On the other hand, this method

requires a specially designed emitter–detector arrangement with

multiple separations or additional physiological signal recoding

systems. This is, however, not always available in all existing

fNIRS devices. Independent component analysis (ICA), as a

powerful blind source separation method, has also been used to

separate noise components and identify RSFC of multiple function

systems from resting-state fNIRS measurements [20,21]. However,

more experimental evidence is desired to demonstrate the ability

of ICA to separate all specimens of global noise and artifacts which

may interfere with the fNIRS-based RSFCdf analysis.

As demonstrated by theoretical analysis, the predefined spatial

template of the functional system of interest is an important

parameter in the proposed method. Thus, its accuracy may have

influence on the performance of the proposed method. To assess

this potential impact quantitatively, we simulated the template

with different levels of position or/and size discrepancy to

represent the inaccuracy of the estimated template in the actual

experiment. The results showed that the method was robust to the

discrepancy of the template at a moderate degree. Furthermore, in

the real resting-state fNIRS experiment, we tested two different

template generation approaches. The first template was construct-

ed according to the anatomical localization information of each

channel, and the second one was made from the task activated

result during the motor task (p,0.05 at group-level, FDR

corrected, not presented in the text). Despite slight differences in

the two templates, the outputs of the proposed method were quite

consistent. Moreover, the spatial template can be appropriately

smoothed to further reduce the influence of template estimation

error on the final results.

Despite some meaningful findings on the RSFCdf were found by

the previous studies, the preliminary results are still inconsistently.

For example, Salvador et al. observed that the RSFCdf in the

primary auditory area was over a broad frequency range

(0,0.25 Hz), and in the occipital cortex, especially in primary

visual and related regions (calcarine and lingual cortices), was at

both low (,0.08 Hz) and high (0.17–0.25 Hz) frequencies [9].

However, in other studies, the RSFC in the auditory and visual

area was only concentrated in low frequencies below 0.1 Hz or

even below 0.05 Hz [7,8,30]. Even for the same ‘‘low-frequency’’

Figure 6. Comparison between the proposed and traditional methods on the real resting-state fNIRS dataset. (A) Schematics of the
fNIRS probe array and the anatomical localizations of the fNIRS channels. The labeling maps with green indicate the channels covering the
sensorimotor area. (B) The coherence curve of the bilateral sensorimotor areas across all the subjects derived from the traditional method. The error
bar indicates the standard error. The horizontal blue arrow at the bottom indicates the estimated RSFCtr

df . (C) The group results of the proposed
method with four typical frequency-specific connectivity maps. The error bar indicates the standard error across subjects, and the horizontal red
arrow indicates the estimated RSFCsw

df .

doi:10.1371/journal.pone.0051584.g006
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RSFC, the precise low-frequency band of RSFC concentration still

have inconsistencies. Taking the sensorimotor area as an example;

Cordes et al., found RSFC were most concentrated in the

frequencies lower than 0.05 Hz in the early study [30], whereas

in their later publication the dominant frequency was broader over

0–0.1 Hz [7]. Similar differences also appeared in two articles by

Beckmann [49,50]. Therefore, significant effort is still required to

fully clarify RSFCdf in basic and clinical neuroscience. The

discrepancies of the preliminary results may have resulted from the

slight influences of the strident noise and the direct visual

stimulation in the fMRI scanner, and/or an aliasing effect due

to the low sampling rate of fMRI; however, the introduction of

fNIRS into RSFCdf studies can basically overcome these issues.

Moreover, because of the portable and cost-effective features of

fNIRS, along with the plainness of the proposed method in this

study, the RSFCdf investigation can be largely carried out for both

of healthy populations and patients with neurologic and psychi-

atric disorders in the future.

The proposed method also has potential to be adapted for

assessing fMRI-based RSFCdf. Similarly to the fNIRS-based

RSFCdf analyses, fMRI studies also have suffered from the global

distributed physiological interference and motion artifacts

[9,51,52,53]. To eliminate these confounds, earlier studies

proceeded with much caution by using a temporal independence

component analysis or improving sampling rate of fMRI [7,8]. It

should be noted that the spatial behavior of desired system-specific

fMRI-based RSFC and global interference is distinct. It coincides

with the basic hypothesis underlying the proposed method in this

study, suggesting that the proposed method should have potential

to be adapted for fMRI-based RSFCdf study. Further work should

be carried out to test its feasibility in practical.

Despite the merits mentioned above, it is necessary to point out

that the proposed method is effective in the case of the large brain

area measurement. To construct the spatial template, the spatial

coverage of the probe should comprise both inside and outside of

the functional area of interest. If there is no sufficient spatial

coverage (e.g. only covering a small number of interested

channels), the performance of the proposed method will be

limited. Fortunately, as the multi-channel measurement fNIRS

technology is becoming mature and popular in recent years

[23,28,47], this problem is not a grave restriction in practice. In

addition, although the prior anatomical template plays a key role

in elimination of the adverse effect of the global interference, it did

limit the application of this method at a system level. That is, if

there were adequate information to get the spatial templates of

multiple functional systems, it could be applied to explore the

frequency system in which RSFCdf has changed during develop-

ment, normal aging, or due to neurological or psychiatric illness.

However, it seems to be precluded from more complicated

situations, such as investigating the frequency of RSFC between

different functional systems (e.g. between the frontal area and the

occipital area) [9,17,23], and exploring the RSFCdf at voxel and/

or region level.
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