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Abstract

The outcome of infection in the host snail Biomphalaria glabrata with the digenean parasite Schistosoma mansoni is
determined by the initial molecular interplay occurring between them. The mechanisms by which schistosomes evade snail
immune recognition to ensure survival are not fully understood, but one possibility is that the snail internal defence system
is manipulated by the schistosome enabling the parasite to establish infection. This study provides novel insights into the
nature of schistosome resistance and susceptibility in B. glabrata at the transcriptomic level by simultaneously comparing
gene expression in haemocytes from parasite-exposed and control groups of both schistosome-resistant and schistosome-
susceptible strains, 2 h post exposure to S. mansoni miracidia, using an novel 5 K cDNA microarray. Differences in gene
expression, including those for immune/stress response, signal transduction and matrix/adhesion genes were identified
between the two snail strains and tests for asymmetric distributions of gene function also identified immune-related gene
expression in resistant snails, but not in susceptible. Gene set enrichment analysis revealed that genes involved in
mitochondrial electron transport, ubiquinone biosynthesis and electron carrier activity were consistently up-regulated in
resistant snails but down-regulated in susceptible. This supports the hypothesis that schistosome-resistant snails recognize
schistosomes and mount an appropriate defence response, while in schistosome-susceptible snails the parasite suppresses
this defence response, early in infection.
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Introduction

The tropical freshwater snail Biomphalaria glabrata is an

intermediate host for several digenean trematode parasitic worms,

including Schistosoma mansoni, the causative agent of human

intestinal schistosomiasis. Human schistosomiasis is the most

widespread trematode infection affecting around 200 million

people, leading to a chronic debilitating disease and up to 200,000

deaths per year, across 75 developing countries [1]. Because of its

medical importance, the B. glabrata/S. mansoni system has also

emerged as a model for studies into multicellular host-parasite co-

evolution, driven by reciprocal evolution of host resistance and

parasite infectivity and/or virulence [2,3]. The initial interactions

between snail and invading schistosome are considered to define

their respective future reproduction and survival; the parasite

transforming from a short-lived free-living form in freshwater to a

longer-term asexual parasitic stage in the snail hosts. If the snail

cannot suppress and eliminate the invading schistosome quickly it

risks parasitic castration (reviewed in [4]) followed by early death

[5,6]. The initial molecular interplay between snails and schisto-

somes is complex and there exists an urgent need to determine the

principal pathways controlling this response, since identifying

those factors involved in the intricate balance between the snail

internal defence system (IDS) and trematode infectivity mecha-

nisms that determine the success or failure of an infection

(reviewed in [7–9]) may provide insight into approaches to disrupt

the parasitic infection in the snail and break transmission.

Furthermore, by understanding the basis of compatibility and

the mechanisms underlying snail susceptibility to schistosome

infection, the levels of compatibility in field situations can be

assessed, leading to enhanced understanding of transmission

dynamics which could ultimately inform control strategies.
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Susceptibility of B. glabrata to S. mansoni is a heritable trait [10],

with both snail and parasite genes influencing the outcome of

infection [11]. In incompatible interactions, the schistosome fails

to recognize, penetrate or develop within the snail, or may be

destroyed by the IDS; such killing is mediated by haemocytes,

‘macrophage-like’ defence cells, encapsulating and eliminating

non-compatible parasites [12]. The ‘‘schistosome-resistant’’ phe-

notype is defined as individuals or strain refractory to infection by

a normally compatible schistosome strain. To establish an

infection in a compatible strain, the schistosome larva must

prevent the snail from detecting and/or eliminating it. Two

hypotheses are that either the parasite remains undetected by the

host and therefore no defence response is mounted [13,14], or that

the parasite is able to interfere with or suppress the host response

to enable it to establish an infection [15–17]. Haemocyte-derived

molecules thought to be key regarding snail defence to schisto-

somes include a diverse family of secreted lectins called fibrinogen-

related proteins (FREPs), co-determinants of resistance as shown

by RNAi knockdown [12,18–20] that form complexes with

schistosome mucins [21–23]; and lysosomal enzymes, and reactive

oxygen/nitrogen intermediates [8,23–25] which facilitate killing of

the parasite. A cytosolic copper/zinc superoxide dismutase

(SOD1) has also been associated with the schistosome-resistant

phenotype [26,27]. Moreover, the snail host oxidant response to

schistosome infection has been investigated from the perspective of

molecular co-evolution, through evaluation of reciprocal anti-

oxidant responses of S. mansoni [28]; parasite anti-oxidant

capacities appear to match closely host haemocyte oxidant

responses in sympatric B. glabrata/S. mansoni combinations,

highlighting the importance of oxidant production by resistant

phenotype haemocytes [28]. Migration and recognition/adhesion

of haemocytes to transforming miracidia/developing sporocysts

are also likely important determinants of the resistance response.

Integrin-like cell surface receptors [29] are known to regulate

haemocyte adhesion and motility [30–32] and a tandem-repeat

galectin has been found to bind haemocytes and the tegument of S.

mansoni sporocysts [33] making it a candidate anti-schistosome

pattern recognition receptor. Interestingly, S. mansoni excretory-

secretory products (ESPs), released by transforming miracidia,

have been shown to suppress extracellular signal-regulated kinase

(ERK) signalling in haemocytes of susceptible, but not resistant B.

glabrata [34] demonstrating that in compatible hosts, schistosomes

can interfere with pathways that regulate snail haemocyte defence

responses such as nitric oxide production [25]. Finally, knock-

down of the recently-characterized B. glabrata cytokine Macro-

phage Migration Inhibitory Factor (BgMIF) was shown to reduce

encapsulation of S. mansoni sporocysts in vitro and increase mother

sporocyst survival in vivo [35]. Hence, the complex nature of the

snail haemocyte defence response to schistosomes, outlined above,

makes analysis of global gene expression a vital component of

research aimed at elucidating the array of underlying mechanisms

of snail-schistosome compatibility.

Both a cDNA microarray [36] and a specific stress/immune

gene selected oligo array [20,37,38] have been employed

previously for gene expression analysis in B. glabrata. This widely

used method of global gene expression analysis involves hybrid-

izing reverse-transcribed cDNA to the array to indicate relative

gene expression for each arrayed gene or EST; this approach does

not rely on prior knowledge of candidate genes or mechanisms in

advance [39]. We previously developed a 2 K cDNA microarray

for B. glabrata [36], using randomly sequenced ORESTES-derived

expressed sequence tags (ESTs) of various snail tissues including

haemocytes [40], together with sequences derived from earlier

differential gene expression analyses associated with schistosome

resistance in snails using differential display (DD) [41–43] and

suppression subtractive hybridization (SSH) [44]. We have

therefore included many genes on the array which may be

involved in snail parasite interactions, without making a priori

assumptions of their functions based on homology to genes

characterised in other organisms. Previous experiments using this

microarray to compare gene expression in vivo in haemocytes from

schistosome-exposed B. glabrata strains exhibiting resistant or

susceptible phenotypes identified more than 90 strain-specific

differentially expressed genes [36]. Unlike techniques such as

qPCR, the strength of microarray analysis is that it provides a

global view of changes in gene expression through simultaneous

comparison of large numbers of genes, indicating cellular

pathways and processes involved in response to parasite challenge.

The 2 K microarray was significantly expanded for use in this

study, with the addition of more than 3 K ESTs.

With the aim of identifying snail strain differences in early

haemocyte responses to schistosomes, we furthered past approach-

es towards defining genes and pathways involved in host defence

responses by the first use of gene set enrichment analysis (GSEA)

[45] and FatiScan [46] in snail-schistosome interaction studies,

using the most comprehensive B. glabrata cDNA microarray to

date. A key question was to determine if strain specific responses to

parasite exposure were at an early stage post exposure and to

assess if the parasite was influencing (suppressing) the normal snail

defence response in the susceptible strain. During invasion of the

snail host, molecules are released from the miracidial penetration

glands and within 1 hour the ciliated epidermal plates covering the

miracidium are released allowing the parasite to transform into a

post-miracidium that lacks a protective surface [47]; other ESPs

are also released from the schistosome during such early post-

embryonic development and ESPs can modulate kinase signalling

[34] and protein expression [48] in B. glabrata haemocytes in vitro

within a similar time frame. Thus, 2 hours post-exposure was

selected as an appropriate time frame for our investigation to

compare haemocyte gene expression changes in both snail strains

in the context of schistosome invasion and early schistosome

development in the host. The transcriptomic responses of these

schistosome-resistant and -susceptible phenotypes to S. mansoni

provide novel insights into the nature of early stage interactions

that are likely to define trematode resistance and susceptibility.

Methods

Microarray Construction
In addition to the 2053 ORESTES, SSH and DD clones

printed on the 2 K B. glabrata cDNA microarray [36], a further

3174 were available from ORESTES libraries [14,40], and a

haemocyte cDNA library [49]. Selected clones, supplied spotted

onto Whatman FTATM cards, were prepared by eluting the DNA

from small discs punched from the card using Multiscreen PCR

filter plates (Millipore, Billerica, USA); the resultant DNA was

used for 100 ml PCRs containing 16NH4 reaction buffer (Bioline,

London, UK), 2.5 mM MgCl2, 0.2 mM dNTP, 0.2 mM each M13

forward and reverse primers and 0.025 U/ml PCR Taq polymer-

ase (Bioline). Cycling conditions were: 94uC for 2 min, then 35

cycles of 94uC for 30 s, 58uC for 30 s and 72uC for 90 s, then a

single cycle of 10 min at 72uC. We specifically included several

genes implicated in the defence response of resistant snails,

including FREP2 [50]; Cu/Zn superoxide dismutase (SOD)

[26,27] and Mn SOD [51]. The array also contained antioxidant

genes such as thioredoxin peroxidase, peroxiredoxin 6, perox-

inectin, peroxidasin and dual oxidase I and genes for cell signalling

proteins including nuclear factor-kappa B (NF-kB), focal adhesion
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kinase (FAK) and I-kappa-B kinase complex associated protein

(IKAP). PCR products were amplified for 7 specific B. glabrata

genes (chosen as the sequences were available on GenBank, but

not already represented in the ESTs from SSH, ORESTES or

cDNA library), using primers designed from their sequences

(Table 1). For all clones, 2 mg PCR product was transferred to

384-well plates (Molecular Devices (Genetix), New Milton,

Hampshire, UK) using a Microlab Star robotic work-station

(Hamilton Robotics, Birmingham, UK). A total of 5234 cDNA

clones (50–200 ng/ml) were selected for printing. Controls were

also included: yeast tRNA (250 ng/ml); B. glabrata genomic DNA

from snail strains (NHM laboratory code) NHM3017 (derived

from BS90 [52]), NHM1742, NHM3036 (derived from BB02 [53])

(200 ng/ml) and genomic DNA from Biomphalaria tenogophila, Bi

straminea, Bi pfeifferi, Bi alexandrina, Bulinus globosus and Bu truncatus;

pGem (purified vector with no insert) (75 ng/ml), two specific

genes, (ribosomal 18s and cytochrome oxidase I) amplified from S.

mansoni and blanks containing spotting buffer only. 15 ml aliquots

were transferred to a further 384-well plate and 5 ml 46 spotting

buffer (600 mM sodium phosphate; 0.04% SDS) added. The

clones were printed (in duplicate) in 16 sub-arrays (4 columns64

rows), with 26626 clones in each sub-array on aminopropyl silane

coated glass slides (CorningH GAPSTM II), at the Microarray

Facility, Department of Pathology, University of Cambridge, UK;

this array is the second generation B. glabrata microarray.

Microarrays were processed by baking for 2 h at 80uC and UV

cross-linking at 600 mJ. (GenePix Array List (GAL) file: NHM-

ABDN B.glabrata 5 K v1 ArrayExpress Archive accession: Array

A-MEXP-1401). Differential expression of haemocyte genes using

this B. glabrata cDNA microarray technology has previously been

confirmed by quantitative qPCR [36] and the array was found to

deliver robust results in our hands.

Snail Material and Parasite Exposure
Four replicate experiments were performed (Fig. 1A). For each

replicate, 20 adult B. glabrata from the susceptible strain

(NHM1742) and 20 from the resistant strain (NHM3017) were

maintained overnight in autoclaved snail water containing

100 mg/ml ampicillin. 10 snails from each strain were exposed

individually to 10 S. mansoni miracidia (Belo Horizonte strain),

while 10 were kept in identical conditions, but not exposed to

miracidia. Snails were killed swiftly by decapitation 2 h post-

exposure, and the exuded haemolymph collected. Haemolymph

was pooled for each sample group (resistant exposed (RE), resistant

control (RC), susceptible exposed (SE), susceptible control (SC))

and haemocytes pelleted by centrifuging at 10,0006g for 20 min at

4uC. The lymph was then removed and the haemocyte pellet

frozen in liquid nitrogen and stored at –80uC.

Microarray Hybridization
Total RNA was extracted from pooled haemocytes, using the

SV RNA extraction kit (Promega UK Ltd, Southampton, UK)

according to the manufacturer’s protocol. This kit includes DNAse

treatment to eliminate genomic DNA contamination. cDNA was

synthesized from 100 ng total RNA using the SMART PCR [54]

cDNA synthesis kit (BD Biosciences, Oxford. UK) according to the

manufacturer’s instructions and labelled with both Cy3 and Cy5 in

2 separate reactions using the BioPrime DNA labeling system

(Invitrogen, Paisley, UK). 16 microarray hybridizations were

carried out as described previously [36] using a loop design with

dye swaps (Fig. 1B). The loop design [55] allowed direct

comparison of results from resistant and susceptible snails and

control and exposed snails, by comparing, directly on the arrays: i)

control and parasite-exposed snails of both the resistant snail line

and of the susceptible snail line (4 replicates, 2 with Cy dyes in one

orientation and 2 swapped over) and ii) resistant and susceptible

snail lines both for control snails and parasite-exposed snails (again

with 4 replicates, 2 labelled in one orientation, 2 in the other).

Microarray Scanning and Analysis
Microarray slides were scanned sequentially for each Cy dye, at

10 mm resolution using an Axon GenePix 4100A scanner

(Molecular Devices (UK) Ltd, Wokingham, UK). Photo multiplier

tube values were adjusted to give an average intensity ratio

between channels of approximately 1. Spot finding and intensity

analysis was carried out using GenePix Pro 5.0. Data from these

microarray experiments have been deposited with ArrayExpress:

Experiment E-MEXP-1882. 16 GenePix output files were

Table 1. Biomphalaria glabrata gene-specific primers used to amplify specific gene fragments included on the microarray.

Code Acc No Gene Primer sequence

BgB AB210096 Dermatopontin 1 F GGTTATGCCAATGACTTCGGAC

R GATTGACTTGCTCGCTCACG

BgG AF179902 Integrin interactor protein F CCTTGGGAATGTCATTGCTTG

R GACCATTCCACCCTGATTGC

BgI AF302260 Serine protease B F CTAAGATACGGTGCTGGCTCG

R GCGTAGACACCTGGTCTGCC

BgK AY026258 Thioredoxin peroxidase F CACTCACCTTGCATGGACTAATG

R CAAGCGCAGTGTCTCATCAAC

BgP AY678119 Type 2 cystatin F CAAAATTGTCCACGCCACATC

R GATGGTGTTCCCTGTAGTTGGG

BgQ DQ087398 guanine nucleotide-binding protein Rho F GGCAGCAATACGTAAGAAGCTTG

R GCTGTGTCCCATAAGGCTAGTTC

BgSOD AY505496 Cu/Zn superoxide dismutase F GGTGATGATGGTGTTGCTGA

R GATACCAATGACACCACAAGCTAA

F-forward facing primer. R- Reverse facing primer.
doi:10.1371/journal.pone.0051102.t001
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Figure 1. Experimental design for the simultaneous comparison of haemocyte gene expression in Biomphalaria glabrata strains upon
exposure to Schistosoma mansoni. A. Resistant (R) and susceptible (S) strains of B. glabrata were exposed to S. mansoni (E) or kept unexposed as
controls (C) B. Microarray hybridizations: 16 array hybridizations in double loop design with dye swaps were performed.
doi:10.1371/journal.pone.0051102.g001
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Figure 2. Graphical representation of annotation for version 2 of the B. glabrata microarray. The pie charts illustrate the number of genes
in each GO assignment for molecular function, biological process and cellular component, for those genes with known functions. Genes that were
not assigned are not represented here and each individual sequence may have more than one assignment.
doi:10.1371/journal.pone.0051102.g002
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analysed using LIMMA (Linear models for microarray data,

Bioconductor [56]). Print-tip loess normalization was used for

within-array normalization [57] including log-transformation of

the gene intensities. Moderated t-statistics were employed to assess

change significance and a moderated f-statistic was used to test

whether all contrasts were zero simultaneously, that is, whether

there was no difference between strains before or after exposure or

whether a gene showed an overall effect [58]. Within array

duplicates were averaged and showed a good correlation of 0.84.

One array displayed weak hybridization and was thus removed

from the analysis. LIMMA was also used to define and test for

certain contrasts, e.g. the difference of the fold change susceptible/

resistant strains between the exposed and control groups (p-values

were adjusted for multiple testing using the false Benjamini-

Hochberg method [59], which controls the false discovery rate

(FDR)).

Figure 3. Significant differentially expressed B. glabrata haemocyte genes identified from microarray comparisons. The Venn diagram
shows the number of identified significantly differentially expressed genes in each category. Some genes were identified which were differentially
expressed in more than one comparison and hence lie in the overlapping regions of the diagram. Key to symbols: R, resistant B. glabrata; S,
susceptible B. glabrata; E, S. mansoni exposed snails; C, control snails. . greater than, , less than.
doi:10.1371/journal.pone.0051102.g003

Table 2. Genes identified as differentially expressed upon exposure to S. mansoni in resistant and susceptible B. glabrata strains.

Acc No Name Organism Blast match Acc No E value fc(RE/SE) fc(RC/SC) fc(RE/RC) fc(SE/SC)

EW997021 Unknown 2.67 3.81 25.89 24.12

EW997112 Unknown 2.21 2.78 24.32 23.43

CV548474 Unknown 3.10 3.19 25.58 25.43

EW997519 Unknown 1.74 1.27 21.94 22.66

EW997424 Unknown 3.86 1.41 1.15 22.37

EW997386 myosin II Nasonia vitripennis XP_001607303 5.45E235 3.02 1.16 1.18 22.21

EW997539 Unknown 2.49 21.04 1.13 22.29

EW997462 myosin II Placopecten
magellanicus

2EC6-A 3.65E275 2.43 21.01 1.09 22.24

EW997421 alpha 2 actin Dicentrarchus labrax ACN66629 1.74E228 2.22 21.02 1.09 22.07

fc – fold change; fc figures in bold indicate a significant difference. Resistant control (RC); susceptible control (SC); resistant exposed (RE); susceptible exposed (SE).
doi:10.1371/journal.pone.0051102.t002
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Functional Analysis of Genes
Cluster analysis was performed in SeqTools (http://www.

seqtools.dk/) using BlastN score values. Basic Local Alignment

Search Tool (BLAST) searches, GO (gene ontology) and KEGG

(Kyoto Encyclopaedia of Genes and Genomes) annotation and

Interpro scans were performed using Blast2GO [60]. An

annotation file was generated for the B. glabrata microarray (File

S1).

Gene Set Enrichment Analysis
Gene set analysis for the data was performed using the

Bioconductor function geneSetTest, which is available within the

LIMMA library. The analysis was restricted to those GO terms

that had at least 5 genes corresponding to them on the array (333

sets/terms overall). For each of the 5 comparisons (REvSE,

RCvSC, REvRC, SEvSC and RE/SEvRC/SC) we tested whether

the calculated p-values were more significant for the Gene Set/

GO-term in question than for a random selection of genes to

generate a Gene Set p-value for each combination of GO-Term

and each comparison, and an average p-value across all the genes

for each comparison. P-values were adjusted for multiple testing

using the Bonferroni method of correction.

FatiScan
FatiScan ([46,61], Babelomics: http://babelomics.bioinfo.cipf.

es) was employed to identify significant asymmetrical distributions

of biological labels (such as GO terms) associated with the ranked

genes (based on fold change) for each comparison (REvRC,

SEvSC, RCvSC and REvSE), using custom B. glabrata microarray

annotations generated by Blast2Go.

Results

Annotation of Array Genes
Genes with significant homology to previously characterized

genes have GO terms assigned to them on the basis of that

homology (Fig. 2). This produced a reference set of annotations

associated with the sequences of the genes spotted on the 5 K B.

glabrata microarray (File S1).

Haemocyte Genes Differentially Expressed in Response
to Parasite Exposure

mRNA from haemocytes of both control and schistosome-

exposed resistant and susceptible snails was compared using the

5 K B. glabrata microarray (these data are available at ArrayEx-

press Archive accession: Array A-MEXP-1401). From the analysis

we identified genes that were differentially expressed between

control and parasite exposed snails in both strains and between

resistant and susceptible strains both for control and parasite

exposed snails. The numbers of identified, and the classes in which

they demonstrated differential expression, are summarized in the

Venn diagram (Fig. 3). Firstly, genes expressed in haemocytes

sampled 2 h post exposure to S. mansoni miracidia, were compared

to unexposed controls to investigate the initial response of each

snail strain to the parasite. Analysis of differential gene expression

from the microarray identified 9 genes demonstrating a significant

difference (p,0.01) in intensity between the compared samples in

each category, with some genes located in more than one category

(Fig. 3; see also Table 2). One gene (CV548474: unknown) was

identified as having significantly higher expression in resistant

snails before and after parasite exposure (R.S), and this same

gene was also found to be down-regulated in both strains after

exposure (E,C). Two genes (EW997021 and EW997112, both

unknown, Table 2) were identified which showed significantly

higher expression in the resistant control snails (RC.SC) and

were down-regulated in the resistant snails after exposure

(RE,RC). Additionally, 6 genes were shown to be significantly

down-regulated in susceptible snails after infection (SE,SC),

which were expressed less in susceptible exposed compared with

resistant exposed snails (RE.SE); these included 3 unknown

genes, 2 myosin II heavy chain genes and 1 alpha actin gene

(Table 2).

Differences between Schistosome-resistant and
Schistosome-susceptible Strains

Secondly, comparison of haemocytes from schistosome-resistant

and schistosome-susceptible snails (Fig. 3) revealed large numbers

of genes to be differentially expressed between strains, before (196,

comprising 96 resistant-specific, and 100 susceptible-specific

transcripts) and after exposure (417, comprising 146 in susceptible

and 271 in resistant snails). Additionally, 341 genes were

differentially expressed regardless of schistosome infection (Fig. 3);

without exception, all 187 susceptible-specific genes remained such

either before or after exposure, as did all 154 resistant-specific

genes (data not shown).

Genes found differently expressed between schistosome-resistant

and schistosome-susceptible snails might be highly relevant for the

interaction of those snails with S. mansoni. Differential levels of

constitutive gene expression in haemocytes of the different strains

before exposure may be responsible for the speedy response and

elimination of S. mansoni in the resistant strain upon infection. In

addition, differences between strains after exposure might give

insight into the mechanism(s) of parasite elimination in resistant

snails, since these are mounting a defence response; conversely,

dissimilarities might indicate parasite interference with gene

expression in susceptible snails. Therefore strain-specific differ-

ences should not be dismissed, although it is important to

remember that other resistant and susceptible snail strains may

show different responses. Gene homologues were identified for

these differentially expressed transcripts and all were assigned GO

annotations based on these homologies. The genes with identified

GO categories were then classified into functional groups

accordingly (File S2). The main functional groups represented

cluster genes for known immune/stress response proteins,

extracellular matrix/adhesion components, cytoskeletal proteins,

mitochondrial respiratory chain proteins, signalling proteins,

transcription and translation proteins and proteins that facilitate

protein folding and degradation (Fig. 4). Immune/stress response

genes with greater expression in resistant snail haemocytes

included peptidoglycan recognition protein 1, FREPs 1 and 2,

gram-negative binding protein, allograft inflammatory factor 1,

heat shock protein (HSP) 40, ferritin, and glutathione-s-transfer-

ases (GSTs), all of which were differentially expressed irrespective

of exposure, while FREPs 3 and 12, HSPs 70 and 90 showed

greater expression post infection (File S2). Interestingly, HSP 60

was expressed to a greater extent in haemocytes of unexposed

susceptible snails, with genes for the antimicrobial peptides

hydramacin and neuromacin differentially expressed both before

and after infection. Extracellular matrix/adhesion genes such as

matrilin, dermatopontin 2, VWA domain-containing proteins and

fibrillin were differentially expressed in resistant snail haemocytes

with EGF-like domain containing protein, agrin, and a tandem

repeat galectin showing lower expression after schistosome

exposure. Unlike susceptible snails, a large number (45) of genes

involved in mitochondrial respiration showed greater expression in

haemocytes of resistant snails, with 24 of these showing greater

expression post infection (Fig. 4). These genes included cyto-
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chrome b, cytochrome C oxidase subunits I-III, NADH dehydro-

genase subunits 1, 3, 4 and 5, and ATPase subunits (File S2). In

terms of signal transduction, differences were more balanced

between the two strains with 16 genes showing greater expression

in resistant snail haemocytes across all exposure regimes, as

opposed to 23 genes in the susceptible (Fig. 4). Notable genes in

the resistant phenotype included the protein tyrosine kinase src

and protein kinase D, with 14-3-3 protein, G-protein coupled

receptor kinase 2, twitchin, titin and nuclear factor kB (NFkB)

inhibitor differentially expressed only following infection (File S2).

In susceptible snail haemocytes, genes for rho GTPase activating

protein, IKAP, and phosphoglycerate kinase were differentially

expressed, with a dual specificity kinase and transforming growth

factor b (TGFb) receptor 1 involved only after infection (File S2).

In terms of genes for cytoskeletal proteins, there was a

preponderance of molecules involved in actin-related processes

in haemocytes of the resistant strain compared to tubulin-related

molecules in the susceptible strain (File S2); this situation persisted

post-infection. Finally, encompassing all GO categories, genes that

displayed the largest differences in expression (3.5-fold or greater)

between snails included FREP2, Gram-negative bacteria binding

protein, GSTs, cytochrome b, NADH dehrogenase subunits 1

and 4, elastase 2, cystatin b, and endo 1,4 b glucanase in resistant

snail haemoctyes, and polyprotein, endonuclease G, endonuclease

mitochondrial precursor, and ATP-synthase-like protein, in

susceptible snail haemocytes. HSP 90, and type 2 cystatin and

fibropellin differed to such a degree only after infection for

resistant and susceptible snail haemocytes, respectively (File S2).

Gene Set Enrichment Analysis
Gene set enrichment analysis (GSEA) [45], that identifies

significant changes in expression of gene groups based on their

function, rather than single genes, was employed for REvSE,

RCvSC, RCvRE, SCvSC. We identified groups of GO terms

(represented in bold in Table 3), all of which had higher expression

levels in exposed resistant snails compared to unexposed (up-

regulated on exposure), higher in resistant control snails compared

to susceptible (strain-specific), higher in resistant exposed than

susceptible exposed, and less in exposed susceptible snails than

controls, (down-regulated in susceptible on exposure). Not every

gene in each GO category followed the same trend, but the GSEA

tests whether a significant number (more than would be expected

by chance) are differently expressed in a particular category. For

example, Fig. 5 illustrates 6 examples of GO categories in which

the associated genes in general show positive fold changes (.+1)

for REvSE, RCvSC and REvRC, and negative fold changes

(.221) for SEvSC. This indicates that even between control and

unexposed snails, expression in R was greater than S, and that a

significant number of the associated genes are up-regulated post-

exposure in the schistosome-resistant snails, but down-regulated in

the schistosome-susceptible snails; there is also, therefore, an even

larger difference in expression of these genes when comparing RE

with SE, with resistant being greater than susceptible. The gene

groups identified as following these trends are primarily involved

in mitochondrial respiratory process and ubiquinone biosynthetic

processes, both indicative of increased metabolic activity consistent

with mounting a defence response.

FatiScan Analysis to Identify Trends in Gene Expression
FatiScan analysis [46] was used to detect asymmetrical

distribution of GO categories from the fold change ranked list

for each of the 4 haemocyte comparisons (RCvSC, REvSE,

REvRC, and SEvSC). Distinct differences were identified between

the snail strains both before and after infection, and the types of

genes found to differ between haemocytes confirm the GSEA

results (Fig. 6 A–B). Most striking, however, were the differences in

response to the schistosome shown by the snail strains. Haemocytes

of resistant snails exposed to S. mansoni showed an over-

representation of haemocyte genes involved in mitochondrial

respiratory processes and ubiquinone biosynthetic processes

(Fig. 6C), demonstrating these are up-regulated in response to

the parasite (as well as being already elevated in control resistant

snails compared to susceptible), while in haemocytes of the

susceptible snails these same genes were under-represented

(Fig. 6D) indicating that their expression was suppressed by the

parasite. This is also consistent with the findings of the GSEA

analysis. FatiScan analysis of level 3 GO annotations also

identified that the resistant exposed snails switched on immune

response genes upon exposure to S. mansoni (Fig. 6E), again

showing an active response to infection.

Figure 4. B. glabrata genes in different GO categories found to
be differentially expressed. The number of differentially expressed
genes in haemocytes from resistant (R) and susceptible (S) strains,
before (C, control), both before and after (R/ S), and after S. mansoni
exposure (E, exposed).
doi:10.1371/journal.pone.0051102.g004
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Figure 5. Gene set enrichment analysis (GSEA). The collated fold changes for each comparison (RE/SE, RC/SC, RE/RC, SE/SC) is shown for the
genes in six selected GO categories. The order of the genes along the x-axis is arbitrary.
doi:10.1371/journal.pone.0051102.g005
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Table 3. Gene Set Enrichment Analysis (GSEA).

Upregulation (AvB A.B)

GO ID Gene Ontology Type of GO No.genes REvSE RCvSC REvRC SEvSC

GO:0009060 aerobic respiration biological_process 21 2.78E212 4.31E209 1.88E
E209

1

GO:0005507 copper ion binding molecular_function 28 2.47E
E211

3.33E
E208

9.73E
E210

1

GO:0004129 cytochrome-c oxidase activity molecular_function 39 3.91E
E212

4.96E
E207

7.38E
E211

1

GO:0009055 electron carrier activity molecular_function 47 1.85E
E206

4.19E
E208

2.85E
E205

0.996695

GO:0006118 electron transport biological_process 106 3.97E
E212

8.96E
E211

8.43E
E212

1

GO:0020037 heme binding molecular_function 45 1.56E
E213

1.30E
E210

8.37E
E207

0.99999

GO:0016021 integral to membrane cellular_component 126 2.74E
E210

7.52E
E211

9.89E
E212

1

GO:0005506 iron ion binding molecular_function 69 0 2.15E
E214

3.33E
E212

1

GO:0006123 mitochondrial electron transport,
cytochrome c to oxygen

biological_process 39 3.91E
E212

4.96E
E207

7.38E
E211

1

GO:0006120 mitochondrial electron transport,
NADH to ubiquinone

biological_process 23 3.43E
E205

0.001246 4.49E
E206

0.999995

GO:0005746 mitochondrial respiratory chain cellular_component 49 0 1.16E
E212

0 1

GO:0008137 NADH dehydrogenase (ubiquinone) activity molecular_function 19 9.68E
E208

1.41E
E205

2.55E
E206

1

GO:0015992 proton transport biological_process 73 1.15E
E212

8.49E
E207

8.75E
E212

1

GO:0045277 respiratory chain complex IV cellular_component 36 2.46E
E212

2.73E
E207

5.24E
E211

1

GO:0022904 respiratory electron transport chain biological_process 7 6.79E
E205

0.000196 0.000403 0.995547

GO:0006814 sodium ion transport biological_process 24 3.16E
E207

5.69E
E205

0.000109 0.999999

GO:0006810 transport biological_process 58 0.0003 7.62E
E206

3.29E
E205

0.953241

GO:0006744 ubiquinone biosynthetic process biological_process 20 3.49E
E207

7.20E
E206

1.02E
E206

0.999997

Downregulation (AvB A,B)

GO ID Gene Ontology Type of GO No.genes REvSE RCvSC REvRC SEvSC

GO:0009060 aerobic respiration biological_process 21 1 1 1 3.72E
E207

GO:0005507 copper ion binding molecular_function 28 1 1 1 5.21E
E209

GO:0005524 ATP binding molecular_function 154 0.66052 0.04391 0.334357 2.19E
E206

GO:0004129 cytochrome-c oxidase activity molecular_function 39 1 1 1 9.28E
E210

GO:0006118 electron transport biological_process 106 1 1 1 3.10E
E209

GO:0020037 heme binding molecular_function 45 1 1 0.999999 9.86E
E206

GO:0016021 integral to membrane cellular_component 126 1 1 1 2.11E
E207

GO:0005506 iron ion binding molecular_function 69 1 1 1 1.40E
E209

GO:0006123 mitochondrial electron transport, cytochrome c to oxygen biological_process 39 1 1 1 9.28E
E210
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Table 3. Cont.

Upregulation (AvB A.B)

GO ID Gene Ontology Type of GO No.genes REvSE RCvSC REvRC SEvSC

GO:0006120 mitochondrial electron transport, NADH to ubiquinone biological_process 23 0.99997 0.998755 0.999996 4.82E
E206

GO:0005746 mitochondrial respiratory chain cellular_component 49 1 1 1 0

GO:0005739 mitochondrion cellular_component 48 0.93988 0.800927 0.817296 8.18E
E206

GO:0008137 NADH dehydrogenase (ubiquinone) activity molecular_function 19 1 0.999986 0.999997 2.42E
E207

GO:0015992 proton transport biological_process 73 1 0.999999 1 5.85E
E214

GO:0045277 respiratory chain complex IV cellular_component 36 1 1 1 9.42E
E211

GO:0006814 sodium ion transport biological_process 24 1 0.999943 0.999891 8.06E
E207

GO:0006744 ubiquinone biosynthetic process biological_process 20 1 0.999993 0.999999 2.96E
E206

GO:0005840 ribosome cellular_component 85 0.03859 1.20E
E205

0.723301 0.000821

GO:0006457 protein folding biological_process 21 0.00041 3.17E
E206

0.55687 0.00087

GO:0006094 gluconeogenesis biological_process 22 0.01078 3.09E
E205

0.163101 0.002104

GO:0005634 nucleus cellular_component 93 0.00057 7.58E
E208

0.533302 0.00296

GO:0006096 glycolysis biological_process 20 0.00633 2.13E
E205

0.220296 0.003285

GO:0003735 structural constituent of ribosome molecular_function 105 0.05398 6.79E
E206

0.970198 0.021822

GO:0006412 translation biological_process 98 0.04483 6.10E
E205

0.88094 0.028665

GO:0042254 ribosome biogenesis biological_process 108 0.04124 2.39E
E206

0.989179 0.03393

GO:0005615 extracellular space cellular_component 26 0.00024 0.000126 0.019181 0.044914

GO:0005515 protein binding molecular_function 240 0.00035 3.62E
E206

0.836396 0.33465

GO:0003743 translation initiation factor activity molecular_function 9 5.79E
E205

8.26E
E206

0.278141 0.050926

GO:0006446 regulation of translational initiation biological_process 8 9.10E
E205

1.99E
E205

0.249216 0.074297

GO:0051082 unfolded protein binding molecular_function 27 0.00013 2.34E
E205

0.878669 0.135328

GO:0003924 GTPase activity molecular_function 67 9.99E
E205

9.11E
E205

0.262811 0.315466

GO:0007018 microtubule-based movement biological_process 47 9.39E
E206

3.30E
E205

0.422782 0.744616

GO:0005874 microtubule cellular_component 59 6.63E
E206

1.04E
E205

0.440339 0.745536

GO:0003723 RNA binding molecular_function 55 1.00E
E205

1.02E
E205

0.730866 0.809142

GO:0051258 protein polymerization biological_process 32 3.37E
E206

0.000186 0.848843 0.988085

The gene ontologies (GO) listed were significantly different (adjusted p ,0.01) in at least one of the 4 comparisons. Significant p values (Bonferri adjusted) are shown in
bold. GOs that were found to be up-regulated in resistant snails and down-regulated in susceptible are also shown in bold.
doi:10.1371/journal.pone.0051102.t003
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Discussion

The genes differentially expressed between haemocytes of the

schistosome-susceptible and schistosome-resistant B. glabrata strains

offer great insight into the complex molecular processes that are

involved in the defence response to the parasite. Fifty-nine of the

98 genes that we identified in our initial investigation of strain

differences using the considerably smaller (2 K versus 5 K)

previous array platform [36] have been confirmed, and added

to, by the current experiment. Again, we observed differential

expression (elevated in resistant snails) of genes involved in energy

metabolism, and transcription and translation indicating a general

increase in cellular activity, consistent with generating the

necessary components for mounting a defence response. Perhaps

of greater interest is the finding of a considerably different response

in susceptible and resistant snail strains as early as 2 hr post

exposure to S. mansoni.

Stress response genes were identified in the set of genes that

were present in the resistant snails both before and after exposure,

as well as in the exposed resistant snails. FREPs, a unique family of

molluscan calcium-dependent lectins, are known to be up-

regulated following parasite infection and to bind to parasite

surfaces [9], likely through interaction with parasite mucins

[21,22]. Knockdown of FREP3 in B. glabrata resistant to E.

paraensei by RNA interference (RNAi) resulted in a phenotype

switch, whereby 31% of RNAi-treated snails became susceptible to

the parasite [11]. Suppression of FREP3 in B. glabrata resistant to

S. mansoni has also been shown to increase susceptibility to this

schistosome with 20% of snails becoming infected [20]. Thus

FREP3 seems to play some role in defence against S. mansoni

concordant with the view that the primary function of fibrinogen-

domain containing proteins in invertebrates is in protection

against infection, rather than coagulation [62]. Here, we have

demonstrated that FREP3 and FREP12 expression was greater in

haemocytes of resistant snails compared to susceptible snails post

miracidial exposure, whereas FREPS 1 and 2 were differentially

expressed irrespective of exposure. Thus it seems possible that in

the B. glabrata/S. mansoni infection model, FREP3 might represent

a molecule vital to the maintenance of the resistance phenotype

and that high levels of FREP expression in general might facilitate

early parasite recognition.

Expression of a HSP 70 gene was also greater in resistant snail

haemocytes after schistosome infection confirming of our previous

findings [36,42], but this contrasts with the findings of Ittiprasert et

al (2009), who demonstrated up-regulation of HSP70 in susceptible

juvenile snails but not resistant [63]. Temperature stresses have

also recently been suggested to affect susceptibility of snails to

schistosome infection in conjunction with changes to expression

levels of HSP transcripts [64]. Interestingly Zahoor et al (2010)

demonstrated that S. mansoni ESPs, derived from larvae trans-

forming from miracidia to mother sporocysts, reduced the quantity

of HSP 70 protein in haemocytes of both snail strains 1 h after

exposure to ESPs and that HSP 70 protein levels were also lower

35 days after infection [48]. Given that this molecule has

important intracellular chaperone and extracellular immunomod-

ulatory capacities [65], it would be valuable to elucidate the

temporal dynamics of schistosome infection on HSP 70 gene and

protein expression in detail together with that for the three other

differentially expressed HSP genes, in order to fully understand the

role they may play in snail responses to schistosome infection.

Differential expression between haemocytes of resistant and

susceptible control snails, of matrillin, dermatopontin and other

transcripts involved in cell adhesion may also have a significant

bearing on host-parasite interactions. Bouchut et al (2006)

investigated gene expression of several cell adhesion genes in B.

glabrata strains resistant or susceptible to E. caproni and found

dermatopontin 2 and matrillin to be differentially expressed [66];

however, in their snail strains matrillin was over expressed in snails

susceptible to a different parasite, E. caproni, and they hypothesized

that susceptible snails may possess a more potent haemolymph

coagulation system preventing or slowing haemocyte migration

[66]. Here we identified six of the genes investigated by these

authors as being significantly present in resistant control snails and

three (two the same) that were different between haemocytes of

resistant snails and susceptible snails both before and after

exposure. Although different expression patterns were found in

this study, it may emphasize the importance of these genes in snail-

parasite interactions, although their roles are not currently clear.

That fewer differentially expressed genes were found after

exposure may suggest that the susceptible snails up-regulated

these genes, whereas the resistant snails already expressed these

genes, even in control snails. A gene for tandem repeat galectin

showed greater expression in susceptible snail haemocytes after S.

mansoni infection. This finding is curious given that these molecules

are expressed on the surface of ,60% of B. glabrata haemocytes,

that they bind the S. mansoni sporocyst tegument via interaction

with surface-exposed LacNAc sugars, and that susceptible snail

haemocytes do not encapsulate S. mansoni miracidia/sporocysts

[33]. However, if developing larvae release sufficient LacNAc into

the haemolymph during transformation, binding to the haemocyte

receptors could serve to dampen recognition of and/or responses

to the parasite either directly, or through interference of

haemocyte signalling mechanisms as demonstrated for other sugar

molecules [67,68]. Cell surface receptors such as integrins bind to

extracellular matrix components and facilitate cell migration

through tissues towards invading pathogens. These events are

communicated intracellularly and cell movements, including

encapsulation and phagocytosis, are then facilitated by actin and

a variety of actin binding proteins. In this context it is notable that

resistant snail haemocytes displayed a preponderance of genes

involved in actin-related processes either in the presence or

absence of schistosome infection. This implies that these haemo-

cytes might display enhanced phagocytic and migratory capacity

when compared to their susceptible snail counterparts benefiting

the anti-parasite response.

The GSEA and FatiScan analyses also highlight that genes

involved in mitochondrial respiration and ubiquinone degradation

were already active in haemocytes of the resistant snails prior to

schistosome exposure and that in these snails they were further

activated, while in the susceptible snails they were suppressed,

demonstrating a significant difference in the response of resistant

and susceptible snails to schistosome exposure. Genes required for

Figure 6. FatiScan analysis illustrating gene expression fold change ranked lists from B. glabrata microarray comparisons using
custom array annotation. A. Resistant control (RC) compared to susceptible control (SC). B. Resistant exposed (RE) compared to susceptible
exposed (SE). C. Resistant exposed (RE) to resistant control (RC). D. Susceptible exposed (SE) compared to susceptible control (SC). E. RE compared to
RC using level 3 GO annotations. Significantly differentially represented GO categories are listed for each comparison. Bar leading from the left, with
GO category label on the left indicates over representation in the upper category (shown above each diagram), label on the right means under
represented. Bar leading from the right and label on the right indicates over-representation in the lower category and label on the left under-
represented.
doi:10.1371/journal.pone.0051102.g006
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copper, iron and heme-binding were also differentially expressed,

although they may function in energy production too; for example,

haemoglobins that possess a high oxygen affinity are present as

blood respiratory proteins in B. glabrata [69]. Hanelt et al (2008)

also found indications of up-regulation of heme and metal ion-

binding in response to bacterial and S. mansoni challenge (12 hr

post-exposure) [14]. Ferritin, also identified in resistant snails in

earlier gene expression studies [44] and recently identified in an

RNA-seq based approach to identify immune responses following

bacterial or yeast challenges in B. glabrata [70] stores iron in a non-

toxic form, enabling deposition of iron in a safe form and transport

to areas where iron is required. Ferrous iron (Fe2+) is toxic to cells

as it acts as a catalyst in the formation of the hydroxyl free radical

(OHN) from hydrogen peroxide (H2O2). Given the importance of

these reactive oxygen species to killing of S. mansoni sporocysts

[8,28,71], greater ferritin expression could be relevant in terms of

its capacity to affect the cellular balance of H2O2 and OHN
possibly influencing the outcome of infection. In the current study,

resistant snail haemocytes were found to also differentially express

GSTs that would serve as antioxidants to prevent cellular damage

to the haemocytes. In the context of energy production, genes

involved in respiratory chain and ATP production have been

shown to differ between two oyster species that vary in their

response to the parasite Perkinsus marinus [72]. The above suggests

that the resistant snails were already expressing many of the genes

required for defence responses prior to exposure.

This study provides the first evidence from global gene

expression analyses that not only is there is a fundamental

difference in the defence physiology between the snail strains used

here before infection, but that the resistant snails actively respond

to the schistosome, while the susceptible snails react in an opposing

fashion by suppressing expression of the types of genes which are

activated in a responding (resistant) snail, consistent with the

notion that the schistosome is producing molecules that interfere

with the snail’s defence response [68]. Hanington et al (2010) found

that an initial (0.5–2 day post infection) up-regulation of immune/

stress response genes in susceptible B. glabrata was followed by a

stronger down-regulation later during infection with S. mansoni,

that was in contrast to E. paraensei exposed snails which showed

down-regulation from 0.5 day post-infection [38]. They concluded

that both parasites were able to interfere with host defense

responses, but that E. paraensei was able to do this more rapidly and

robustly than S. mansoni. Our results also suggest interference by

the parasite, but in contrast to Hanington et al (2010) [38], we

show that this phenomenon is occurring only 2 hours after

exposure. Such early inactivation is coincident with early post-

embryonic development of the parasitic sporocyst larval stage, a

crucial phase when the schistosome lays down a new tegument and

is perhaps more exposed to the host immune system while the snail

is exposed to ESPs and ciliated plates released from schistosomes

during their development [73].

In conclusion, this microarray experiment, by determining the

expression of a large number of genes simultaneously, many more

than can be investigated by qPCR, has enabled the construction of

a framework of processes involved in haemocyte responses during

the first phase of schistosome infection. The resistant snails, even

before infection, express many different genes compared with

susceptible snails and in many respects seem to be primed and

ready to respond to schistosome attack. The resistant snails also

demonstrated activation of defence processes, while the susceptible

snails displayed inactivation. Pinpointing individual genes signif-

icantly affected by parasite exposure may have been made more

difficult by biological variation both in schistosome penetration

time (after addition of miracidia to snail water) and in individual

snail responses since to obtain sufficient material it was necessary

to pool haemocytes. Alternatively, the actual gene expression

changes at this early stage after schistosome exposure, may be

subtle and therefore difficult to detect resulting in a skewed

outcome whereby strain-specific differences in gene expression

outweighed parasite-induced changes. Nevertheless, by integrating

GSEA and FatiScan analysis, the outcomes detailed in this paper

have enabled a holistic view of changes in gene expression as a

consequence of phenotype and exposure regime. Statistical

analysis of clustered gene expression within any particular

category has provided enhanced confidence in the relative

importance of changes that might result in altered cellular

physiology. In this way, this study provides a new way of assessing

the complex biology of snail-schistosome interactions giving insight

that will help future studies to identify mechanisms of compati-

bility in this fascinating host-parasite system.
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