
The Possible Role of Resource Requirements and
Academic Career-Choice Risk on Gender Differences in
Publication Rate and Impact
Jordi Duch1,2., Xiao Han T. Zeng1., Marta Sales-Pardo1,3, Filippo Radicchi3,4, Shayna Otis1,

Teresa K. Woodruff5,6, Luı́s A. Nunes Amaral1,4,7*

1 Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, United States of America, 2 Departament d’Enginyeria Informàtica i
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Abstract

Many studies demonstrate that there is still a significant gender bias, especially at higher career levels, in many areas
including science, technology, engineering, and mathematics (STEM). We investigated field-dependent, gender-specific
effects of the selective pressures individuals experience as they pursue a career in academia within seven STEM disciplines.
We built a unique database that comprises 437,787 publications authored by 4,292 faculty members at top United States
research universities. Our analyses reveal that gender differences in publication rate and impact are discipline-specific. Our
results also support two hypotheses. First, the widely-reported lower publication rates of female faculty are correlated with
the amount of research resources typically needed in the discipline considered, and thus may be explained by the lower
level of institutional support historically received by females. Second, in disciplines where pursuing an academic position
incurs greater career risk, female faculty tend to have a greater fraction of higher impact publications than males. Our
findings have significant, field-specific, policy implications for achieving diversity at the faculty level within the STEM
disciplines.
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Introduction

The proportion of women faculty members in many STEM

fields has been steadily increasing, but at the level of associate and

full professor, men continue to far outnumber women [1]. This is

troubling because studies suggest that a lack of women in

leadership positions has a negative impact on women’s aspirations

and advancement [2,3] and may perpetrate gender biases [4].

Many mechanisms have been proposed to explain the gradual loss

of women along the STEM academic career path [5]. For

example, Carnes et al. [2] suggested that female faculty in

academic medical centers experience a number of systemic and

selective pressures that put them at a disadvantage at each step of

their pursuit of tenure, and in achieving positions of leadership.

These pressures could amount to a ‘‘glass ceiling’’ preventing

women’s advancement. Others have referred to the Matthew [6]

and Matilda [7] effects as the cause of gender differences, that is,

the greater resources awarded to men enable them to further

advance their careers beyond what is possible for women.

In contrast, to these concerns, Etzkowitz and Ranga [8] recently

suggested that the low number of females in academic positions

within STEM disciplines should not be a cause for concern

because women do not drop from STEM pursuits when they

abandon academic careers but merely pursue STEM careers in

other arenas. Curiously, Etzkowitz and Ranga’s ‘‘vanish box’’

perspective [8] does not address whether the reasons for women

leaving academia do not detract from a level-playing field or

whether women have the opportunity to rise to positions of

prominence in non-academic careers.

To determine how and why gender may affect the professional

practices and scientific production of researchers, we investigated

for seven STEM fields in a quantitative manner the gender-

specific and discipline-specific effects of (i) research resource

requirements and (ii) relative risk in pursuing an academic career.

We explicitly separated the researchers in our database along

disciplinary lines in order to more carefully investigate the

mechanisms potentially responsible for the observed differences.

In contrast to most studies concerned with this matter, we did not

conduct surveys but instead systematically analyzed the complete

publication records of faculty at a large number of departments in

selected research universities in the United States (Table 1, Fig. 1

and Table S4, S5, S6, S7, S8, S9, S10). These data enabled us to
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characterize the career-long scientific production of a sizable

sample of faculty from seven disciplines, and to measure

statistically significant differences that would have otherwise

remained hidden.

Data
We collected data on the 2010 faculty rosters of selected top

research institutions in the U.S. (see Supporting Information S1) in

seven STEM disciplines – chemical engineering, chemistry,

ecology, industrial engineering, material science, molecular

biology and psychology – and measured scientific productivity

and impact during the various phases of each faculty member’s

academic career [9]. We focus on faculty at top U.S. research

university departments because most high impact research

produced by U.S. authors is published by authors in the top

departments. We chose these disciplines for three sets of reasons.

First, for all seven disciplines, women only began to join faculty

rosters in a consistent manner in the 1980’s, and today they still

comprise a small fraction of total faculty (Fig. 1 and Fig. 2).

Second, these disciplines cover a broad range of scientific

approaches: some place greater emphasis on theoretical or

computational work, whereas others focus on industrial applica-

tions or on biological systems. Thus the requirement for

institutional support – be it lab space [10–13], size of start-up

packages[10–13], or the ability to lead center-level projects –

required for success differs dramatically across these disciplines

(Table 2). Third, these disciplines pose quite different relative risk

profiles to individuals wishing to pursue an academic career. For

example, the seven disciplines differ significantly in the prospective

earnings of different career options available to Ph.D. graduates

Figure 1. The leaking pipeline. Percentage awarded to females of the total number of bachelor (green lines), master (blue lines) and doctoral
(purple lines) degrees in the period 1966–2008. We obtained these data from [40]. We also show the percentage of female faculty in our datasets
(orange lines). We could not obtain separate data for molecular biology, so we show the data for biology instead. The grey shaded areas indicate
values lower than 50%. The gender ratio of the faculty members given by our data is close to that reported elsewhere. For example, in our data, the
percentage of female faculty members in chemistry is 16.2%, and according to the report of Chemical & Engineering News, this percentage is 17%
[43].
doi:10.1371/journal.pone.0051332.g001

Table 1. Female and male cohorts in study.

Discipline Departments Female Male

Authors Publications Authors Publications

Chemical Engineering 31 98 6,392 567 66,328

Chemistry 35 198 13,790 1,020 137,723

Ecology 15 106 3,976 328 22,425

Industrial Engineering 15 51 1,498 261 11,509

Material Science 26 98 9,538 473 75,373

Molecular Biology 11 168 9,882 474 51,234

Psychology 10 171 7,143 279 20,976

Total 890 52,219 3,402 385,568

doi:10.1371/journal.pone.0051332.t001

Gender Difference in Publication Rate and Impact
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and on the time needed to achieve career stability within academia

(Table 2).

Results

We first focus on research resource requirements. As mentioned

earlier, the typical annual research expenditures per faculty

member differ substantially across the seven disciplines. For

example, industrial engineering faculty tend, for the most part, to

train a small number of students at a time. Additionally, much of

the research in industrial engineering is theoretical or computa-

tional in nature. These two characteristics suggest that, for

industrial engineering, researchers do not need to compete against

each other for limited resources, and institutional support may not

be as important a factor in faculty productivity.

In contrast, most faculty in molecular biology conduct

experimental research, and many require significant lab space

and expensive specialized equipment. Moreover, faculty in

molecular biology are able to compete for funding supporting

the creation of large centers or the acquisition of major equipment.

Thus, availability of resources, especially institutionally granted

resources or institutional support for securing large grants, can be

crucial components of academic success in molecular biology [12].

Furthermore, consistent with the Matthew effect [6,14–16],

researchers who have already received more institutional support

are able to secure even more research resources.

Since historically female faculty members have received less

institutional support and have had less access to research resources

[17–22], these considerations prompt a question with significant

policy implications: Could the differences in resource requirements

lead to distinct gender-specific publication patterns across disci-

plines? In order to answer this question, we systematically

investigated gender-specific publication rates for the seven

disciplines. Even though several studies report greater publication

rates by male authors [23–27], we hypothesize that only in

disciplines where resource requirements are high and institutional

Figure 2. Career lengths of faculty members. Career length distribution of female (red) and male (blue) current faculty members for a selected
set of U.S. universities (Table 1). Data is binned into two year intervals. Currently, females hold about 16% of faculty positions in chemistry and in
material science departments, and about 25% of faculty positions in molecular biology departments.
doi:10.1371/journal.pone.0051332.g002

Table 2. Requirement for research resources and risk of academic career choice.

Discipline
Avg. annual expediture
per PI [M$] Median of salary [K$]

Salary premium
of non-academic
careers, P21

Time to career
independence, T

Frac. of graduates
pursuing acad.
careers, A

Acad. Non-acad.

Chemical Engineering 0.490 77.2 107.2 0.39 5.4 0.21

Chemistry 0.515 64.6 104.2 0.61 6.2 0.32

Ecology – 69.0 95.0 0.38 8.2 0.71

Industrial Engineering 0.094 74.0 104.0 0.41 6.1 0.56

Material Science 0.612 74.5 102.5 0.38 6.6 0.20

Molecular Biology 1.897 62.2 100.9 0.62 7.3 0.57

Psychology 0.256 65.6 96.2 0.47 8.2 0.42

T , time to reach career independence. P, reciprocal of the salary premium of non-academic careers. A, ratio of Ph.D. graduates pursuing an academic position. The data
of research expenditures are obtained from http://www.nsf.gov/statistics/nsf11313/. The salary data are obtained from http://www.nsf.gov/statistics/nsf09317/. We use
the salary data of zoology instead of ecology because we could not obtain data for ecology. The data of career choice of Ph.D. graduates are obtained from http://www.
nsf.gov/statistics/nsf03310/.
doi:10.1371/journal.pone.0051332.t002
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support is vital will female faculty members typically publish fewer

papers than their male peers. Thus, we predict that gender

differences in publication rate in disciplines such as industrial

engineering are going to be quite low. In contrast, we predict that

gender differences in publication rate are going to be very

significant in molecular biology and similar disciplines.

We define the publication rate of a faculty member s years into

her/his career as the number of scientific articles published by the

individual s years after her/his first publication. We cannot simply

compare the raw publication numbers per year, because these

numbers depend strongly on publication year y and career stage s

(Fig. 3). Let ni(y) denote the number of publications published by

author i from discipline j in year y, and let Nj(y) be the total

number of authors that have started their careers no later than

year y. We calculate author i’s z-score (standard score) in year y as

zi(y)~
ni(y){mj(y)

sj(y)
, ð1Þ

where mj(y) is the average number of publications per author from

discipline j published in year y

mj(y)~
1

Nj(y)

X
k

nk(y), ð2Þ

and sj(y) is the standard deviation of the number of papers per

author published in year y

sj(y)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nj(y)

X
k

nk(y){uj(y)
� �2s

: ð3Þ

In order to account for the effect of career stage, we consider

zc
i (s), which is the z-score of author i as a function of the career

stage s~y{yi, where yi is the year of the first publication of

author i (Fig. 4, S10). Please note that by considering the z-score

we are not making any assumption about normality of ni(y), but

merely making the results easier to compare across disciplines and

time periods.

Our analysis fully confirms our hypothesis (Fig. 3, 4, 5). As

predicted, for disciplines where research expenditures are high,

such as molecular biology, we found that females consistently

publish at a rate significantly lower than males, whereas for

industrial engineering we do not observe a significant difference

between genders. More importantly, as shown in Fig. 5, we found

that the gender difference in publication rate, measured as the

average z-score of females, has a significant negative correlation

with magnitude of typical research expenditures. Our results thus

support the hypothesis that gender differences in institutional

support have had a crucial effect on the publication rates of

females.

It is important to point out that in our analysis we did not

consider human and social capital such as collaboration level and

leadership position, which may also have critical roles for a

productive career [4], as research resources. Whether and how the

gender difference in the ability to acquire these resources harder to

quantify affects career productivity is a matter worth of further

investigation.

We next investigated gender-specific and discipline-specific

effects of career relative risk profile of an academic career on

publication patterns. The risk to pursue a faculty position after

obtaining a Ph.D. varies across disciplines. A graduate student

considering an academic career in chemistry faces a small risk if

unsuccessful. Within about six years from publication of their first

paper, successful individuals will move into independent positions

(Fig. 6, S11, S12 Table 2 and Methods). Doctoral degree holders

in chemistry unable or uninterested in obtaining academic

positions can chose from among a number of high-paying careers

in industry and government.

In contrast, an individual considering an academic career in

ecology faces a much more uncertain future. Instead of waiting six

years post publication of the first paper to learn whether it will be

possible to secure a faculty position, an ecologist has to wait an

average of eight years (Fig. 6, S11, S12, Table 2). Perhaps even

more challenging, doctoral degree holders in ecology who are not

able or not interested in obtaining academic positions may have to

Figure 3. Average number of annual publications per author. Average number of publications authored by females (red) and males (blue) as
a function of time. Data is smoothed using moving averaging over a 3-year time window. Note the increasing trend in all disciplines. Because of these
trends, we must account for the different starting years and career stages of authors when comparing publication rates.
doi:10.1371/journal.pone.0051332.g003
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settle for jobs that do not pay a significant premium over academic

positions.

These observations raise a critical question: Could the different

risk profiles of STEM disciplines lead to distinct gender-specific

selective pressures? Because pursuing an academic career is a risky

undertaking and because propensity towards risk-taking [28,29],

self-motivation towards career development [30], social expecta-

tions [31], perception of gender stereotypes [32] and biological

constraints [31,33,34] are different for females and males, we

surmise that a female will choose to pursue an academic career in

‘‘high-risk’’ disciplines, such as ecology, only if she is so highly

qualified that she will be quite confident of success. This biased

self-selection for outstanding individuals among females likely

happens prior to embarking on an academic career [35], leading

to females’ advantage in career performance that would be

magnified in later stages of career due to the Matthew effect [36].

In contrast, because of the low risk profile of chemistry, we expect

that female faculty members in chemistry will incur no extra

burden when compared to their male colleagues. It is worth

mentioning that an alternative hypothesis is that high career risk

induces selection for individuals with greater propensity to risk-

taking among females. However, this is consistent with our

hypothesis, since risk-taking might be a necessary ingredient,

among other intellectual abilities, towards success, and individuals

may augment their competence through risk-taking. Therefore,

females who enter disciplines with high career risks may be not

only risk-takers but in fact also highly qualified.

We further hypothesize that the higher qualification of females

in high-risk disciplines will become apparent through higher

impact per publication. In order to uncover gender differences in

publication impact, we studied a commonly used metric of

academic performance, the h-index [37]. We studied the h-index

instead of the total number or average number of citations because

the distributions of these numbers can be dramatically biased by a

single highly-cited publication [38]. The h-index avoids this bias

by identifying the number of publications of an author that have at

least that number of citations. Moreover, because the h-index was

introduced after the time period considered for the data, it will not

be affected by behaviors of the authors aimed at deliberately

increasing their h-indices.

An identified weakness of the h-index is its dependence on the

number of publications. In order to compare the publication

impact of authors with different number of publications, we

determined the dependence of the h-index on the number of

publications for the faculty cohorts in the seven disciplines

considered. We found that for these seven disciplines the h-index

grows with the number of publications as a power law [39],

h~kna, ð4Þ

Figure 4. Gender difference in publication rate. Average z-score of number of publications for females (red) and males (blue) as a function of
career stage. Shaded areas indicate the standard errors. See Fig. S10 for the statistical significance of the gender difference in publication rate.
doi:10.1371/journal.pone.0051332.g004

Figure 5. Lower publication rates of female faculty is correlat-
ed with higher requirements for research resources. Effects of
the magnitude of the resource requirements on the difference in
publication rates between genders. Ecology is not included as we could
not obtain data for resource requirements. The difference in publication
rates is measured by the average z-score of number of publications by
females in each year, and the error bars indicate the standard errors.
The resource requirements is defined as the average annual research
expenditure per principal investigator in the departments studied
(Table 2, [40]). The trend line (black dashed line) indicates a negative
correlation (coefficient of determination R2~0:72,pv0:04). These data
suggest that higher resource requirements lead to greater differences in
the publication rates between females and their male peers.
doi:10.1371/journal.pone.0051332.g005

Gender Difference in Publication Rate and Impact
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where n is the number of publications (Fig. 7 and Methods). For

a~1, the h-index would grow linearly with number of publica-

tions. Importantly, since we find a&0:6, one cannot explain the

observed values of a through self-citations alone (Methods).

We next measured the deviations of h-indices from the trend

predicted by Eq. (4) for individual faculty members to obtain the z-

scores (standard score) of their publication impact (Fig. 8). Let hi

denote the h-index of author i, and ni her/his total number of

publication. The z-score of h-index of author is

fi~
hi{kna

iffiffiffiffiffiffiffi
kna

i

p : ð5Þ

We then calculated the average z-scores of this publication

adjusted h-index of females (Fig. 8, S4 and Methods). Our analysis

unambiguously shows that for all ranges of number of publica-

tions, female faculty members in ecology published research with

higher impact than their male counterparts, whereas for faculty in

Figure 6. Time to career independence. Fraction of publications in which a faculty member is the last author (purple diamonds) and the fraction
of publications in which a faculty member is the first author (green squares). In many disciplines, the senior author of a study is listed last. Looking at
the change in the fraction of times a faculty member in our dataset is a first or last author can thus be used as a proxy for change in seniority-level of
an individual in these disciplines. We order publications, excluding single-author publications, by years after first publication and aggregate within
each discipline. We fit the data to generalized logistic functions (green/purple lines) and define career independence (grey shaded areas) as the mid-
point of the logistic function for fraction of last-author publications (Methods, Table S11, S12, S13, S14, S15, S16, S17). While we do not observe
gender effects (Figs. S11, S12), we do observe differences between fields.
doi:10.1371/journal.pone.0051332.g006

Figure 7. Relation between impact and number of publications. Dependence of the h-index on number of publications for faculty with at
least 30 publications that are at least 10 years old (Table S18). We consider only publications at least 10 years old in order to ensure that they all have
accrued close to their ultimate number of citations [42]. Blue and red dots show values for individual male and female faculty members in our
cohorts. The solid black line shows a maximum likelihood power-law fit to h(n) under the assumption of Poissonian fluctuations (Methods). Shaded
areas indicate one standard deviation (dark grey areas) and two standard deviations (light grey areas) from the mean.
doi:10.1371/journal.pone.0051332.g007
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chemistry we found no significant gender-specific differences in

impact.

The data in Fig. 8 suggest that the difference D in publication

impact may be an increasing function of the discipline-specific risk

profile R associated with an academic career. That is,

D~a0za1Rz � � � : ð6Þ

While we lack a theory for the true definition of career risk, R, it

is plausible that it will be a function of factors such as the time T to

reach career independence, the fraction A of Ph.D. graduates that

go on to careers in academia, and the reciprocal of the salary

premium of non-academic careers (Table 2, [40]), which we define

as

P~
Sacademic

Snon{academic{Sacademic

: ð7Þ

Even though we do not know its functional form, we can

expand R as a multivariate polynomial,

R(T ,P,A)~b0zb1Tzb2Pzb3Azb4TPzb5PA

zb6TAzb7T2z � � � ,
ð8Þ

and it follows that we can expand D as

D(T ,P,A)~c0zc1Tzc2Pzc3Azc4TP

zc5PAzc6TAzc7T2z � � � :
ð9Þ

Because we only have 7 data points, we must fit our data to

combinations of at most 2 terms in the expansion. Ordinary least

squares regression indicates that the difference in publication

impact across the seven disciplines is positively correlated with

several combinations of the factors in Eq. (9), thus confirming the

existence of the relative risk associated with academic careers and

its gender-specific role on publication impact (Table 3). In Fig. 9

we show the correlation between the gender difference in

publication impact and the academic career risk, quantified as

R~d0zd1Pzd2TA: ð10Þ

This model suggests that in disciplines where there are few non-

academic career options available and the time to reach career

independence is long, and where it is difficulty to recover salary

loss due to unsuccessful academic career, pursuing an academic

position is highly risky.

Discussion

Our study reveals the possible contribution of perceived risk and

resource allocation to the under-representation of women in

STEM academic careers. Our results are not by themselves an

empirical validation of the causal relationship between publication

rate and resource requirements, and between publication impact

and career risk, since we cannot conduct controlled experiments or

account for other factors that could play a role in the measured

outcome. However, the hypothesis that there is a causal

relationship between gender differences in resource allocation

and the reported gender differences in publication rates is

plausible and well supported by our empirical observations, as is

the hypothesis that there is a causal relationship between the

relative risk associated with academic careers and the gender

differences in publication impact.

The issues we identify here, together with the known

socialization concerns surrounding work-life balance, may have

created a ‘‘tipping point’’ that explains the nearly intractable

problem of retaining women within STEM disciplines. It is equally

important to think about the role these previously unrecognized

risk factors may contribute to the number of under-represented

minorities in the STEM pipeline. It is not possible to address this

point using the methods we describe here, but there may be

opportunity and new impetus to develop novel tools that can

provide a more sophisticated insight into why some groups of

people are not well represented in scientific subspecialties. More

Figure 8. Comparison of publication impact for authors with different numbers of publications. The z-score of the h-index as a function
of number of publications. We use the mean and standard deviation obtained from the parameters in the model to determine the z-scores.
doi:10.1371/journal.pone.0051332.g008

Gender Difference in Publication Rate and Impact
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intriguingly, we wonder how the perceived or real risks associated

with resource infrastructure and future opportunities can be

translated into other fields (business, politics, the legal profession)

where there is a paucity of women and minorities in the upper

career rungs. Most importantly, now that these factors have been

identified, it should be possible to create policies that provide

better opportunities for all individuals with an aptitude for science,

and perhaps in all kinds of careers, to ensure that our work force is

diverse and can gain from the insights of all contributing members.

Methods

Data Acquisition
We obtained complete faculty rosters as of June, 2010 for

several top research universities in the U.S. in the disciplines of

chemical engineering, chemistry, ecology, industrial engineering,

material science, molecular biology and psychology (see Table S4,

S5, S6, S7, S8, S9, S10 for a complete list of institutions and

departments that were included in our analysis). We considered all

active faculty members, including tenure-track and research

Table 3. Linear models predicting the gender difference in publication impact.

Intercept P A TP PA TA Adj. R2 p-value

20.96** 0.39** 0.10** 0.94 0.001

[21.32, 20.61] [0.25, 0.54] [0.06, 0.14]

21.03** 0.40** 0.79* 0.88 0.001

[21.57, 20.50] [0.19, 0.61] [0.29, 1.28]

20.68* 0.37 0.05* 0.79 0.007

[21.12, 20.17] [20.32, 1.06] [0.01, 0.08]

20.62* 0.05** 0.74 0.007

[21.14, 20.10] [0.020 0.09]

20.17 0.40* 0.65 0.02

[20.48, 0.14] [0.11, 0.69]

20.64 0.38 0.42 0.01

[21.59, 0.32] [20.04, 0.79]

The gender difference in publication impact is defined as the average h-index z-scores of females. T , time to reach career independence. P, reciprocal of salary premium

of non-academic careers. A, ratio of Ph.D. graduates pursuing an academic position. {pv0:10, �pv0:05, ��pv0:01. The p-values indicated below were obtained with
the permutation test, but using Student’s t-test yields similar results.
doi:10.1371/journal.pone.0051332.t003

Figure 9. Higher publication impact of female faculty is correlated with higher relative risk of academic career choice. Risk in
academic career choice and difference in publication impact. We quantify the risk of academic career choice according to Eq. (10). We show results for
two alternative measures of difference in publication impact. In (A), we defined the gender difference in publication impact as the average h-index z-
scores of females. The error bars indicate standard errors. See Fig. S13 for the statistical significance of the gender difference in publication impact.
The trend line (black dashed line) indicates a significant positive correlation (coefficient of determination R2~0:96,p~0:001). In (B), we defined the
gender difference in publication impact as the probability that female authors have larger h-index z-scores than male authors, as depicted in Fig. S13.
The trend line (black dashed line) indicates a significant positive correlation (coefficient of determination R2~0:86,p~0:005). Note that the values of
the risk of academic career choice in (A) and (B) are different for each discipline because the coefficients in the linear regression are different. The
data suggest that in disciplines where it is risky to pursue an academic career, female faculty have publications with higher impact than male faculty.
doi:10.1371/journal.pone.0051332.g009
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faculty, but excluded emeritus professors. For each faculty

member, we collected the following data: gender, year of Ph.D.

(if available), current and past positions, a list of publications

published by the end of 2010 and indexed in Thomson Reuters

Web of Science (WoS), and the number of citations for these

publications as of June, 2011. To obtain a reliable list of

publications for each investigator from the WoS, we designed a

supervised disambiguation protocol. Our protocol uses biographic

information for an investigator to build and refine a query that

retrieves the entire list of publications from the WoS. For example:

1. Select last name and set of initials that the investigator could

potentially use to sign her papers. For instance, David A.

Tirrell has two potential WoS names, ‘‘Tirrell D’’ and ‘‘Tirrell

DA.’’

2. Set the year of publication range from four years before the

Ph.D. date until the data acquisition time. If the Ph.D. year is

not available, estimate the Ph.D. year from the list of

publications listed in the investigator’s personal web page or

from the date of hire. For David A. Tirrell, our protocol returns

the publications from 1974 on for ‘‘Tirrell D’’ and ‘‘Tirrell

DA’’ (1974 = 1978 - 4 and 1978 is the year Professor Tirrell

was awarded a Ph.D.).

3. When current and previous positions are available, constrain

the query to retrieve publications that include one of those

institutions as one of the author’s address.

The disambiguation protocol downloads all types of publica-

tions of the authors. In the analysis we included articles,

conference proceedings and reviews. At each step, we obtained

the number of publications assigned to a particular author and

checked for anomalies using a number of data features, the most

important of which were:

1. The total number of publications is consistent with the current

position of the investigator, the number of years doing

research, and the type of research.

2. The number of publications in each year does not deviate

‘‘significantly’’ from the average of the surrounding years.

3. Journal titles of the publications are within the investigator’s

field of expertise.

Our disambiguation protocol allows us to introduce different

names or initials for each scientist. For example, for females, for

whom there is evidence in the list of publications of their CVs that

they change their family name after marriage, we include both

names in the query. Note that the errors in the publication list

introduced by name changes is small [41]. To estimate the

percentage of false positives in the publications assigned to an

author, we randomly sampled about one hundred authors in our

database who had an updated list of publications on their personal

websites. We then manually checked these lists against the results

we obtained from the WoS. We estimated that, using our

disambiguation protocol, the percentage of false positives in the

publications assigned to an author is less than 2%.

Number of Publications and h-index Distributions
For the analysis of the h-index and the number of publications,

we considered only papers published by December 31st, 2000. In

order to have a reliable measure of the h-index, we need to

consider papers which have accrued a number of citations that

truly reflects the impact of that research. Based on prior studies

[42], we set ten years as the threshold for papers to have

accumulated their ‘‘ultimate’’ number of citations.

The Value of a due to Self-citations
Assume that an author with n publications makes r self-citations

in each of her/his publications. The total number of self-citations

is thus rn. In order to maximize his/her h-index, the author will

distribute his self-citations homogeneously among h of his own

publications. Thus, the average number of citations per publica-

tion is rn=h~h, yielding h2~rn or h!n1=2. That is, a~0:5.

Fitting the h!na Relationship
We surmise that given the number of publications n, the h-index

h is a random variable obeying the Poisson distribution:

p(hDn)~e{l(n)l(n)h=h!, ð11Þ

with mean l(n)~kna. The likelihood of the data given this model

is then:

L~ P
i

p(hi Dni) , ð12Þ

where the product runs over all pairs (hi,ni) in real data. The best

estimates of k and a are those that maximize L. The estimates

yield good fits to the data (see Fig. 7).

Fitting the Transition to Independence
We fitted the data in Fig. 6 to the generalized logistic function,

Y (t)~Az
K{A

1ze{B(t{M)
, ð13Þ

where A is the lower asymptote, K is the upper asymptote, B is the

growth rate, and M is the time of maximum growth. We provide

the values of the fitting parameters for all data sets in Tables S11,

S12, S13, S14, S15, S16, S17. We use M as a proxy for the time

for transition to professional independence.

Statistical Significance of Linear Correlations
The p-values of the linear correlations in Figure 5 and Figure 9

are obtained using two statistical tests, the permutation test and

Student’s t-test. Since the Student’s t-test is well known, we

describe here only the permutation test. Suppose that we have N

data points on the two dimensional plane. We consider all the N!
permutations of the x (or y) values of the data points, and calculate

the correlation coefficient for each of the permutation, which will

yield N! correlation coefficients, R1, R2, � � �, RN!. We then

calculate the probability that these coefficients are larger than or

equal to the correlation coefficient of the original data set Ro,

P(Ri§Ro). This probability is the p-value given by the

permutation test.

Supporting Information

Figure S1 Statistical significance of gender difference in
publication rate. Probability that a female faculty member

published more articles at a given stage of her career than a male

peer at the same career stage (red lines). We use z-scores to

account for two trends in the data: (i) the publication rate increases

over years (Fig. 3), and (ii) the publication rate varies with the

career length (Fig. 4). We indicate the 90% and 95% confidence

intervals by the dark grey and light grey areas respectively, and the

medians of the probabilities obtained from random ensembles by

black lines.
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Figure S2 Time to career independence of female
faculty members. The fraction of publications authored by

female faculty members in which the female faculty member is the

last author (red diamonds) and the fraction of publications in

which a faculty member is the first author (pink squares). The red/

pink lines are fits of the data to a generalized logistic function

(Methods, Table S11, S12, S13, S14, S15, S16, S17). The grey

shaded areas indicate the periods of professional independence for

the different disciplines.

(TIFF)

Figure S3 Time to career independence of male faculty
members. The fraction of publications authored by male faculty

members in which the male faculty member is the last author (blue

diamonds) and the fraction of publications in which a faculty

member is the first author (azure squares). The blue/azure lines

are fits of the data to a generalized logistic function (Methods,

Table S11, S12, S13, S14, S15, S16, S17). The grey shaded areas

indicate the periods of professional independence for the different

disciplines.

(TIFF)

Figure S4 Statistical significance of gender difference in
publication impact. Probability that female authors have larger

h-index than male authors when accounting for the number of

publications. The red line shows the results for windows including

authors with at least 30 publications and at most Nmax

publications. Dark grey areas and light grey areas show the 90%

and 95% confidence intervals (see Methods for details).

(TIFF)
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