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Abstract

The goal of a Brain-Computer Interface (BCI) is to control a computer by pure brain activity. Recently, BCIs based on code-
modulated visual evoked potentials (c-VEPs) have shown great potential to establish high-performance communication. In
this paper we present a c-VEP BCI that uses online adaptation of the classifier to reduce calibration time and increase
performance. We compare two different approaches for online adaptation of the system: an unsupervised method and a
method that uses the detection of error-related potentials. Both approaches were tested in an online study, in which an
average accuracy of 96% was achieved with adaptation based on error-related potentials. This accuracy corresponds to an
average information transfer rate of 144 bit/min, which is the highest bitrate reported so far for a non-invasive BCI. In a free-
spelling mode, the subjects were able to write with an average of 21.3 error-free letters per minute, which shows the
feasibility of the BCI system in a normal-use scenario. In addition we show that a calibration of the BCI system solely based
on the detection of error-related potentials is possible, without knowing the true class labels.
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Copyright: � 2012 Spüler et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study was partly funded by the ERC (Grant 227632, BCCI) and the German Federal Ministry of Education and Research (BMBF, BFNT F*T, Grant UTü
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Introduction

A Brain-Computer Interface (BCI) enables a user to control a

computer by pure brain activity without the need for muscle

control. Its main purpose is to restore communication in severely

disabled people, who are not able to communicate by muscle

activity due to neurodegenerative diseases or traumatic brain

injuries. There are different kinds of BCIs, that are based on

modulation of the sensorimotor rhythm (SMR), detection of a

P300 or steady state visual evoked potentials (SSVEPs). In this

paper we present a BCI that uses code-modulated visual evoked

potentials (c-VEPs) to detect the user’s intention.

In a c-VEP BCI, a pseudorandom code is used to modulate

different visual stimuli. If a person attends one of those stimuli, a c-

VEP is evoked and thus can be used for controlling the BCI. This

idea has been proposed by Sutter in 1984 [1] and has been tested 8

years later, when an ALS patient was reported to write 10 to 12

words/minute with a c-VEP BCI system using intracranial

electrodes [2]. Until recently, there has been no proper evaluation

of a c-VEP BCI with electroencephalography (EEG), when it was

shown by Bin et al. [3] that a BCI based on c-VEPs outperforms

BCIs based on other kinds of visual stimuli. In [4] and [5] new

methods for improving classification in a c-VEP BCI were

presented and the possibility for establishing high-performance

communication was demonstrated.

In this paper, we evaluate the use of online adaptation to further

improve a c-VEP BCI system. In a traditional BCI, a fixed amount

of training data is collected and used to train a classifier, that

remains unchanged throughout a session. By online adaptation of

the classifier, new data that becomes available during the usage of

the BCI can be used for continous training of the classifier and

therefore reduce the amount of training data needed, while also

improving performance by making the classifier more robust to

changing data. The problem with online adaptation is the absence

of true class labels. So the classifier can either be adapted in a

completely unsupervised fashion or additional information, like the

presence of error-related potentials (ErrPs), can be incorporated to

improve adaptation.

Error-related potentials are event related potentials that can

be detected shortly after the user recognizes an error. It has

been shown in previous works [6,7] that ErrPs can be classified

with sufficient accuracy. It also has been shown that they can

be used in a BCI to correct spelling errors and thereby could

improve performance of a P300 BCI in healthy and severely

disabled subjects [8]. That ErrPs can also be utilized for

adaptation of a classifier has been recently shown in an offline

study [9].

In this paper we show in an online study that adaptation

increases performance in a c-VEP BCI and that ErrPs can be used

online to improve adaptive classification. We also demonstrate the

possibility of c-VEP BCIs to establish high-performance commu-

nication. In addition we show that a calibration of the BCI-system

solely based on the detection of ErrPs is possible.
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Methods

Configuration of the c-VEP BCI System
The c-VEP BCI system is similar to the one described in [4],

consisting of an EEG amplifier, a personal computer (PC) and a

CRT Monitor. Stimulus presentation and online classification are

operated from the PC. The presentation of the stimuli are

synchronized with the EEG amplifier by using the parallel port.

BCI2000 [10] is used as a general framework for recording the

data. The visual stimuli are presented on a 17 inch CRT Monitor

with a 60 Hz refresh rate and a resolution of 640|480 pixel. The

subjects are seated approximately 80 cm in front of the monitor.

To ensure synchronization of the presented stimuli with the refresh

rate of the CRT monitor, DirectX (Microsoft Inc.) is used for

programming the stimulation module.

A stimulus can either be black or white, which can be

represented by 0 or 1 in a binary sequence. A 30 Hz flickering

can therefore be represented by the following sequence :

‘01010101…’ when using a 60 Hz refresh rate.

The c-VEP BCI consists of 32 targets with the arrangement of

the targets shown in figure 1. The 32 targets are arranged as a

4|8 matrix and 28 complementary non-target stimuli are

surrounding the targets. For modulation of the targets a 63-bit

binary m-sequence is used, because of the low auto-correlation

property of m-sequences [11]. For each target the same sequence

is used for modulation, but the sequence is circular-shifted for each

target by a different number of bits. An example for the circular

shift of the modulation sequence can be seen in figure 1, with

target T0 having no shift, T1 being shifted by 2 bit, T2 being

shifted by 4 bit and so on, resulting in a time lag

ts~2=60~0:033s between two consecutive targets. In total the

length of one stimulation sequence is ts~63=60~1:05s. Between

two stimulation sequences there is a break of about 0.85 s which is

sufficient enough for the user to switch his attention to a different

target (i.e., look at a different target).

In our system the 32 targets were used to select one of the 26

letters A to Z from the alphabet as well as underscore and the

numbers 1 to 5. In the free-spelling condition the number 5 was

replaced with the character Ö, which was used as a backspace. A

screenshot of the matrix that was displayed to the subjects can be

seen in figure 2. If a target was selected, the corresponding

character was written and it was indicated to the user by

highlighting the selected target in yellow for 150 ms and darkening

the rest of the matrix for the same time, so that the user is also

aware that a selection has happened if he looks on a different part

of the screen. The text that has been written by the user is

displayed on the top of the screen.

Calibration and Classification
The calibration of the c-VEP BCI is done in 3 steps. First,

training data needs to be collected. Second, spatial filter are

generated by CCA based on the training data. In a third step, the

classifier is trained by generating templates.

As already mentioned, before calibrating the c-VEP BCI

system, training data needs to be collected. Therefore the user

has to attend a given target Tr k times, i.e., the user has to look at a

specified letter on the matrix (associated with Tr) for k trials. Tr

can be chosen arbitrarily with r[½0, . . . ,31�. The result are k trials

with each trial consisting of EEG-data with dimensions n|m,

where n is the number of channels and m is the number of samples

during a trial.

For the generation of spatial filters, first ones needs to find the

channel Cb, for which the c-VEP is most prominent. Therefore, a

leave-one-out cross-validation is performed: For each trial,

templates are generated by averaging over the remaining trials

(and shifting, as will be explained later) and the template with the

highest correlation with the tested trial is selected. To estimate the

accuracy for one channel, the percentage of correctly selected

templates is calculated. This is done for all channels and the

channel with the highest estimated accuracy is selected as Cb.

Canonical Correlation Analysis (CCA) [12] is then used for

generation of a spatial filter. The goal of CCA is to find linear

transformations Wx and Ws, which maximize the correlation

between X and S:

max

Wx,Ws

W T
x XST Wsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

W T
x XX T Wx

:W T
s SST Ws

p ð1Þ

To obtain an optimal spatial filter Wx, X is the raw EEG-data

and S is the desired waveform of the average c-VEP. To generate

X , all k trials are concatenated to a new matrix X with the

dimensions n|(k:m).
To generate S, the EEG data from channel Cb is used and by

computing the average of all k trials the average c-VEP waveform

R for channel Cb is obtained, with R having the dimensions 1|m.

As a next step, R is replicated k times, leading to S~½RR . . . R�
with dimensions 1|(k:m). Having X and S, CCA can be applied

Figure 1. Arrangement and modulation of the stimuli for the c-VEP BCI. A: The gray area shows the 32 target stimuli with the number
referring to the number of the target. The stimuli in the white area are the complementary flickers, which are synchronized to the target with the
same number. B: Modulation sequence for the first 5 targets. The sequence of a target is shifted by 2 bit in respect to its preceding target.
doi:10.1371/journal.pone.0051077.g001

Online Adaptation of a c-VEP BCI
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and the resulting Wx can then be used as a spatial filter and

multiplied with the raw EEG-data, to obtain spatially filtered

EEG-data.

To train a classifier, we use a one class support vector machine

(OCSVM) [13], which we have shown to be superior to the

classical correlation approach [5]. The OCSVM is trained with

the spatially filtered training data. The result of the OCSVM is a

hyper-sphere with minimal radius, that encloses a given percent-

age of the data. The center of the hyper-sphere can be used as a

template Mr, that represents the evoked response for attending

target Tr. From another point of view, the use of a OCSVM can

be seen as a more robust method for averaging that rejects outliers.

Since all targets are modulated with the same code, but different

shifts, templates for all other targets can be generated by shifting

the template Mr:

Mx(t)~Mr(t{ts
:(x{r)) x~0,1,2 . . . ,31 ð2Þ

For classification of a new trial with unknown label, the

euclidean distance between the spatially filtered EEG data and all

templates is calculated, the template with the smallest distance to

the EEG data is found and the corresponding target is selected.

For implementation of the OCSVM we used LibSVM [14] with a

linear kernel and n~0:5.

Classifier calibration through supervised

adaptation. The classical approach to train a BCI system is

to collected training data without giving the user feedback and

train the classifier after all training data is collected. We employed

a co-adaptive calibration approach similar to [15], in which

feedback is given during the calibration right from the beginning.

The system starts with randomly generated templates as classifier

and the classifier is adapted in a supervised manner to calibrate the

BCI system. Since the correct target class is known for each trial

during calibration, it is not necessary to just use target Tr during

calibration, but different targets can be used. Data obtained when

attending Tx can be circular-shifted to fit the shift of Tr, added to

the training data and thus be used to calculate spatial filters by

CCA and train the OCSVM.

Unsupervised classifier adaptation. While the true target

is known for the supervised adaptation during the calibration of

the c-VEP BCI system (target is given and known to the user), the

true target is unknown when using the system after it has been

calibrated (when the user can freely decide what to write). To

further improve classification after calibration is finished, the BCI

is adapted in an unsupervised manner. For a new Trial Dx, the

trial is classified resulting in a estimated label Lx. Lx is assumed to

be the correct class label and the classifier is adapted by adding

(Dx,Lx) to the training data and retraining the classifier.

Retraining the classifier involves estimation of the best channel,

generating spatial filter by CCA, training a OCSVM and

generating templates for all targets. A diagram that visualizes the

c-VEP BCI system with unsupervised adaptation is shown in

figure 3.

The adaptation of the classifier is done in a loop parallel to the

signal processing and classification module of BCI2000. Commu-

nication between both modules is done via shared memory. If new

EEG data arrives during the adaptation process, it is stored in a

buffer and used for adaptation in the next iteration of the

adaptation loop.

ErrP-based classifier adaptation. In addition to the

unsupervised adaptation, ErrPs can be utilized to detect misclas-

sifications. If no ErrP is detected, the data is used for unsupervised

adaptation as explained before. If an ErrP is detected, the data is

not used for adaptation of the classifier since the true class label is

unknown and the estimated class label is suspected to be wrong.

ErrP-based calibration. If only 2 targets are available (e.g.,

targets J and W), ErrPs can also be used for calibration and

thereby make it possible to omit a supervised calibration. At the

beginning of the ErrP-based calibration the classifier starts with

randomly generated templates. Each new trial Dx is classified

resulting in a corresponding label Lx. The result is displayed to the

user and the time period after displaying the result is used for

detection of an ErrP. If no ErrP is detected, Dx is used for

adaptation of the classifier with the corresponding label Lx. If an

ErrP is detected, Dx is used for adaptation with the opposite label

of Lx (W if Lx is J and vice versa). To compare the accuracy with

the supervised adaptation, a supervised calibration was simulated

offline.

Due to the design of the c-VEP system based on the circular

shift of the modulating code, a calibration with 2 targets is

Figure 2. Screenshots of the c-VEP BCI in free-spelling mode. A: screenshot during a trial. The letter Ö (lower right corner) serves as a
backspace symbol during the free-spelling condition and allows the user to correct mistakes. B: screenshot of the letter N being selected and the
other characters being grayed out to indicate a selection.
doi:10.1371/journal.pone.0051077.g002

Online Adaptation of a c-VEP BCI
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sufficient and the data can be used for generating templates for all

32 targets.

Detection of error-related potentials. For classification of

the ErrPs we basically used the same procedure as we already

described in [8] where ErrPs in a P300 BCI were detected: The

signal was re-referenced to the common average, linear trends

were removed, it was bandpass-filtered between 1 Hz and 16 Hz

and subsequently resampled to 32 Hz. For the classification of the

ErrP in this study we used the time interval between 300 ms and

990 ms after the selection of a target. This time interval seemed to

be best in a not representative one-subject experiment that was

performed with the c-VEP BCI prior to the study presented in this

paper. The time domain samples of channels Fz,Cz,Cpz,Pz and

POz were used for classification. Classification was done with

LibSVM [14] using a RBF-Kernel with default parameters (C~1,

c~0:0091).

Design of the Online Experiment
To test the system with unsupervised and ErrP-based adapta-

tion, 10 healthy subjects were recruited. All subjects had normal or

corrected-to-normal vision. A summary over age, sex and previous

BCI experience of the subjects can be found in table 1. The study

was approved by the local ethics committee of the Medical Faculty

at the University of Tübingen. Written consent was obtained from

all subjects. Each subject participated in two sessions. For 4

subjects session 1 and session 2 were performed on different days,

since they also participated in another EEG study that was done

on two different days. For the other subjects both sessions were

performed on the same day with a break of about 10 minutes.

During the preparation of the EEG setup subject AJ reported

having problems with her contact lenses the previous days. After

several unsuccessful tries to perform a proper calibration session,

subject AJ was excluded from the study. Due to excessive blinking

it was not possible for her to follow all cues during the calibration

session, which resulted in attending the wrong targets.

Figure 3. Diagram of the c-VEP BCI system with unsupervised adaptation. The process for adaptation of the classifier is running in a loop
parallel to the classification process. Both processes are communicating via shared memory.
doi:10.1371/journal.pone.0051077.g003

Table 1. Subject overview.

previous BCI experience

Subject Age Sex
Days
between c-VEP SSVEP SMR P300

AA 26 f 1 – – x x

AB 29 f 3 – – x –

AC 28 m 1 – – x x

AD 26 f 0 – – x x

AE 29 m 0 – – x –

AF 28 m 1 – – x –

AG 28 m 0 – – o –

AH 28 m 0 x – x –

AI 28 m 0 – – – –

AJ 28 f – – – – –

Age and sex of the subjects as well as the number of days between session 1
and session 2 and the previous BCI experience of the subject: - subject has no
experience with that kind of BCI, x subject has previously used that kind of BCI
and was able to control it, o subject has previously used that kind of BCI but
was not able to control it. Subject AJ was excluded from the study due to
excessive blinking.
doi:10.1371/journal.pone.0051077.t001

Online Adaptation of a c-VEP BCI
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EEG data was recorded with a g.tec g.USBamp at a

samplingrate of 600 Hz and a Brainproducts Acticap system with

32 channels. Two electrooculogram (EOG) electrodes were placed

beside the left eye and at the center above the eyes. The location of

the 30 EEG electrodes is depicted in figure 4. The ground

electrode was positioned at FCz and the reference electrode at Oz.

The data was bandpass-filtered by the amplifier between 0.5 Hz

and 60 Hz using a Chebyshev filter of order 8 and an additional

50 Hz notch filter was applied.

At the the beginning of the first session, a supervised calibration

was performed. As previously mentioned, the BCI was calibrated

in a co-adaptive manner by supervised adaptation and giving

feedback during the calibration. The calibration consisted of 64

trials with each of the 32 letters being spelled twice. After

calibration, the unsupervised adaptation was tested in 9 runs with

64 trials each (total of 576 trials). The unsupervised adaptation was

tested in a copy-spelling mode, in which it was given to the user

which letters he had to write.

At the beginning of the second session, a supervised calibration

of the BCI was performed similar to session 1. After calibration, 9

runs in a copy-spelling mode with 64 trials each (total of 576 trials)

were performed to test ErrP-based adaptation.

Independent of this, at the end of the second session, some

subjects participated in additional experiments, in which either an

ErrP-based calibration was tested or the subjects used the c-VEP

BCI in a free-spelling mode (details on this will be described later).

Performance Evaluation
To compare the results from different sessions and for the

different adaptation methods, the accuracy of the classifier, as well

as the corresponding information transfer rate (ITR) [16] were

used. With M being the number of classes and p being the

accuracy, the ITR can be computed with the following equation:

ITR~ log2 (M)zp: log2 (p)z(1{p): log2

1{p

M{1
ð3Þ

Although the ITR is a commonly used measure for BCI

performance, that allows for a good comparison of different BCI

systems, it is a rather theoretic approach for assessing the BCI

performance that does not take into account the actual design of

the BCI application and therefore tends to misestimate the real

BCI performance [8,17]. To assess the real performance of the

BCI as a spelling application we used the average number of

correct letters per minute in the free-spelling condition, taking into

account that all errors are corrected by the user.

Offline Data Analysis
To compare the results for unsupervised and ErrP-based

adaptation, a comparison of the results from session 1 and session

2 would be deceiving, because of different additional factors

influencing the data and thus the BCI performance. Instead we

used the data from session 2 to simulate online experiments with

different kinds of adaptation. Exactly the same data was used for

calibration and testing, but different adaptation methods were

Figure 4. Location of the 30 EEG electrodes. Ground electrode (GND) was positioned at FCz and reference electrode (REF) at Oz.
doi:10.1371/journal.pone.0051077.g004

Online Adaptation of a c-VEP BCI
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employed during the test runs. We tested without adaptation, with

unsupervised adaptation and supervised adaptation. For the

supervised adaptation we used the real label of the target, which

would not be available when using the BCI as intended in a free-

spelling mode.

Online ErrP-based Calibration
To test if a calibration without known class labels is possible, the

detection of ErrPs should be used for calibration. The chronolog-

ically last 4 subjects of the study(AA,AD,AG,AI) also participated

in an additional online experiment to test ErrP-based calibration.

Although the stimulus presentation was the same as the one

described before with 32 targets, only 2 targets (letter J and letter

W) should be used during the calibration. In contrast to the

calibration described before, the subject could freely choose

between fixating the letter J or the letter W this time. They were

only instructed not to switch the target every trial and not to stay at

the same target for longer than 5 trials. Since an afterwards

evaluation of the c-VEP classification accuracy during the

calibration is difficult with these instructions, ErrP-based calibra-

tion was also performed with the instruction to start at letter J and

switch the target every trial. Only results from the data recorded

with the latter instruction are shown in this paper. The

classification during the calibration period could only result in

the labels of the two targets corresponding to letter J and W.

Online Free-spelling
To assess the performance of the c-VEP BCI under normal-use

conditions, some of the subjects engaged in free-spelling at the end

of session 2. At this point each of the participating subjects had

about 1 hour of total experience with the c-VEP BCI system.

Target 32 was replaced with the letter Ö, which served as a

backspace option and allowed the user to delete the previous letter.

The subjects could write whatever they felt like and they were only

instructed to correct each mistake by choosing the backspace

symbol.

Results

Online Experiment using Unsupervised and ErrP-based
Adaptation

The results from the online experiment can be seen in table 2.

During session 1 with unsupervised adaptation the subjects

achieved an average accuracy of 92.53%, which corresponds to

an average ITR of 135.62 bit/min. During session 2 with ErrP-

based adaptation an average accuracy of 96.18% was achieved,

which corresponds to an average ITR of 143.95 bit/min. It should

be noted that subject AG and subject AD achieved 100% accuracy

in one of the sessions (576 trials).

Offline Data Analysis
To compare the effect of unsupervised and ErrP-based

adaptation we performed an offline analysis, in which the online

experiment was simulated with the same data, but different

methods for adaptation. The results are shown in table 3. Without

adaptation, using only the first calibration run for training the

classifier, an average accuracy of 95% was achieved, which

corresponds to an average bitrate of 140.46 bit/min. With

unsupervised adaptation an average accuracy of 96.05% was

achieved, which corresponds to an average bitrate of 143.56 bit/

min, while the online results with adaptation based on ErrPs

yielded an average accuracy of 96.18% or 143.95 bit/min. The

simulation with supervised adaptation resulted in an average

accuracy of 97.00%, which corresponds to a bitrate of 146.47 bit/

min.

While the results with unsupervised and ErrP-based adaptation

are significantly better than the results with no adaptation

(pv0:05, paired t-test), there is no significant difference between

unsupervised and ErrP-based adaptation (pw0:5, paired t-test).

To evaluate the benefit of the different preprocessing and

classification methods without adaptation, we also performed an

additional offline analysis of the data from session 2. When using

the method by Bin et al. [4] an average accuracy of 88.48% was

achieved. Using a OCSVM [5] instead of the correlation

approach yielded an average accuracy of 91.99%. When

combining OCSVM with a different method of applying CCA

by selecting the best individual channel [5] an accuracy of 95.00%

was reached, which is the method we used online and also

described in the methods section.

Table 2. Results from the online experiment.

Session 1 (unsupervised) Session 2 (ErrP-based)

Subject Accuracy ITR [bit/min] Accuracy ITR [bit/min]

AA 98.78% 151.53 97.40% 147.16

AB 86.28% 119.05 91.49% 130.78

AC 98.44% 150.61 97.05% 145.55

AD 99.13% 152.52 100.00% 156.28

AE 77.26% 96.94 99.83% 155.06

AF 96.70% 144.79 94.27% 137.76

AG 100.00% 156.23 99.48% 153.80

AH 78.99% 102.50 89.93% 126.09

AI 97.22% 146.44 96.18% 143.03

average 92.53% 135.62 96.18% 143.95

Accuracy and corresponding information transfer rate for the 9 subjects during
the online experiment with unsupervised adaptation (session 1) and with
adaptation based on Error-related potentials (session 2).
doi:10.1371/journal.pone.0051077.t002

Table 3. Offline results from session 2 with different
adaptation methods.

Subject
No
adaptation Unsupervised ErrP-based Supervised

AA 94.44% 98.44% 97.40% 98.44%

AB 87.48% 88.60% 91.49% 92.78%

AC 98.09% 98.09% 97.05% 98.09%

AD 100.00% 100.00% 100.00% 100.00%

AE 99.31% 99.83% 99.83% 99.83%

AF 94.97% 95.14% 94.27% 95.83%

AG 98.96% 99.48% 99.48% 99.48%

AH 86.98% 88.54% 89.93% 91.15%

AI 94.79% 96.35% 96.18% 97.40%

average 95.00% 96.05% 96.18% 97.00%

Accuracies with different adaptation methods on the data from session 2. The
condition without adaptation, with unsupervised adaptation and with
supervised adaptation were simulated offline with the data from session 2. The
results for the ErrP-based adaptation are the online results from session 2.
doi:10.1371/journal.pone.0051077.t003

Online Adaptation of a c-VEP BCI
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Details on Code-modulated VEPs
To see, on which channel the c-VEP is strongest and can be

classified best, classification accuracies were estimated by using

only one channel. The accuracies have been estimated for each

subject separately with a leave-one-out cross-validation without

the use of CCA by just using the classical correlation approach [4]

for classification. It shows that the accuracy is highest at electrodes

P4 and PO3 with an average accuracy of 73.2% and 72.6%,

respectively. The average accuracy for each channel is shown in

figure 5. The average c-VEP waveform on the subject’s individual

best channel is also shown in figure 5.

To estimate the delay of the c-VEP, the cross-correlation of the

average c-VEP with the modulation sequence was computed. It

was highest for a 36 ms delay of the c-VEP with r~0:41.

ErrP-based Calibration
Normally, calibration is done supervised and therefore no

accuracies and bitrates are presented. But in contrast to a

supervised calibration, the user can transfer information during a

ErrP-based calibration and therefore classification accuracies and

corresponding information transfer rates are of interest. During

the ErrP-based calibration, on average 85.94% of the targets were

classified correctly, which corresponds to an average bitrate of

18.28 bit/min (taking into account that only 2 targets can be

chosen). For subject AD no ErrPs were detected and therefore she

achieved an average accuracy of 43.75%, which is below chance

level (50%). An overview of the results for the c-VEP classification

during the ErrP-based calibration is shown in table 4.

In figure 6 the c-VEP classification accuracy over the course of

the 64 trials of the calibration is shown. For better viewing the data

was smoothed. It can be seen, that during 3 calibrations (AA02,

AG001, AG002) a near perfect accuracy was reached with no

errors being made after the 10th trial. With exception of subject

AD, sufficient accuracy was reached after 25 trials, which takes less

than 1 minute. The dashed bold black line in figure 6 depicts the

average accuracy excluding subject AD. It can be seen that this

average accuracy is close to the average accuracy obtained by the

simulated calibrations with supervised adaptation (depicted by the

gray line in figure 6), showing that an ErrP-based calibration can

reach similar accuracies as a supervised calibration.

The ErrP-based calibration was also tested with the subject’s

being instructed to freely choose the letters, but due to the nature

of this instruction, we can not show accuracies for calibrations with

this instruction. It still should be mentioned that the subjects

perceived no difference in the accuracy of both methods.

The classifier obtained during the ErrP-based calibration was

not tested with 32 targets, but due to the design of the c-VEP BCI

with its circular-shifted code, the calibration on two targets is

enough to use the c-VEP BCI system with 32 targets. Prior to this

study, we tested the a classifier based on a supervised calibration

with 2 targets on a system with 32 targets. One subject participated

in this non-representative test, and achieved an accuracy of 100%

over 64 trials, which shows that calibration on 2 targets is sufficient

to use the system with 32 targets.

Details on Error-related Potentials
The accuracies for detecting the ErrPs during the ErrP-based

adaptation can be seen in table 5, with an average accuracy of

96.67% and an average sensitivity of 69.31%. The sensitivity refers

to the percentage of ErrPs correctly identified, while specificity

refers to the percentage of trials without ErrP that are classified

correctly. The accuracies for detecting ErrPs during the ErrP-

based calibration can be seen in table 6, where an average

accuracy of 86.2% was achieved with a sensitivity of 45.83%. It

should be noted that for subject AD no ErrP was classified

although 43.75% of the trials were erroneus. There is a negative

correlation between the number of ErrP trials in the data used for

Figure 5. Average c-VEP waveform for target T0 A: Average waveform of the elicited c-VEP at electrode P4. The subjects’ average c-VEP are
depicted by the colored lines. The average c-VEP over all subjects is shown by the black bold line. B: Estimated accuracy for one channel averaged
over all subjects. Accuracy was estimated with the same method that was previously used for finding the best channel Cb .
doi:10.1371/journal.pone.0051077.g005

Table 4. Results for the c-VEP classification during the ErrP-
based calibration.

Subject Errors Correct Trials Accuracy
ITR [bit/
min]

AA001 12 116 128 90.63% 17.24

AA002 2 126 128 98.44% 27.42

AD001 72 56 128 43.75% 0

AG001 2 62 64 96.88% 25.21

AG002 3 61 64 95.31% 22.56

AI001 12 116 128 90.63% 17.25

average 85.94% 18.28

Number of erroneus, correct and total trials, accuracy and corresponding bitrate
for the c-VEP classification during the 6 ErrP-based calibrations. For 2 subjects
(AA, AG) 2 ErrP-based calibrations were performed.
doi:10.1371/journal.pone.0051077.t004
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training the classifier and the sensitivity of the ErrP-detection

(spearman r~{0:7681, pv0:05).

It should be mentioned, that with a subject-wise cross-

validation, where the ErrP for one subject is classified based on

the data of the remaining subjects, an average accuracy of 93.67%

with a sensitivity of 57.57% and a specificity of 95.11% was

achieved. For none of the subjects the performance was increased

by the subject-wise cross-validation.

Figure 7 shows the average error-minus-correct plot for the

electrodes Fz, Cz, Cpz, Pz as well as the topographic distribution

of the ErrP at two time points. It can be seen that the ErrP has two

main components: a small negative peak at around 310 ms and a

positive peak at 420 ms. Both peaks are most prominent between

electrodes Fz and Cz.

Free-spelling Results
The results from the 6 subjects who participated in the free-

spelling can be seen in table 7. In total 603 trials were used to spell

427 error-free letters. 88 characters were wrong and the delete-

character therefore has been chosen 88 times. The delete-

character has never been selected erroneously and was selected

with an accuracy of 100%. Considering all errors were deleted and

considering the time needed to write a letter an average of 21.35

correct letters could be written per minute. Due to the fact that

these results were obtained in a free-spelling condition, in which

each error was corrected by the user, it is best to look at the

performance in an application-centered manner like error-free

letters per minute. But to make the results comparable with the

ones presented before, it is worth mentioning that the average

accuracy during the free-spelling was 85.4%, which would

correspond to an ITR of 115.65 bit/min.

Reception of the c-VEP BCI by the Subjects
The subjects’ reception of the c-VEP BCI was positive.

Although some of them expressed concerns when they first saw

the flickering stimuli prior to using it, none of them stated the c-

VEP BCI to be annoying when asked at the end of the sessions.

None of the subjects reported fatigue or feeling uncomfortable

while using the BCI. The three subjects who had previous

experience with a P300 Speller, found the c-VEP BCI system

Figure 6. Accuracy for the c-VEP classification during the ErrP-based calibration. The plot shows the accuracy over the first 64 trials. For
better presentation, the data is smoothed. The colored lines depict the smoothed accuracy for each of the 6 ErrP-based calibrations. The black solid
line is the average over all calibrations. The black dashed line is the average over all calibrations excluding AD001. The gray line is the average over all
calibrations simulated with supervised adaptation.
doi:10.1371/journal.pone.0051077.g006

Table 5. Results for the ErrP detection during ErrP-based
adaptation.

Subject Sensitivity Specificity Accuracy

AA 53.33% 99.11% 99.12%

AB 90.57% 93.33% 93.85%

AC 64.71% 97.05% 98.96%

AD – 100.00% 100.00%

AE 100.00% 95.65% 95.66%

AF 36.36% 99.26% 95.66%

AG 0.00% 98.25% 97.74%

AH 74.14% 94.98% 92.88%

AI 77.27% 99.28% 98.44%

average 69.31% 97.77% 96.67%

Sensitivity, specificity and accuracy of the ErrP detection during the ErrP-based
adaptation. Since the BCI worked with 100% accuracy for subject AD there is no
sensitivity to report.
doi:10.1371/journal.pone.0051077.t005

Table 6. Results for the ErrP detection during ErrP-based
calibration.

Subject Sensitivity Specificity Accuracy

AA001 25.00% 96.55% 89.84%

AA002 100.00% 97.62% 97.66%

AD001 0.00% 100.00% 43.75%

AG001 50.00% 100.00% 98.44%

AG002 66.67% 98.36% 96.88%

AI001 33.33% 96.55% 90.63%

average 45.83% 98.18% 86.20%

Sensitivity, specificity and accuracy of the ErrP detection during the ErrP-based
calibration.
doi:10.1371/journal.pone.0051077.t006
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more pleasing and stated to prefer using it compared to the P300

Speller.

For the free-spelling condition, the subjects stated that most

mistakes were made, because they didn’t find the character in

time, but they think that they could increase their accuracy in the

free-spelling condition if they would have more time to practice

and therefore know the positions of the letters better.

Discussion

With an average ITR of 136 bit/min during session 1 with

unsupervised adaptation and 144 bit/min during session 2 with

ErrP-based adaptation this online study shows the potential of a c-

VEP BCI to achieve high-performance communication. With

previous publications presenting a c-VEP BCI that achieved an

average ITR of 108 bit/min [4] and an SSVEP system that

showed one subject to reach a peak bitrate of 124 bit/min [19], to

the best of our knowledge, the proposed system represents the

fastest non-invasive BCI reported to date. It is also notable that 2

subjects achieved an accuracy of 100%, which is remarkable

especially when considering the short trial time and the high

number of targets.

During the evaluation of the system with free-spelling in a

normal-use scenario the subjects were able to write 21.3 error-free

letters per minute, which corresponds to an average ITR of 116

bit/min. It has to be noted that the bitrate in the free-spelling is

below the results reported for the copy-spelling, which may be

attributed to the subjects not finding the correct letter on the

matrix in time. Although practice with the system will limit this

effect and therefore improve free-spelling performance, the time

between trials could also be increased to give the subject additional

time to find the letter. Nevertheless results from free-spelling with

BCI are scarce in literature and the results presented here show

that the proposed system can be used in free-spelling. Despite the

performance drop, due to the transfer to free-spelling, the

presented system still outperforms all other non-invasive BCI

systems.

Regarding the adaptation of the BCI system, the accuracy of the

system could be significantly increased from an average of 95%

without adaptation to an average accuracy of 96.18% with

adaptation based on ErrPs, showing that online adaptation of the

BCI improves performance. Although the adaptation based on

ErrPs was a little bit better than unsupervised adaptation with

96.05%, it has to be noted that the accuracy with unsupervised

adaptation was better for 4 subjects. Since the difference between

the results is not statistically significant, it is unclear if adaptation of

the BCI profits from the use of ErrPs in the presented system. But

we have to point out that through the high general performance of

the BCI there is little room for improvement and when comparing

the results with unsupervised adaptation and ErrP-based adapta-

tion, it seems that subjects with lower BCI performance tend to

benefit more from ErrP-based adaptation, while subjects with

higher BCI performance tend to benefit more from unsupervised

Figure 7. Average ErrP waveform. Error-minus-correct time series at electrode Cz for all subjects and the average as well as the topographical
distribution at the time of the 2 peaks averaged over all subjects. The data was corrected for EOG [18] and bandpass-filtered between 1 Hz and 16 Hz.
doi:10.1371/journal.pone.0051077.g007

Table 7. Results from free-spelling.

Subject Written Deleted Trials Time [s]
Letters/
min Accuracy

AA 24 6 36 69.57 20.70 83.33%

AC 107 29 165 321.27 19.98 82.42%

AD 88 14 116 224.60 23.51 87.93%

AE 73 11 95 183.37 23.89 88.42%

AG 101 14 129 282.80 21.43 89.15%

AI 34 14 62 118.40 17.23 77.42%

average 71.2 14.7 100.5 200.00 21.35 85.40%

Number of written (error-free) letters, number of deleted letters, total number
of trials, time in seconds for all trials, average number of error-free letters per
minute and average accuracy.
doi:10.1371/journal.pone.0051077.t007
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adaptation. Due to the small subject populations, definitive

conclusions regarding this issue cannot be drawn and more

studies using ErrP-based adaptation with more low-performing

subjects may be needed to further investigate the benefit of ErrP-

based adaptation.

Also subject AJ should be mentioned, who was not able to

perform a proper calibration session, because she did not see all

cues due to excessive blinking caused by her contact lenses. While

this shows some restrictions of the system in its current form, we

think that these problems could be alleviated by increasing the

time of the trials as well as the time of the cues. In addition,

multiple sequences could be presented during one trial and the

average of these multiple sequences could be used for classifica-

tion. This method is already successfully used in the P300 Speller

[20] and would likewise work in a c-VEP BCI.

Error-related Potentials
When looking at the ErrPs we found a similar topographic

distribution as the ErrPs elicited when using a P300 Speller [8].

But with only two distinct peaks visible in the average ErrP

waveform, the shape differs and is missing the first peak at about

270 ms. In addition, the delay of the peaks presented in this paper

are about 40 ms less than the delays presented in [8]. This

difference may be attributed to the more accurate synchronization

of the stimulus by use of the parallel port [21].

Nevertheless the ErrP could be detected with a sufficient

average accuracy of 96.7% and a sensitivity of 69.3%, which was

sufficient to utilize the ErrP detection for adaptation of the

classifier but would also allow to improve performance by an error

correction system similar to the one we presented for the P300

Speller [8]. Due to the high accuracy that some subjects achieved,

there was very little training data that included ErrPs. Since the

amount of trials containing an ErrP negatively correlates with the

sensitivity of the classifier we think that the sensitivity could be

improved by more training data, i.e., more errors. The negative

correlation might also partially explain why the ErrP-based

adaptation is having more benefit for subjects with poor BCI

performance. As we have shown with the subject-wise cross-

validation, the approach of adding ErrP-data from other subjects

to increase the amount of training data to improve the sensitivity

did not suffice. But this approach could still be used if no ErrP-

data is available for a subject.

ErrP-based Calibration
The results from the ErrP-based calibration show that the

presented c-VEP BCI system can be calibrated solely based on the

detection of ErrPs, without knowing the true class labels. Only for

subject AD the ErrP-based calibration did not work, because ErrPs

could not be classified. The reasons for this might be the low

number of erroneous trials during session 1. For the subjects where

the ErrP detection worked, there was only little deviation from a

simulated supervised calibration. Although it is interesting that

calibration of the system can be done solely based on the detection

of ErrPs, there still needs an application to be found where ErrP-

based calibration could be used. One possible benefit could arise,

when the c-VEP BCI needs to be restricted to 2 targets, which

might be necessary when modifying the stimulus presentation to

work without eye-movement control. With 2 targets, an ErrP-

based calibration is equal to an ErrP-based adaptation and

therewith exists no need to switch between a calibration mode and

a use-mode. Assuming the stimulus presentation can be modified

to work without eye-movement control, the BCI could be fully

operated by paralyzed users without the need for an external

person to start calibration-mode or use-mode. In addition, an

ErrP-based calibration also allows to transfer information during

the calibration, which is not possible with a supervised calibration.

However, this benefit might be diminished in the first few trials,

due to the low accuracy in the beginning.

Comparison with Eye-tracker Spellers
Due to the high achieved ITR, also a comparison with spelling

applications based on eye-tracking is interesting. In [22] different

systems were tested and average writing speeds ranging from 23.5

letters per minute to 54.5 letters per minute were reported for

novice users. Although advanced users reached up to 79 letters per

minute, the results show that the performance of BCI-based

spelling applications (with 21.3 error-free letters per minute) can

come in the vicinity of eye-tracker spelling applications. Systems

with word completion algorithms can reach even higher typing

speeds, but those methods would likewise increase the perfor-

mance of BCI spelling applications.

Future Work
While we have shown the proposed system to achieve high-

performance communication and it was shown earlier [2] that a c-

VEP system with intracranial electrodes can be used by an ALS

patient, one main issue with the c-VEP BCI concept is the

assumed dependence on eye gaze to control the system. Although

it is highly doubtable that a c-VEP BCI with 32 targets can be

controlled without eye gaze, there might be a positive outcome

when reducing the number of targets. It has been shown that

SSVEP BCIs can be controlled without eye gaze [23,24]. Due to

the similarity of a c-VEP BCI with a SSVEP BCI we think that this

is also possible for c-VEP BCIs, making the c-VEP BCI usable for

paralyzed patients without gaze control. But this needs to be

evaluated carefully in a new study.

Regarding the online adaptation of the proposed BCI system a

similar approach also needs to be tested with other BCI paradigms

and lower-performing subjects to investigate the relationship

between the amount of ErrPs in the training data and the

sensitivity of the ErrP detection.

Conclusion
In this paper we have presented a c-VEP BCI that uses online

adaptation to improve performance. Adaptation works unsuper-

vised as well as based on ErrPs, although the ErrP-based

adaptation has very little benefit compared to the unsupervised

adaptation. With an average accuracy of 144 bit/min, the

presented c-VEP BCI with ErrP-based adaptation is the fastest

non-invasive BCI to date. When the system was tested in free-

spelling mode the subjects achieved an average of 21.3 error-free

letters per minute, which verifies the feasibility of the presented

system in a normal-use scenario and shows that the performance

of BCI spelling applications can approach the performance of eye-

tracker spelling applications. We have also shown that a

calibration of the c-VEP BCI system is possible without having

labeled data, solely based on the detection of ErrPs. Despite the

current uncertainty if a c-VEP BCI can be used without gaze

control we think that the presented system is a valuable step

towards faster BCI systems and that the online adaptation is a step

towards more robust BCI applications.
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