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Abstract

MicroRNAs (miRs) are known to play an important role in mRNA regulation, often by binding to complementary sequences
in ‘‘target’’ mRNAs. Recently, several methods have been developed by which existing sequence-based target predictions
can be combined with miR and mRNA expression data to infer true miR-mRNA targeting relationships. It has been shown
that the combination of these two approaches gives more reliable results than either by itself. While a few such algorithms
give excellent results, none fully addresses expression data sets with a natural ordering of the samples. If the samples in an
experiment can be ordered or partially ordered by their expected similarity to one another, such as for time-series or studies
of development processes, stages, or types, (e.g. cell type, disease, growth, aging), there are unique opportunities to infer
miR-mRNA interactions that may be specific to the underlying processes, and existing methods do not exploit this. We
propose an algorithm which specifically addresses [partially] ordered expression data and takes advantage of sample
similarities based on the ordering structure. This is done within a Bayesian framework which specifies posterior distributions
and therefore statistical significance for each model parameter and latent variable. We apply our model to a previously
published expression data set of paired miR and mRNA arrays in five partially ordered conditions, with biological replicates,
related to multiple myeloma, and we show how considering potential orderings can improve the inference of miR-mRNA
interactions, as measured by existing knowledge about the involved transcripts.
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Introduction

MicroRNAs (miRs) are short RNA sequences which are known

to affect expression of messenger RNA (mRNA), often by binding

to complementary sequences and either inhibiting translation or

directing cleavage of that mRNA. A large database of miR

information and annotation can be found at www.mirbase.org [1–

3]. While much research has been performed on miR-mRNA

interactions, it continues to be difficult to infer such interactions in

large numbers. Typically, these interactions are validated one at a

time, though high-throughput methods have recently been

developed in an attempt to speed up the process of miR target

discovery. We discuss these methods in the following paragraphs.

Recently, some of the most successful attempts to identify likely

target pairs include the integration of expression data–most often

microarrays–with sequence-based target prediction algorithms

that consider the binding affinities between a particular miR and

a complementary or near-complementary section of an mRNA

sequence. Each data source by itself is prone to error–expression

data are noisy, correlation does not imply causation, and

prediction algorithms are rife with ‘‘false’’ positives. But, the

combination of information from two very different sources had

led to vast improvements in the ability to identify likely candidate

target pairs. A nice review of the topic can be found in [4].

Most algorithms that combine target predictions with expres-

sion data require such data for both miRs and mRNA, but even

when miR expression data are unavailable, it is possible to infer

miR activity and effective regulation under various experimental

conditions using gene expression data and calculated binding

strengths from target prediction algorithms [5].

When miR expression data is available, GenMiR++ [6], one of

the first algorithms to combine sequence-based prediction and

expression data for both miR and mRNA to infer interactions,

uses variational Bayesian methods to infer negative (down-

regulating) interactions in expression data, given an n|m binary

matrix where a 1 in entry (i,j) indicates that miR i is predicted to

target mRNA j. This algorithm was later updated, to become,

eventually, GenMiR3 [7], with the most prominent update being
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that the newer algorithm is able consider sequence-based

information (not just presence or absence on a list of predictions)

in determining the strength and likelihood of targeting interac-

tions.

TaLasso [8] is another prominent algorithm that combines the

presence of an miR-mRNA pair in a targeting prediction database

with expression data. It uses LASSO regression, restricted to non-

positive interactions, and includes tuning parameters to adjust the

sensitivity/sparseness of the solution. TaLasso has been shown to

outperform GenMiR++ in some cases [4,8].

Another Bayesian model proposed by Stingo, et al [9], uses a

Markov chain Monte Carlo (MCMC) algorithm to fit the model

and estimate parameter values, using a model formulation that is

similar to that of GenMiR++ and GenMiR3. It restricts interactions

to be non-positive using a combination of binomial and gamma

distributions, like both GenMiR algorithms, and can include

sequence-based algorithms and scores, as GenMiR3 does. In

addition, a ‘‘time-variant’’ version of the model is presented, in

which targeting parameters are allowed to vary over time in a

time-series data set.

In some cases, a basic Pearson correlation is used to rank

putative targets, possibly in combination with prediction algo-

rithms [4,10]. Spearman correlation and other varieties of

regression have been proposed for the same task, but none have

performed as well as GenMiR or TaLasso [4].

In this paper, we propose a Bayesian model for inferring miR-

mRNA targeting interactions based on target prediction algo-

rithms and expression data, which we fit using variational

Bayesian methods like the GenMiR algorithms, and which can

utilize any sequence-based (or other external) information like

GenMiR3 and the Bayesian model from Stingo, et al.

However, in contrast to one or more of the aforementioned

algorithms, our model:

1. considers both positive and negative interactions between miR

and mRNA.

2. uses a normal distribution to characterize interaction strength.

3. optimizes the weights/coefficients placed on sequence/predic-

tion information via the same variational Bayesian algorithm

that estimates the rest of the model parameters.

4. accounts for data replicates, biological or technical, and

propagates uncertainty throughout the model parameter

estimates.

5. can consider a partial ordering of the samples.

With respect to these points, we enumerate how the three

algorithms described–GenMiR3, TaLasso, and the Stingo model–

differ from our model:

1. All three algorithms consider only negative interactions, but we

chose to consider both positive and negative interactions since

some positive indirect effects may, in some cases, better explain

changes in expression values than negative effects only [11,12].

We still have the option, when searching for direct miR targets,

to consider only the inferred negative interactions; we explore

this option in the Results section.

2. We chose to use a normal distribution to characterize the

interaction coefficients where GenMiR3 and the Stingo model

have used combined binomial and gamma distributions. The

binomial-gamma combination more strongly enforces sparse-

ness in interactions, but considers only negative interactions, as

mentioned. TaLasso is non-Bayesian and provides no distribu-

tion for these coefficients.

3. Both our model and the Stingo model estimate the influence of

external target prediction information in the same manner as

other parameters (variational Bayes and MCMC, respectively)

while GenMiR3 uses the [non-Bayesian] conjugate-gradient

method to optimize the weights placed on the target prediction

information. TaLasso doesn’t consider such information.

4. Based on their descriptions and implementations, none of the

algorithms explicitly account for technical/replicate variance

or otherwise allow for grouping of samples without taking their

average value before starting the algorithm.

5. With the exception of the Stingo model, which in its ‘‘time-

variant’’version allows some interaction parameters to change

over time, none of the models considers an ordering of the

expression samples.

In the following sections, we specify our model and demonstrate

its ability to reliably infer miR-mRNA interactions in an expression

data set of samples taken from multiple myeloma patients in

different stages of the disease. We use the miRWalk [13] database of

validated targets and compare our results with those obtained from

TaLasso, as well as Pearson correlation, as a benchmark. Through-

out, we illustrate how the natural partial ordering of the data can be

used to improve interaction inference, particularly if we are

concerned mainly with interactions specific to the progression of

multiple myeloma development.

Methods

We have developed a Bayesian model of miR-mRNA interactions

for matched expression data (i.e. we have both miR and mRNA

expression data for each biological sample) that was designed

specifically for partially ordered samples, where ‘‘partially ordered’’

refers to the case where every sample can be said to be ‘‘before’’ or

‘‘after’’ at least one other sample in the data set. The partial ordering

could indeed be a time-course experiment (which is usually fully

ordered, linearly in time) or it could comprise multiple branches of

experimental development, such as a disease study wherein healthy

and diseased samples–possibly originally all starting from the same

healthy population–are collected over time, or in stages.

We have developed a model for partially ordered samples

because prior work in using expression data to infer miR-mRNA

targeting interactions has focused on methods that do not depend

on the order of the samples, the most common of which is Pearson

correlation. We find it both theoretically and practically desireable

to consider an ordering of samples because in most cases we expect

that samples whose sources are more similar–in this case by disease

type or stage–should also have the most similar expression values.

If we consider such a natural ordering, we should be more likely to

infer significant targeting interactions that occur from one stage to

the next but whose expression levels are not necessarily the most

correlated throughout the entire data set.

Let us consider a simple example of how using an ordering of

data can help infer interaction coefficients. Assume a fully-ordered

data set of n stages S~fs1, . . . ,sng, and we have [correctly]

inferred the mean log expression values xs and ys in stage s for a

single miR x and mRNA y, which are perfectly negatively

correlated and where each has been normalized to have mean

zero and standard deviation of one. A simple model formulation

for each ys, without considering the ordering, could be

P(ysDb,l,x1, . . . ,xn)~N (bxs,l) ð1Þ

for interaction coefficient b and precision (inverse variance) l. If

we use a non-informative but improper uniform prior distribution

MicroRNA Regulation of mRNA in Ordered Samples
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for b–P(b)~ lim
h?0
N (0,h)–then the variational Bayesian estimates

for mb and kb are

m̂mb~
X

s[f1,...,ng

ys

xs

ð2Þ

k̂kb~l
X

s[f ,...,ng
x2

s ð3Þ

and likewise if we consider the ordering of samples such that for

s=1,

P(ysDl,x1, . . . ,xn,b)~N (ys{1zb(xs{xs{1),l) ð4Þ

the corresponding estimates are

m̂mb~
X

s[f2,...,ng

ys{ys{1

xs{xs{1
ð5Þ

k̂kb~l
X

s[f2,...,ng
(xs{xs{1)2 ð6Þ

~ l
X

s[f1,...,ng
x2

s ð7Þ

zl
X

s[f2,...,n{1g
x2

s ð8Þ

{ 2l
X

s[f2,...,ng
xsxs{1 ð9Þ

With the assumed perfect negative correlation and unit standard

deviation, both estimates (2) and (5) for m̂mb give a [correct] value of

{1. Also, equation (3) is the same as line (7); therefore lines (8) and

(9) give the adjustments to the estimated precision of b in the

ordered model version as compared to the standard version. If the

sum of these is positive, the estimate for b given by the ordered

model has a higher precision and thus is more statisically

significant. This occurs, for example, in the simple case where

n~4, SxsT~Sx1,x2,x3,x4T~S{1,1,1,{1T and

SysT~S1,{1,{1,1T, where the ordered precision estimate is

8l while the unordered one is 4l. In contrast, if we take a different

ordering of the same paired data, SxsT~S1,1,{1,{1T and

SysT~S{1,{1,1,1T, both versions of the model give a precision

estimate of 4l. If one thinks sequentially about the data, it seems

that in the former example, the miR and mRNA make two

simultaneous but opposing expression changes, one between stages

1 and 2 and another between stages 3 and 4. In the latter example,

only one such simultaneous change is made. In many cases of

miR-mRNA interaction inference, it would be desireable to make

a distinction between these two cases, particularly in experiments

designed to measure stage-by-stage development of a process,

where we might expect the expression levels of an miR to rise for

some specific period of the process and then fall again.

We can also generalize a bit from these simple examples. Since

the summation in (8) is an approximation of the variance of the

fxsg (without the first and last stages), which we have normalized

to 1, and the summation in (9) is the [lag 1] autocorrelation of the

fxsg, generally speaking, the ordered model gives higher precision

for interaction coefficients when the autocorrelation of the

normalized expression data is less than 0:5. This is not an exact

rule since (8) does not include the first or last stages, but we can see

that it does not take an unreasonable amount of expression

variation between adjacent stages for the ordered model to give

higher statistical significance for interaction coefficients, when such

an ordering exists.

In addition the possibility of higher statistical significance in

highly varying miR, considering the order of samples in an

experiment allows us to detect positive or negative trends in

expression value with respect to the process being investigated–a

feature that may prove useful in identifying the main drivers of a

developmental process such as disease, growth, aging, etc. The

model also includes scores from existing prediction algorithms for

miR-mRNA targeting to better determine the existence of a

targeting interaction. In this paper, we have used data (including

prediction scores) from the TargetScan [14–17] and miRanda [18,19]

databases, but any exogenous, quantitative information about the

putative target pair could be included.

Below, we define and fit our model to a previously published

multiple myeloma data set using variational Bayesian methods.

Then, we check our results against the MiRWalk [13] database of

experimentally-validated targeting interactions, as well as against

rankings of predicted target pairs by most negative Pearson

correlation coefficient.

Data
We demonstrate our model using the multiple myeloma data set

from [20], which can be downloaded from GEO [21], accession

number GSE17498. In this data set, there are both miR (Agilent-

019118 Human miRNA Microarray 2.0) and mRNA (Affymetrix

Human Genome U133A Array) expression values for samples

from 36 patients, 34 of whom have been diagnosed with multiple

myeloma (MM) and 2 of whom have been diagnosed with plasma

cell leukemia (PCL). Unfortunately, from healthy donors there is

only miR expression data and no mRNA data, so we cannot

include healthy samples in our study. However, the diseased

samples can be arranged into four Durie-Salmon stages: IA, IIA,

IIIA, and IIIB, which gives an obvious ordering for our non-PCL

samples. Because PCL is a condition related closely to, but not

necessarily developing directly from (or progressing to) MM, we

treat it as a separate branch of the partial ordering, as described in

the subsequent section. However, within our partial-ordering

framework it is necessary to specify some relation to other samples,

and thus we assume that PCL follows the healthiest, most normal

MM stage–in the absence of truly healthy samples–Durie-Salmon

IA.

Partial Ordering
In our analyses, we compare three different partial orderings,

which we show in Figure 1. The first is the natural ordering: the

Durie-Salmon stages in order, plus PCL as a separate branch off of

the initial stage, stage IA. This ordering treats patients with the

same disease type and stage as replicates, and should give results

that are specific to the disease itself since it effectively ignores the

differences between individuals with the same disease type. We call

this ordering the grouped-ordered (G-O) ordering.

The second partial ordering is the same as the first, but with the

individuals separated. We call this the individual-ordered (I-O)

MicroRNA Regulation of mRNA in Ordered Samples
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ordering. In this version of the model, each individual comes after

all of the individuals of the prior Durie-Salmon stage, and again

the PCL samples are after all of the IA samples. This arrangement

places less focus on the disease itself but allows the model to infer

miR-mRNA interactions based on variations between individuals

of the same type.

The third partial ordering considers the stage IA samples to be

references, while all other samples come directly after them.

Individuals are still considered separately. Hence, this is called the

individual-reference (I-R) ordering. This reference-based design

largely ignores the natural ordering of the data and focuses on

differences between individuals. Comparing the results from this

ordering with the results from the other orderings could indicate

some of the advantages (and disadvantages) of considering the

natural ordering of these samples.

Pre-processing
Prior to the main analysis, we performed quantile normalization

across all arrays of the data set using the limma package for R

[22,23]. We then performed a probewise ANOVA to test for

differential expression across the stages IA, IIA, IIIA, IIIB, and

PCL (using individuals within a stage as replicates) and removed

those probes/probesets (for both miR and mRNA) whose

(unadjusted) p-value from the ANOVA F-test was greater than

or equal to 0.05, as well as those miRs and mRNAs not involved in

any predicted targeting interactions, leaving 28 miRs and 367

mRNAs as possible candidates for targeting interaction. Lastly, we

re-scaled the data so that each probe/set–across all samples–had a

mean of zero and a standard deviation of one.

Target Prediction Algorithms
For these analyses, we included miR-mRNA target prediction

data from both TargetScan [14–17] and MiRanda [18,19]. For each

of these, we downloaded from the corresponding web site a table

of predicted miR-mRNA interactions and the targeting scores

calculated by the respective algorithms. TargetScan includes a

context+ score and MiRanda includes a mirSVR score [24]. In our

model, described below, we consider the predicted interactions

and these prediction scores.

Model
Let us define a stage as a set of expression levels s that are, for

each probe/set, to be considered replicates of each other. We

assume a partial ordering O on the set of stages S such that each

stage s0 has a set of parent stages rs0~fs[S : svs0 in Og. The set

of parent stages for s0 can be defined as rs0~fg if s0 has no

parents and is therefore an initial stage in O (the existence of at

least one initial stage is guaranteed by the acyclic property of

partial orderings). Furthermore, let us define a ‘‘development’’

parameter dr,s, which intuitively represents a kind of distance from

a parent r to its child s, and which we include in the equations

below. Likewise, let ti be the ‘‘trend’’ of probe/set i in either the

positive or negative direction with respect to the ordering O, and

let Li be the precision (inverse of variance) parameter of the

expression of probe/set i thoughout all stages.

miR parameters. Then, we assume the log expression value

ui,s of each miR i in stage s, to be normally distributed with mean

Figure 1. Partial orderings. The graphs above show the three different partial orderings of the data that we explore in this paper. Arrows give the
direction of the ordering, where sample A can be said to precede sample B (i.e. AvB) if in the graph an arrow points from A to B. G-O refers to the
grouped-ordered model version, in which samples of the same Durie-Salmon stage are grouped together as replicates. I-O is the individual-ordered
model version, where the groups of smaller circles represent that different samples are not grouped as replicates, but the ordering of Durie-Salmon
stages is the same as in the G-O ordering (i.e. AvB if and only if the stage of A precedes the stage of B in the G-O ordering). And, I-R is the individual-
reference model version, where the samples are again not grouped as replicates, but each of the Durie-Salmon stage IA samples precedes each
sample of every other stage. In each partial ordering, there is a prior distribution over the samples which are not preceded by any other samples.
doi:10.1371/journal.pone.0051480.g001
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mi,s~

P
r[rs

1

dr,s
ui,rzdr,sti

� �
P

r[rs

1

dr,s

ð10Þ

and precision

li,s~

P
r[rs

1

dr,s

� �2

P
r[rs

1

dr,s

Li ð11Þ

Thus, the prior mean mi,s is the weighted sum of the parents’

expression values with the developmental trend added (the trend ti

multiplied by the development factor dr,s). The weights in the

weighted sum are the inverses of the developments dr,s. Likewise,

the prior precision is the weighted average of inverse developments

multiplied by the probe’s stage-wise precision parameter Li. This

formulation gives two parents equal weight in the prior

distribution of a common child s if their development parameters

to that child, dr,s, are equal. Also, as dr,s increases for one parent

to the child, the influence of its expression value on the child’s

prior distribution diminishes to zero.

Note that in the formula for the stage’s prior precision li,s, the

probewise precision Li is moderated by dr,s, in that a parent stage

rs that is more similar to its child s–if it has a smaller value dr,s–

carries more weight and increases the precision in the prior

distribution of the probes in stage s. This allows for varying

developmental distances between stages, where larger dr,s imply

that all probes experience lower precision (more random noise)

between stages r and s, and vice-versa for smaller dr,s.

mRNA parameters. The distributions we have assumed for

mRNA expression are identical to those of the miR, except that

the developmental trend component (the product dr,sti) is

exchanged for an interaction component with the miR expressions

ui,s. Let vs be the vector of all miR expression values in the stage s,

and let gj be the vector of interaction coefficients between vs and

mRNA expression level vj,s, then gj.(vs{vr)–where . is the

standard vector dot product–expresses the total interaction effect

of all miRs on the mRNA j from stage r to stage s.

Specifically, we assume the log expression value vj,s of each

mRNA j in stage s, to be normally distributed with mean

mj,s~

P
r[rs

1

Dr,s

vj,rzgj.(vs{vr)
� �

P
r[rs

1

Dr,s

ð12Þ

and precision

lj,s~

P
r[rs

1

Dr,s

� �2

P
r[rs

1

Dr,s

Lj ð13Þ

where the Dr,s are analagous to, but distinct from, the dr,s we used

in the miR distributions. Likewise, the Lj are analagous to the Li

from the miR distributions, but are inferred separately for each

mRNA j, as they are for each miR i.

Figure 2. The top 10 interactions according to the G–O ordering. In the above diagram, we show the miRs (top row) and genes (bottom row)
involved in the 10 most significant targeting interactions based on the G–O ordering from Figure 1. In each case, the inferred interaction is negative,
meaning that the miR inhibits the expression of the corresponding gene. A red line from an miR to an mRNA indicates that the interaction was
predicted by TargetScan and a blue line indicates that the interaction was predicted by miRanda.
doi:10.1371/journal.pone.0051480.g002

Table 1. miRs with a significant estimate for the trend
parameter.

trending miR direction z-score

miR-18b + 3.88

miR-367 2 3.80

miR-18a + 3.61

miR-194 + 3.57

miR-133b + 3.54

miR-92a + 3.38

miR-554 2 3.24

miR-551a + 3.23

Shown are the most significant trend parameter estimates (ti ). A ‘‘+’’ in the
table denotes that the expression of the miR increased throughout the
progression of the partial ordering by disease stage (G–O), and tended to be
higher during later stages. Likewise, a ‘‘2’’ denotes that the expression of that
miR tended to be higher in early stages and lower in later stages.
doi:10.1371/journal.pone.0051480.t001
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Technical and replicate variance. We assume two techni-

cal precisions (inverse variances) in our model. One precision

corresponds to an expression set (i.e. the precision/variance

between microarrays from the same stage) and one corresponds to

replicates within one expression set (i.e. multiple spots for the same

probe/set or transcript within a microarray).

For the miR and mRNA expression levels, ui and vj , above, we

assume that the expression levels ei,s and ej,s each probe i (miR) or

probeset j (mRNA) in an expression set m from stage s is normally

distributed as

ei,m,s*N (ui,s,kmiR) ð14Þ

or

ej,m,s*N (vi,s,kmRNA) ð15Þ

where the second parameter k½� in the normal distribution N () is a

precision, not a variance or standard deviation.

Furthermore, within each expression set m, we assume that the

expression data xi,m,n,s (miR) and yj,m,n,s (mRNA) for within-set

replicate n and stage s are normally distributed as

xi,m,n,s*N (ei,m,s,k’miR) ð16Þ

or

yj,m,n,s*N (ej,m,s,k’mRNA) ð17Þ

for the two second-level technical precisions k’½�.
Interaction parameters. Each element gi,j of the vector of

interaction coefficients gj metioned above is also normally

distributed as

gi,j*N (b.P,q) ð18Þ

where P is the vector of fixed parameters from target prediction

algorithms, b is a vector of estimated coefficients, and q is again a

precision. Note that there is no restriction of the interaction

Table 2. Enriched KEGG pathways among genes in the top 100 interactions.

G–O I–O I–R TaLasso Neg.Cor

Number of unique genes in the top 100 interactions 41 58 53 85 56

05200 :Pathways in cancer 3

05215 :Prostate cancer 2 3 3

05219 :Bladder cancer 2 2 2

05222 :Small cell lung cancer 2 2

05216 :Thyroid cancer 2

05214 :Glioma 2 2

05218 :Melanoma 2 2

05016 :Huntington’s disease 3 4 3

05014 :Amyotrophic lateral sclerosis (ALS) 2 2 2

05010 :Alzheimer’s disease 3

04976 :Bile secretion 2

04730 :Long-term depression 2

04115 :p53 signaling pathway 2 3 4

04210 :Apoptosis 2 2 2

04010 :MAPK signaling pathway 3 3

04722 :Neurotrophin signaling pathway 2

04110 :Cell cycle 2

04120 :Ubiquitin mediated proteolysis 2 4

04622 :RIG-I-like receptor signaling pathway 2 2

04144 :Endocytosis 4

04914 :Progesterone-mediated oocyte maturation 3

04114 :Oocyte meiosis 3

04142 :Lysosome 3

03060 :Protein export 3

04141 :Protein processing in endoplasmic reticulum 4

The top row gives the number of unique genes present in the top 100 miR-mRNA interactions according to each model; the remaining rows give, per column, the
number of these genes annotated by KEGG pathway terms with significant enrichment (FDR corrected pv0:05) for for at least one of the models proposed. A blank
entry indicates that the particular pathway was not significantly enriched in the model. The column G–O refers to the grouped-ordered model version, I–O is the
individual-ordered model version, and I-R is the individual-reference model version, while Neg.Cor is the ranking by most negative Pearson correlation (between miR and
mRNA expression profiles) among the predicted target pairs. The horizontal lines separate general categories of KEGG pathways, namely cancer-related pathways, other
disease-related pathways, and then remaining pathways found to be enriched by at least one of the models.
doi:10.1371/journal.pone.0051480.t002
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coefficients gi,j to only negative values, as in some models, as we

choose to allow for all regulatory effects, positive or negative,

direct or indirect.

If one of the included algorithms predicts that miR i targets

mRNA j, we include the vector S1,ai,jT where ai,j is the prediction

score from the algorithm. We concatenate the vectors from

multiple prediction algorithms such that, if a pair fi,jg is predicted

by more than one algorithm, the vector P is of the form

S1,ai,j ,1,a’i,jT. In this way, the coefficients of b that correspond to

a 1 in P determine the effect that inclusion on a particular list of

predicted targets has on the expression data (indirectly through

estimation of gi,j ), while the coefficients corresponding to

algorithm scores may further refine the value of the algorithm in

this model. (Also, an algorithm score of zero does not necessarily

indicate zero chance of targeting, and thus if we include the scores,

we must also include a constant.).

Prior distributions. We chose conjugate prior distributions

for each model parameter that required a prior. Thus, we use

vaguely informative normal distributions on the parameters ui,0,

vj,0, and ti. Specifically, they all follow the distribution

N (0,10{10). Similarly, the prior distribution for b is the equivalent

multivariate normal with zero mean and precision matrix 10{10I ,

where I is the identity matrix of the appropriate size. We use

vaguely informative gamma prior distributions on the parameters

Li, Lj , kmiR, kmRNA, k’miR, k’mRNA, and Q.

The development parameters dr,s and Dr,s are special cases.

Foremost, they have no obvious conjugate priors, and as we have

defined this model, their optimal values are not unique since, for

example, doubling the estimated values for dr,s and Dr,s along with

the ti would give an identical likelihood, if priors are ignored.

However, we are not concerned with the specific values of these

parameters; we need only their values relative to each other. Thus,

in order to obtain unique optimal values, we specify a gamma

prior on the dr,s and Dr,s with shape and rate (i.e. inverse-scale) set

equal to 1.

Fitting the Model using Variational Bayes Methods
To estimate the parameters of our model, we use variational

Bayesian methods. These methods are closely related to expecta-

tion-maximization algorithms [25] and have been used previously

in discovering miR-mRNA target pairs [6,7,26] as well as other

analyses of gene expression data [27,28].

In short, variational Bayesian methods find a probability

distribution P i Q(hi) (factorizable over all parameters) that is

increasingly similar (via iterative updates) to the desired posterior

distribution P(hDX ) for model parameters hi[h and data X ,

through use of the Kullback-Leibler divergence as a measure of

dissimilarity. As part of the calculations, one also obtains a lower

bound L(Q) to the evidence P(X ), which can be helpful in judging

the goodness of fit of alterative model formulations. For a

thorough explanation of variational Bayesian methods, see [29]

or [30].

The result of variational Bayesian calculations is, like with most

Bayesian methods, a set of estimated posterior probability

distributions over the model parameters. Unlike Markov chain

Monte Carlo and related methods, we need not worry much about

convergence of the estimated parameter distributions, since, if

implemented properly, a variational Bayesian algorithm guaran-

tees an improvement in every iterative update. Of course,

calculations can be quite slow when compared to non-Bayesian

methods.

All parameters were estimated using variational Bayesian (VB)

methods, with the exception of the dr,s and Dr,s, since they have

no simple conjugate distributions. Specifically, we treat the dr,s

and Dr,s as fixed values while iteratively updating the other

parameters, and then we update these by maximizing the lower

bound L(Q) over their possible value range. More specifically,

after first initializing the variables to reasonable values, the

algorithm sequentially updates the posterior distribution estimate

for each variable (excepting dr,s and Dr,s) and that posterior

estimate (of the same form as the conjugate prior) is utilized in all

subsequent steps. After all such posterior estimates have been

updated, dr,s and Dr,s are optimized by finding the maximum

likelihood estimates. Then, once again, the posterior distribution

estimates are updated for all other parameters, and so on. This

process is repeated until the parameter values change very little

with each subsequent iteration and thus it becomes no longer

beneficial to continue updates. We found that 200 such iterations

gave sufficient results.

This algorithm was coded in the R [23] statistical programming

language.

Results

We applied our model to the multiple myeloma data set from

[20] in three different configurations based on our choice of partial

orderings (shown in Figure 1). For these analyses, we consider only

those interactions which were predicted by at least one prediction

algorithm (TargetScan or miRanda), but we would like to note that

this is not necessary in our framework. We have limited the set of

candidate interactions in this way because the high number of

possible parameters in the model (all possible interactions) can be

significantly reduced by considering only predicted interactions.

Furthermore, target predictions are known to have significant

significant sensitivity [31], when compared to validated targets,

even if they have unknown specificity since a complete list of true

targets does not exist. Thus, we attempt to rank only the 1754

interactions predicted between the 28 miRs and 367 mRNAs,

ensuring that our top candidate interactions have been predicted

as well as supported by expression data.

Below, we evaluate the results and compare them with the

interactions rankings one obtains from TaLasso as well as by

ranking by Pearson correlation coefficient, as a simple benchmark.

For this, we consider both the strongest absolute value correlations

as well as the strongest negative correlation, as much evidence

indicates that miR-mRNA interactions are predominantly nega-

tive, and thus ranking by most negative correlation generally

improves results [4]. In each of the rankings based on our model,

all of the top 900+ inferred interactions were negative; thus,

restricting only to negative interactions has no effect on these

results.

First, we checked the miRWalk database for target pairs that

have been experimentally validated and we looked at their ranking

according to each of the methods. Second, we looked for

enrichment of KEGG pathway [32] annotation among mRNAs

involved in the top 100 targeting interactions on our lists. To do

this, we used the ‘‘singular annotations’’ from the GeneCoDis web

tool [33,34]. Then, we examined more closely specific target pairs

near the very top of our rankings. Lastly, we looked at the miRs

with the strongest trends through the stages of multiple myeloma

according to the G–O ordering, which we hypothesize indicates a

high likelihood of playing a role in the development of the disease.

Interaction Validation by miRWalk
Among our data set, only five putative miR-mRNA targeting

interactions have been validated, according to the validation

database miRWalk [13], though 13 more target pairs have been
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validated despite not being predicted by either TargetScan or

miRanda. This may indicate that heavily favoring predicted pairs

over non-predicted pairs detracts from the results more than

expected. However, since one of our main goals here was to

combine prediction data and expression data, we do not address

the issue here.

All five of the validated, predicted target pairs involve the well-

studied miR-17. These five interactions appear at positions 63,

229, 234, 273, and 612 on our interaction ranking based on the G–

O ordering from Figure 1. This is considerably better than in the

ranking by absolute value Pearson correlation (341, 402, 819, 877,

and 893) and also by most negative Pearson correlation (162, 195,

468, 568, and 604). The TaLasso results gave rankings for only four

of these five validated target pairs, as the TargetScan-predicted pair

{hsa-miR-17, PKD1} seems to be missing; perhaps the results list

was truncated or the pair was missing from the built-in list of

predictions. However, the remaining four interactions are ranked

311, 351, 846, and 952, which is comparable to Pearson

correlation.

If we divide our ranking positions, in increasing order, by the

rankings by correlation (e.g. we divide 63 by 341, 229 by 402, and

so on), we find that our rankings are, on average, 0.41 times those

by absolute value correlation and 0.71 those by negative

correlation. Repeating this using the four rankings from TaLasso

and the top four from our model gives 0.35. This can be

interpreted as an estimate of the relative number of target pairs

that would need to be experimentally tested based on each ranking

in order to arrive at the same number of positive validations, and

from now on we will refer to this statistic as the ‘‘average relative

rank statistic’’. If we consider our ranking using the partial

ordering I-O from Figure 1, we obtain average relative rank

statistics of 0.39 and 0.56 when compared to rankings by absolute

value correlation and negative correlation, respectively. Partial

ordering I–R gives average relative rank statistics nearly identical

to these.

Though there are too few existing validations for us to draw

strong conclusions, the fact that the rankings of these by our model

are much closer to the top of the list than those by the correlation

(negative or absolute value) indicates that there is at least some

advantage to our partially ordered model.

KEGG Pathway Enrichment
We show in Table 2 all of the KEGG pathways that are

enriched (FDR corrected pv0:05) in the top-100 list for at least

one of the four models (including ranking by negative correlation

among predicted target pairs). There are considerably more

pathways with enrichment among the lists generated by our model

than by negative Pearson correlation. Specifically, six types of

cancer appear in the lists for our models, while there are none for

the correlation list. This is promising, as this data set comes from a

cancer study, specifically of multiple myeloma. In total, among the

41 genes involved in the top 100 interactions inferred by the G–O

ordering, there were 13 enriched pathways, and only two among

the 56 genes in the top 100 interactions according to ranking by

negative correlation.

Amongst the three partial orderings we have considered here,

there is marginally more pathway enrichment and fewer genes

involved in the top 100 targeting interactions for the G–O ordering,

though both the I–O and I–R orderings both give much more

enrichment than the rankings by TaLasso and negative correlation.

Top Candidate Interactions
Ultimately, our goal with this analysis is to enable the

identification of the most promising candidates for further

biological investigation. In Figure 2 we show the top ten

interactions inferred by the model using the G–O ordering. The

three strongest inferred interactions involve the NR3C1 glucocor-

ticoid receptor, which first appears in the 109th interaction on a

ranking of interactions by negative correlation. Myeloma patients

with low expression of this receptor respond poorly to standard

treatment with dexamethasone and have a poor overall prognosis,

making this molecule an intrinsically interesting candidate for

further investigation [35]. Two of the miRs inferred as targeting

this gene, miR-18a and miR-18b (part of the 5th and 6th ranked

interactions by negative correlation), share a seed sequence, and

are associated with the miR-17~92 cluster–a downstream target of

the c-myc oncogene [36]. This cluster is well-known to play a role

in cancer development as well as normal lymphoid development,

and has recently been associated with tumorgenicity in multiple

myeloma [37]. The next strongest inferred interaction involves the

gene UBE2D3, (targeted by miR-891b) which is a ubiquitin-

conjugating enzyme known to be involved in p53 ubiquitination

[38]. The next ranked interaction on our list involves the p53

tumor-suppressor (TP53)–an extremely important gene in most, if

not all, cancer types–inferred to be targeted by miR-let-7e. Unlike

in many cancers, at diagnosis in multiple myeloma, p53 is rarely

seen to be mutated or deleted. As it is not changed at the genomic

level, it is therefore quite plausible that p53 may be manipulated at

the level of translation by miR in this disease, making this pair an

intriguing candidate interaction as well.

Inferred miR Regulators in Multiple Myeloma
Development

The inclusion of trend parameter ti for each miR in our model

allows us to identify miRs whose expression levels increase or

decrease significantly over the progression of stages with respect to

the partial ordering. Table 1 shows the miRs with a corresponding

trend parameter ti estimate whose posterior mean is more than

three standard deviations (based on the posterior precision

estimate) from zero, in either direction, positive or negative.

Top candidates from the table include miR-18a and miR-18b,

which, as discussed above, are well-known to play a role in cancer

development. Both of these showed increased expression in

advanced stages of multiple myeloma. Another candidate is

miR-194, which has been shown to be p53-dependent and a

positive regulator of this well-known tumor-supressor, creating a

positive feedback loop. Furthermore, down-regulation of miR-194

has been demonstrated to play a key role in multiple myeloma

development through its modulation of p53 signaling [39]. Our

model inferred a significant positive trend for miR-194, which

might be contrary to this prior expectation of down-regulation, but

in any case adds to the evidence that miR-194 is involved–perhaps

in a complex way–in the development of multiple myeloma.

Discussion

Combining miR-mRNA target prediction algorithms with

expression data has proven to be one of the best strategies for

high-throughput target pair inference. However, the exact way in

which do this has been the subject of some discussion. Though

many methods have addressed specific issues in target inference,

and others have attempted a more general approach, none has

fully addressed ordered and partially ordered data sets. We tried

three different partial orderings in our model, as shown in Figure 1.

They performed similarly to each other, but not quite the same,

supporting the conclusion that the ordering does make a

difference, and thus should be carefully considered before analysis.

Grouping and ordering samples by disease stage seems to have
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enriched, if only slightly, the top target interactions according to

our KEGG anaylsis.

As illustrated in the Methods section, the order of samples (if one

exists) can affect the strength of inference of correlated miR and

mRNA expression patterns, and in fact this additional statistical

power can be seen in a very simple example. The model that we

present in this paper addresses partially ordered data sets by

assuming that closely related samples (with respect to the ordering)

should be more similar than less closely related samples. This

assumption allows the model to outperform TaLasso and Pearson

correlation (i.e. ranking of target pairs by most negative

correlation) by a noticeable margin, aided by the Bayesian

framework that inherently places more weight on measurements

and variables that have high certainty or precision. Our model’s

rankings of the few previously experimentally validated target pairs

were significantly better in our model, and KEGG pathways were

significantly more enriched, particularly for cancer-related path-

ways, which we would expect from this data set.

Both the mRNA targets and targeting miRs from our top-

ranked interactions have been previously implicated in multiple

myeloma development, suggesting that our analysis has success-

fully identified biologically-relevant pairs from this data set.

Furthermore, some of the miRs that we have identified as having

a significant trend through the ordering of the stages have been

verified by literature as key players in both cancer and, more

specifically, multiple myeloma. The remaining un-verified top

interactions and trending miRs may be good candidates for further

investigation.

Interestingly, though we didn’t limit our interactions to be non-

positive, virtually all of the top 1000 interactions were negative.

This is likely an effect of utilizing the the prediction algorithms in

the prior distributions for the interaction parameters, since our

model estimates coefficients for the inclusion in (and targeting

score of) each included prediction algorithm. It is well known that

miRs typically down-regulate target mRNAs, and though there

have been some reports of up-regulation, we would expect the

estimated coefficients for predicted targets would lead to a negative

prior distribution (see equation 18) on the majority of interactions,

if not all of them.

One potential weakness of our model–which is shared by

virtually all recent models of miR-mRNA targeting–is that we

attempt to explain all changes in mRNA expression using miR

targeting interaction coefficients. This assumption that miR

targeting should account for all gene expression changes is

patently untrue. There are other direct processes–involving

transcription factors, for instance–as well as indirect processes

that can affect mRNA expression. Though it would be quite

cumbersome in both data and calculation, an expanded model

taking into account other potential influences could prove very

useful in inferring true interactions between the various nucleic

acids, proteins, etc.

Lastly, though much literature has been published on the topic,

we have a lot to learn about high-throughput inference of miR-

mRNA target pairs. Experimental validations are so sparse that it

is impossible to prove conclusively which prediction or inference

techniques routinely give the best results, and in which cases each

is most appropriate. Perhaps in the near future we will see a vast

increase in the number of targets being validated, possibly through

cooperation or organization between research groups to create

more complete databases (both of positive and negative results)

with which we can compare inference approaches to further refine

our methods and in turn more efficiently focus our experimental

efforts into the most promising areas.
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