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Abstract

Although accurate and continuous assessment of cerebral vasculature status is highly desirable for managing cerebral
vascular diseases, no such method exists for current clinical practice. The present work introduces a novel method for real-
time detection of cerebral vasodilatation and vasoconstriction using pulse morphological template matching. Templates
consisting of morphological metrics of cerebral blood flow velocity (CBFV) pulse, measured at middle cerebral artery using
Transcranial Doppler, are obtained by applying a morphological clustering and analysis of intracranial pulse algorithm to the
data collected during induced vasodilatation and vasoconstriction in a controlled setting. These templates were then
employed to define a vasodilatation index (VDI) and a vasoconstriction index (VCI) for any inquiry data segment as the
percentage of the metrics demonstrating a trend consistent with those obtained from the training dataset. The validation of
the proposed method on a dataset of CBFV signals of 27 healthy subjects, collected with a similar protocol as that of
training dataset, during hyperventilation (and CO2 rebreathing tests) shows a sensitivity of 92% (and 82%) for detection of
vasodilatation (and vasoconstriction) and the specificity of 90% (and 92%), respectively. Moreover, the proposed method of
detection of vasodilatation (vasoconstriction) is capable of rejecting all the cases associated with vasoconstriction
(vasodilatation) and outperforms other two conventional techniques by at least 7% for vasodilatation and 19% for
vasoconstriction.
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Introduction

Modern strategies for managing patients in neurocritical care

units utilize a set of monitoring techniques to evaluate various

fluctuating physiological markers to inform intervention decisions

on an individual basis [1]. Various monitoring modalities [2,3]

have been introduced in neurocritical units to provide the

assessment of cerebral hemodynamics [e.g. cerebral blood flow

(CBF) and cerebral blood flow velocity (CBFV)], intracranial

hydraulics [e.g. intracranial pressure (ICP)], electrophysiology [e.g.

electroencephalography (EEG)], cerebral oxygenation [e.g., partial

pressure of oxygen], and brain metabolism [e.g. microdialysis

(MD)]. However, the methods currently available to evaluate the

pathophysiological changes of the cerebral circulation have

significant time resolution limitations and do not allow continuous

evaluations of the fluctuations in cerebral perfusion. A modality

capable of providing real time information on the changes

occurring in the cerebral vasculature could potentially increase

the time effectiveness of therapeutic interventions and prevent

secondary cerebral damage due to ischemia or hyperperfusion.

Such a modality could play a fundamental role in the management

of conditions such as cerebral vasospasm after subarachnoid

hemorrhage, evaluation of the collateral flow in patients with acute

and chronic unstable ischemic stroke and monitoring of cerebro-

vascular changes associated with traumatic brain injury [4,5].

Methodologies to assess the cerebral vasculature like Transcra-

nial Doppler (TCD) are limited due to the skull density that only

allows insonation of large vessels of the circle of Willis in

individuals with favorable windows by trained technicians. While

digital subtraction, CT, or MRI angiographic methods provide

accurate images of the cerebral vasculature and in some cases

functional information of the cerebral blood flow [6], they can

only be preformed intermittently and carry risks associated with

the use of contrast media, radiation or the endovascular

intervention. A few indirect metrics also exist that can be used

to assess the cerebral vasculature using hemodynamic concepts

such as resistance and vascular tone, e.g. Gosling pulsatility index

(PI) [7], Pourcelot resistance index (RI) [8], and critical closing

pressure (CCP) and resistance area product (RAP) [9]. Although

there is some success of applying them in detecting cerebrovas-
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cular changes, these metrics are often not accurate as they are

derived from simplified models of cerebral blood flow circulation

whose underlying assumptions may not be applicable to the

related clinical scenario [10]. In addition to a potential model-

mismatch, hemodynamics metrics such as CCP and RAP rely on

approximating the cerebral arterial blood pressure using periph-

erally measured systemic pressures, which may further compro-

mises the accuracy of these metrics due to confounding influence

from extracranial systemic circulatory systems.

Our effort has been focused on developing and validating novel

methods of analyzing continuously acquired pulsatile signals of an

intracranial origin, e.g. ICP or CBFV to derive cerebrovascular

metrics that are less influenced by the factors mentioned above.

Based on the pulse wave propagation theory [11], we have

proposed an intracranial latency model that incorporates pulse

transmit time of both intracranial and extracranial pulses so that

the confounding influence of extracranial origins on characterizing

pulse wave velocity of the cerebral arterial bed can be reduced

[12]. We have also shown that the slope of this latency model can

successfully track the cerebral vasculature changes relative to those

of the systematic arterial bed [13]. However, this latency model

cannot detect changes that occur downstream to the intracranial

measurement site, e.g., the middle cerebral artery (MCA) if CBFV

at the MCA is used, because only the timing of the onset of each

pulse is used.

In the present study, we propose a new method for assessing the

cerebral vasculature to further address the limitations of existing

approaches. This approach is based on the observation that

intracranial pressure pulse morphology undergoes a consistent

change as patients inhale CO2-enriched gas mixture [14]. This

observation leads to two logical premises of this new approach: 1)

intracranial pulses including ICP and CBFV originate from

vascular pulsations propagating from the heart and hence acute

cerebrovascular changes can modulate the shape of these pulses; 2)

this modulation induces changes of pulse morphology in an

expected fashion, i.e., vasodilatation or vasoconstriction causes

pulses to change in a certain way so that a quantification of how

well an observation of pulse morphological changes matches this

expectation can lead to metrics of cerebral vasodilatation and

vasoconstriction.

To quantitatively characterize the pulse shape and its changes,

we have developed an algorithm termed Morphological Cluster-

ing and Analysis of an Intracranial Pulse (MOCAIP) [15].

MOCAIP can robustly deliver an array of metrics (n = 128) to

comprehensively characterize the amplitude, curvature, slope, and

time-intervals among peaks and troughs of pulses. An observed

pulse morphological change can be first quantified in terms of

MOCAIP metrics and then compared with a template of expected

changes during either cerebral vasodilatation or vasoconstriction

to establish the likelihood of conformance of this observation to the

template. We name this new approach Pulse Morphological

Template Matching (PMTM) and it can be noted that PMTM is

non-parametric, does not depend on any models of CBF

circulation, and is not confounded by influences from systemic

circulation. In the following, we study and validate the proposed

method using data recorded during physiological challenges

known to cause cerebral vasodilatation and vasoconstriction.

Materials and Methods

Data
The training dataset consists of the CBFV and electrocardio-

graph (ECG) recordings of five female patients (21, 24, 26, 32 and

54 years old), who were admitted at UCLA Medical Center for the

evaluation of headaches potentially due to chronic shunt

implantation. During their hospitalization, the patients underwent

a CO2 challenge test to rule out cerebral vasculature-related

headache by inhaling a 5% CO2 mixture for less than 3 minutes.

Simultaneous cardiovascular monitoring was performed using the

bedside GE monitors and CBFV was measured non-invasively at

middle cerebral artery (MCA) using TCD machine (Multi-Dop X,

Compumedics DWL, Singen, Germany) as part of daily clinical

bedside assessment of patients’ cerebral hemodynamics by

technicians of with the Cerebral Blood Flow laboratory at UCLA

Department of Neurosurgery. Doppler probes were secured to a

custom headset to preserve insonation angle and MCA was

insonated through the ipsilateral temporal window at depths of the

best signal (44–55 mm). CBFV and ECG signals were recorded

during the CO2 test with few minutes preceding (baseline) and

proceeding (post-test) at a sampling rate of 400 Hz using a mobile

cart at the bedside that was equipped with the PowerLab TM SP-

16 data acquisition system (ADInstruments, Colorado Springs,

CO).

Testing dataset were obtained from a portion of a larger study

investigating cerebral hemodynamics during exposure to hypo-

baric hypoxia conducted at the University of Colorado Anschutz

Medical Campus, as previously described in [22]. Briefly, 29

healthy individuals (25 males and 4 females; 18 to 44 years) were

instrumented to monitor partial pressure of end-tidal carbon

dioxide (PETCO2) (Ametek CD-3A, AEI Technologies, Pitsburgh,

PA USA), ECG (Bioamp, ADInstruments, Colorado Springs, CO

USA), left radial artery blood pressure (Model 7000, Colin

Medical Instruments Corp., San Antonio, TX, USA) and MCA

flow velocity (Multi-Dop T2, DWL Electronic Systems, Singen,

Germany). Using Powerlab instrument (16SP, ADInstruments,

Colorado Springs, CO, USA) signals were synchronized and

recorded simultaneously at a sampling rate of 1 KHz, but later re-

sampled at 400 Hz. After 6 minutes of rest, subjects underwent a

series of tests in which fractional concentrations of inspired gases

and breathing rate were manipulated to evaluate baseline and

normoxic cerebral hemodynamic parameters, including vasoreac-

tivity. Between tests, partial pressure of end-tidal oxygen (PETO2)

returned to baseline values established at rest. For the present

study, we used the data collected during baseline (rest), hyperven-

tilation and CO2 rebreathing tests. For hyperventilation, individ-

uals were asked to breathe to a metronome at 18 breaths per

minute for 2 minutes in order to reduce PETCO2 to approximately

20 mmHg. During the CO2 rebreathing test, subjects took 2 to 3

deep breaths of 7.5% CO2, 60% O2, balance N2, then rebreathed

through ,15-L circuit until PETCO2 rose to above 50 mmHg.

Complete datasets were recorded in 27 subjects and used for

further analysis.

Our entire dataset consisted of data segments from total of 32

subjects where 5 of them were headache patients and 27 of them

were healthy subjects.

Ethics Statement
The five headache patients consented in writing for allowing

their data to be analyzed under the protocol as approved by the

UCLA Internal Review Board. For healthy subjects, after

institutional ethics approval by University of Colorado Anschutz

Medical Campus, potential subjects were screened to identify

those with no histories of head injuries, migraines, smoking, or

medical conditions affected by hypoxia, such as anemia, pregnan-

cy, or hypertension. After obtaining written consent, volunteers

were physically examined and excluded if results revealed

previously undisclosed medical conditions, or if they were not
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able to achieve at least 200 W of effort during an incremental

cycle ergometer test.

An Overview of the MOCAIP Algorithm
MOCAIP is a recently developed paradigm for analyzing

pulsatile signals, e.g. ICP and CBFV [15]. This integrated and

modular pulse analysis framework uses a pulse extraction

technique [11] to segment the continuous signal into a sequence

of individual pulses. Then, in order to handle the practical

problems of noise and artifacts commonly found in clinical signals,

a hierarchical clustering approach [16], different filtration and the

correlation calculation of the extracted pulse with all the pulses of

a reference library of already validated pulses, are employed. A set

of the peak candidates or curve inflections are detected for each

validated pulse and then the three sub-peaks are identified from

these peak candidates by maximizing the probability of observing

the current sub-peaks given the prior Gaussian distributions of the

peaks (learned from the library of valid pulses). Finally, as table 1

summarizes, 128 pulse morphological metrics are extracted using

the identified peaks and troughs of the pulse (a representative

intracranial pulse is shown in figure 1).

Further improvement of each of MOCAIP individual process-

ing blocks has been the focus of some of our recent studies, e.g.

enhancement of the performance of valid pulse recognition

applying a singular value decomposition based algorithm [17,18]

or increase of the accuracy of peak designation using a nonlinear

regression-based method [19], an integrated peak recognition

technique [20], and a non-parametric Bayesian tracking algorithm

[21]. Therefore, the current version of MOCAIP algorithm can be

reliably applied to process continuous signal recordings from real

clinical environment to extract useful morphological features of

the corresponding pulses.

Pulse Morphological Template Matching (PMTM)
Template construction. The core of the PMTM approach

is to obtain the template that defines the expected pulse

morphological change pattern associated with cerebral vasodila-

tation and vasoconstriction. In the present work, we use a training

data set to identify set of MOCAIP metrics that consistently

increase/decrease during vasodilatation but decrease/increase

during vasoconstriction as such a template. The qualification of

this template can be established by the fact that vasodilatation and

vasoconstriction are opposite physiological processes and hence

the direction of change of a valid indicator of vasodilatation or

vasoconstriction should be opposite in these two conditions.

Let us assume that an experiment is first conducted to induce

paired cerebral vasodilatation-vasoconstriction in multiple sub-

jects. Intracranial pulses from episodes of vasodilatation and

vasoconstriction are then analyzed by MOCAIP. A monotonic

trending detection algorithm is used next to determine the

direction of changes for each MOCAIP metric during vasodila-

tation and vasoconstriction, which are coded as 1 or 21

representing ‘‘increase’’ and ‘‘decrease’’, respectively. To proceed,

we define consistent vasodilatation metrics as those that undergo

changes in the same direction across all subjects enrolled in the

experiment during vasodilatation. We define vector VD where

VD(j)~

1
if jth metric consistently increases across

all subjects

{1
if jth metric consistently decreases across

all subjects

0 otherwise

8>>>>>><
>>>>>>:

ð1Þ

to represent for each MOCAIP metric its consistency and the

direction of change. A similar vector VC can be defined for

vasoconstriction. With this definition, we can then identify the

PMTM template as the subset (I) of indices of the MOCAIP

metrics whose corresponding elements in VC and VD have

opposite signs, i.e., I~ i D VD(i)|VC(i)~{1,f i~1, 2, � � � ,
128g.

Figure 1. A representative intracranial pulse with its identified peaks and troughs.
doi:10.1371/journal.pone.0050795.g001
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In summary, VD, VC , and I are the three elements of a PMTM

template. In the next subsection, we describe how to apply a

PMTM template to detect either cerebral vasodilatation or

vasoconstriction.

Application of the template. Let us assume we are given a

segment of an intracranial pulsatile signal and asked whether this

signal is associated with vasodilatation, vasoconstriction, or neither

of them. We define a vasodilatation index (VDI) and a

vasoconstriction index (VCI) as approximate likelihood of

vasodilatation and vasoconstriction, respectively. VDI and VCI

can be calculated following the steps below:

N Apply MOCAIP to analyze this pulsatile intracranial signal

and obtain a time series of MOCAIP metrics.

N Use the same monotonic trending detection algorithm as

adopted in the training phase to determine the existence and

the direction of the change of each MOCAIP metric. The

result can be expressed as a vector X~½ x1 x2 ::: xj :::

x128�T where

xj~

1 if the jth metric has a positive trend

{1 if the jth metric has a negative trend

0 if the jth metric is stable

8><
>:

ð2Þ

Note: a new outcome for trend detection is introduced that is

‘‘stable’’.

N Define D~ iDVD(i)|X (i)~1f g and C~ iDVC(i)|X (i)~1f g.
N Then VDI can be calculated as VDI~

ND\I

NI
, and

VCI~
NC\I

NI
, where Ns denotes the number of elements

within a set S and S1\S2 denotes the intersect of set S1 and

S2.

Monotonic trend detection. In the present work, we

adopted a simple trend detection algorithm. In particular, we

used a robust line fitting algorithm [14] to conduct a weighted least

square fit of each MOCAIP metric time series with a line. In

constructing the PMTM template, we simply take the sign of the

resultant slope to indicate whether the trend is positive or negative

because the consistency or existence of the trend for ithmetric will

be verified by criterion VD(i)|VC(i)~{1. In applying the

template to a new signal segment, we need to first determine

whether a trend exists. This is done by using the p value of the

estimated slope, i.e., a trend exists if the corresponding p value is

less than a pre-set threshold. We will discuss an approach to

determine this threshold later on in the paper. Once establishing

whether a trend exists, the sign of the slope is taken to judge the

direction of the change as needed in equation (2). This algorithm

was also adopted in our recent work [14] and has been shown to

be effective in robustly discovering monotonic trend in MOCAIP

metrics.

Data Analysis and Validation Protocol
Differentiating between cerebral vasodilatation/

vasoconstriction and baseline. The data segments corre-

sponding to the rising edge of CBFV during the CO2 challenge

test of 5 headache patients were treated as vasodilating episodes

while data segments corresponding to the falling edge of CBFV

during post-test measurements were analyzed as vasoconstricting

episodes. These edges can be readily marked because the change

of mean CBFV was significant from the baseline to the maximal

value during CO2 challenge and back from the maximal value to

the baseline once patients started to breathe from the room air.

According to the procedure to build PMTM template as

described before, a pre-set threshold is needed for establishing

whether a MOCAIP metric trend exists. This is handled by

picking the threshold to correspond to the qth percentile of all p

values from line-fitting of all training segments. To explore the

effect of q on the performance of the proposed method, we

changed it as 10th, 30th, 50th, 70th and 90th percentiles. At each q

value, we sweep a threshold from 1 to 0 at a step size of 0.01 to

obtain a binary outcome from VDI/VCI values. This results in

conventional Receiver Operator Characteristics (ROC) curves for

VDI and VCI, respectively. The following parameters were then

calculated from a ROC curve: 1) the area under the ROC curve

(AUC), its standard deviation (SD) and 95% confidence interval

(CI); 2) the partial area under the ROC curve for True Positive

Table 1. The description of 128 metrics derived from the six landmarks detected by MOCAIP algorithm on a pulse of CBFV (The
zero of time axis refers to the timing of R component of electrocardiograph QRS).

Metric group index Notation Description

1 dV1, dV2, dV3, dP1, dP2, dP3 Amplitude of landmark relative to the minimum point prior to initial rise

2 LV1P1, LV1P2, LV1P3, LV2P2, LV3P3 Time delay among landmarks

3 Curvv1, Curvv2, Curvv3, Curvp1, Curvp2, Curvp3 Absolute curvature of each landmark

4 K1, K2, K3, RC1, RC2, RC3 K1, K2, K3 are slope of each rising edge and RC1, RC2, RC3 are time-constants of
each descending edge

5 mCBFV, dias CBFV Mean CBFV and diastolic CBFV

6 LT Time delay of V1 to ECG QRS peak

7 mCurv Mean absolute curvature of the pulse

8 WaveAmp Maximum among dP1 and dP3

9 dPp1p2, …. Ratio among landmark amplitudes

10 LV1P1/LT,… Ratio among time delays

11 Curvv1/Curvv2,… Ratio among curvatures

12 K1/RC1,… Ratio among slopes/RCs

The 28 metrics belonging to group indices of 1 to 8 are called basic metrics, while the remaining 100 metrics (belonging to group indices of 9 to 12 ) are extended
metrics calculated as ratios among basic metrics within each group.
doi:10.1371/journal.pone.0050795.t001
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Rate (TPR) greater than 0.8 (AUC0:8); 3) the value of False

Positive Rate (FPR) when TPR = 0.80 (PFPR). Moreover, the

operational point is determined from a ROC curve as the point on

the curve closest to the point [0, 1]. The threshold value at this

point will be used to provide a binary outcome for a given VDI/

VCI value.

Correlation analysis of VDI and VCI with

cerebrovascular resistance index. It is known that during a

cerebral vasomotor reactivity test such as CO2 rebreathing

(hyperventilation), the dilatation (constriction) of cerebral vessels

would result in a decrease (increase) of cerebrovascular resistance.

To further evaluate the efficacy of the proposed indices (VDI and

VCI) as a measure of vasoreactivity, we also studied the correlation

of the calculated indices and cerebrovascular resistance index

(CVRi); a conventional measure of cerebrovascular resistance. For

this purpose, arterial blood pressure (ABP) pulses of the testing

dataset were delineated similar to those of CBFV and then the

ratios of beat-by-beat mean ABP and mean CBFV were obtained.

DCVRi is computed as the change in the value of CVRi at the

beginning and end of the test (DCVRi~CVRiDend{

CVRiDbegining): Finally, the vector of calculated VDI (VCI) for all

the subjects are correlated with that of DCVRi during CO2

rebreathing (hyperventilation) and the Pearson correlation coeffi-

cients are obtained.

Determining the ground truth for detection of

vasodilatation and vasoconstriction. Since establishing the

ground truth of the vasodilatation and vasoconstriction cases via

direct observation of arterial caliber changes is almost impossible,

for the present work, the ground truth is determined based on the

expected trend of change in PETCO2 and CVRi during

vasodilatation and vasoconstriction. For this purpose, DPET CO2
is computed as the change in the value of observed PETCO2 at the

beginning and end of the test (DPET CO2~PET CO2Dend{

PET CO2Dbegining). In addition, DCVRi is calculated as described

in previous subsection. Then a data segment during CO2

rebreathing is considered as a true vasodilatation case unless both

PETCO2 and CVRi for that data segment do not follow the

expected trend of increasing and decreasing, respectively

(DPET CO2ƒ0 and DCVRi§0 ). Similarly, a data segment

during hyperventilation is considered as a true vasoconstriction

case unless DPET CO2§0 and DCVRiƒ0.

Comparison with critical closing pressure and resistance

area product. We compare the performance of the proposed

method of detection of vasoreactivity using VDI/VCI with that of

two other conventional hemodynamic metrics, i.e. resistance area

product (RAP) and critical closing pressure (CCP). For this

purpose, beat-by-beat RAP and CCP values are calculated by

applying first harmonic fitting technique [23] to ABP and CBFV

pulses of testing dataset. Then, DRAP and DCCPare computed

by subtracting the RAP and CCP values at the beginning of the

data segment from that at the end of the data segment. Finally, the

ROC curves of vasoreactivity are obtained by applying 100

equally spaced threshold points (swept from the minimum to

maximum values of DRAP and DCCP) to compute binary

outcomes for detection of vasodilatation and vasoconstriction.

These ROC curves are compared with those of the proposed

method.

The effect of the selection of training dataset. We

compare the performance between using the template constructed

from the headache patients and that from the normal subjects.

This is done by fixing the number of training subjects to be 5 and

then randomly sample a sets of 5-subject training data from all

qualified normal subjects, i.e., those with both validated episodes

of vasodilatation and vasoconstriction. The performance of using

the template from normal subjects will be the average of the

performance metrics from these a sets.

We also test the influence of varying the number of subjects in

the training dataset on the size of the obtained template (number

of consistent MOCAIP metrics in the template) and accuracy of

vasoreactivity detection. For this purpose, we merge the data from

headache patients and normal subjects and then use an increasing

number of training subjects to build the template and test it on the

remaining subjects. Again, we randomly pick at most a sets of n-

subject training data where n ranges from 1 to total number of

qualified subjects. If possible number of permutations is less than

a, all permutations are used.

Results

The duration of the collected CBFV data for the headache

patients was (4:2+1:1minute). This data included

(0:4+0:2minute) of resting baseline, (2:6+0:6minute) of CO2

challenge test and (1:2+0:9minute) of post-test measurements.

The percentage of change in the mean CBFV value from resting

to CO2 challenge test was 43:8%+5%, indicating a significant

cerebral vasodilatation during the challenge test. The collected

data for the healthy subjects included (5:7+1:3min) of resting

baseline, (4:1+0:7min) of CO2 rebreathing and (2:4+0:7min) of

hyperventilation.

The plot of the calculated VDI for testing data segments of CO2

rebreathing and baseline measurements over their corresponding

level of change in PETCO2 (figure 2-a) demonstrates that an

increase in the level of PETCO2 is accompanied by an increase in

the calculated VDI. (Correlation coefficient of 0.82 andpv10{5).

Similarly, as figure 2-b demonstrates, a decrease in the value of

PETCO2 during hyperventilation results in an increase in the value

of calculated VCI (correlation coefficient of 20.75 andpv10{5).

Following the procedure described before, the ground truth for

detection of vasodilatation and vasoconstriction were determined

by studying the trend of change of PETCO2 and cerebrovascular

resistance index during CO2 rebreathing and hyperventilation

episodes. This investigation revealed that during CO2 rebreathing

test PETCO2 increases (for at least 5 mmHg) for all the subjects in

the study (figure 2-a), except for subject #4 whose data point is

highlighted with bolder triangle on that figure. Moreover, the

calculated CVRi for this subject does not follow the expected

decreasing trend during CO2 rebreathing (figure 3-c). As CO2 is a

potent cerebral vasodilator, we conclude that the data segment of

this subject during CO2 rebreathing is not a valid representation of

a vasodilatation event. Similarly, we observe that 11 subjects had

an unexpected increase in the level of PETCO2 during hyperven-

tilation (highlighted with bolder triangle points on figure 2-b). We

believe that these subjects had difficulty with long periods of

hyperventilation. They started the hyperventilation with a correct

breathing rate, but after a while, they got fatigued and light-

headed. So they began to breathe more slowly to accommodate

and as a result, their PETCO2 drifted back up. Investigating the

trend of CVRi during hyperventilation reveals that in fact for 10 of

these subjects, the calculated cerebrovascular resistance index also

did not demonstrate an increasing trend expected during a

vasoconstriction event (figure 4-b and 4-d show the PETCO2 and

CVRi for one of the 10 subjects). Therefore, the data segments of

these 10 subjects during hyperventilation could not be a valid

representative of a vasoconstriction episode. In summary, based on

our determined ground truth, only 16 healthy subjects had both

validated data segments of vasoconstriction and vasodilatation.

The ROC curves for detection of vasodilatation employing the

determined ground truth are plotted in figure 4-a and the related

Cerebral Vasodilatation/Vasoconstriction Detection

PLOS ONE | www.plosone.org 5 November 2012 | Volume 7 | Issue 11 | e50795



Figure 2. Correlation analysis of the proposed vasoreactivity indices and the level of change of PETCO2 (DPET CO2); (a) calculated
vasodilatation index (VDI) over DPET CO2 for all 27 subjects during baseline and CO2 rebreathing measurement; (b)
calculated vasoconstriction index (VCI) over DPET CO2 for all 27 subjects during baseline and hyperventilation
measurement.
doi:10.1371/journal.pone.0050795.g002

Figure 3. Examples of invalid data segments during CO2 rebreathing and hyperventilation; (a) non-increasing trend of PETCO2 for
subject #4 during CO2 rebreathing; (b) non-decreasing trend of PETCO2 for subject #3 during hyperventilation; (c) non-decreasing
trend of cerebrovascular resistance index (CVRi) for subject #4 during CO2 rebreathing; (d) non-increasing trend of CVRi for
subject #3 during hyperventilation.
doi:10.1371/journal.pone.0050795.g003
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calculated parameters are presented in table 2. We observe that

although the estimated area under the ROC curves for different

values of q (as explained earlier in the paper) are all above 0.97

and have small standard deviations, the proposed method seems to

perform the best when q~90th percentile. The calculation of the

operational point for the ROC curve of q = 90 results in a FPR of

0.10 and TPR of 0.92 at detecting cerebral vasodilatation using

VDI .0.53. Similarly, the ROC curves and their related

parameters for detection of vasoconstriction are demonstrated in

figure 4-b and table 3, respectively. For the ROC curve of q = 90,

the area under the curve is 0:90+0:05 and the calculation of the

operational point results in a FPR = 0.08 and TPR = 0.82 at

detecting cerebral vasoconstriction using VCI .0.53.

The plot of the calculated VDI (VCI) for testing data segments

of CO2 rebreathing (hyperventilation) and baseline measurements

over their corresponding level of change in CVRi (figure 5) shows

that a higher change in the CVRi during CO2 rebreathing

(hyperventilation) would correspond to higher values of VDI

(VCI). The correlation coefficient between VDI (VCI) and DCVRi
during CO2 rebreathing (hyperventilation) is 20.74 (0.62) with

pv10{5.

Figure 6 illustrates the result of detection of vasodilatation and

vasoconstriction employing the proposed vasoreactivity indices

with q = 90 and two other conventional hemodynamic metrics

(RAP and CCP). We observe that the ROC curve of the proposed

method is above the other two. In fact, the areas under the ROC

curves for detection of vasodilatation using the proposed method,

RAP and CCP are 0.98, 0.91 and 0.65, respectively. For

vasoconstriction, these areas are 0.90, 0.63 and 0.71, respectively.

Therefore, the proposed method outperforms the other two by at

least 7% for vasodilatation and 19% for vasoconstriction.

The investigation of the effect of the selection of the training

dataset on the detection of cerebral vasodilatation with a~300
resulted in AUCVasodilattion~0:97+0:01 and AUCVasodilattion~
0:98+0:01, for the training dataset of 5 headache subjects

(template size of 49 metrics) and 5 healthy subjects (average

Figure 4. Detection of vasodilatation and vasoconstriction applying the proposed method on the testing dataset; (a) ROC curves
for detection of vasodilatation; (b) ROC curves for detection of vasoconstriction. ROC curves are obtained using 10th, 30th, 50th, 70th and
90th percentile of the probabilities of t-statistics (calculated from the regression lines fitted to the data points of the corresponding metric) over the
subjects in the training dataset. Each point on the ROC curve is resulted from systematically changing the threshold yD from 1 to 0 with decremental
steps of 0.01.
doi:10.1371/journal.pone.0050795.g004

Table 2. The calculated parameters for the ROC curves of
detection of vasodilatation (figure 2-b) applying the proposed
method on the testing dataset.

q 10 30 50 70 90

AUC* 0.97(0.02) 0.97(0.02) 0.97(0.02) 0.97(0.02) 0.98(0.01)

CI** (0.92,1) (0.92,1) (0.92,1) (0.93,1) (0.94,1)

AUC0:8
x 0.97 0.97 0.97 0.97 0.98

PFPR
xx 0 0 0 0 0

*Area under the ROC curve.
**95% confidence interval.
xPartial area under the ROC curve for 0:8ƒTPRƒ1.
xxValue of FPR when TPR~0:8.
doi:10.1371/journal.pone.0050795.t002

Table 3. The calculated parameters for the ROC curves of
detection of vasoconstriction (figure 3-b) applying the
proposed method on the testing dataset.

q 10 30 50 70 90

AUC* 0.84 (0.06) 0.88(0.05) 0.85(0.06) 0.86(0.06) 0.90(0.05)

CI** (0.72,0.97) (0.76,0.99) (0.72,0.97) (0.74,0.98) (0.79,1)

AUC0:8
x 0.75 0.78 0.78 0.79 0.87

PFPR
xx 0.16 0.16 0.16 0.16 0.08

*Area under the ROC curve.
**95% confidence interval.
xPartial area under the ROC curve for 0:8ƒTPRƒ1.
xxValue of FPR when TPR~0:8.
doi:10.1371/journal.pone.0050795.t003
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Figure 5. Correlation analysis of the proposed vasoreactivity indices and cerebrovascular resistance index change (DCVRi); (a)
calculated vasodilatation index (VDI) over DCVRi during CO2 rebreathing; (b) calculated vasoconstriction index (VCI) over DCVRi

during hyperventilation.
doi:10.1371/journal.pone.0050795.g005

Figure 6. Comparison of vasoreactivity detection performance using the proposed vasoreactivity indices and two other
conventional hemodynamic metrics; resistance area product (RAP) and critical closing pressure (CCP); (a) vasodilatation; (b)
vasoconstriction.
doi:10.1371/journal.pone.0050795.g006
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template size of 19 metrics), respectively. The same analysis for

detection of vasoconstriction resulted in

AUCConstriction~0:90+0:02 and AUCConstriction~0:85+0:02 for

the training dataset of 5 headache subjects versus that of 5 healthy

subjects. We observe that the selection of the healthy subjects for

the training dataset may slightly improve the detection of

vasodilatation, but it worsens the detection of vasoconstriction.

Figure 7-a illustrates the effect of the size of the training dataset

on the performance of the proposed method. As the number of

subjects in the training dataset increases the accuracy of the

detection of vasodilatation increases from 0.84 (when R = 1) to

0.92 (for R = 6), but then further enlargement of the training

dataset does not affect the performance of detection. Similarly the

initial enlargement of the training dataset (up to R = 6) improves

the accuracy of detection of vasoconstriction, and then the

performance slightly degrades (with a rate less than 1% per added

subject) till R = 13. For13vRƒ16, the performance enhances (by

rate of 2% per added subject) and again starts to decrease with

slow rate of 1% per added subject.

Figure 7-b shows the size of the largest template obtained from a

training dataset of n-subject (n = 1,…,21). We observe that when

all 21 subjects are included in the training dataset, our PMTM

template would consist of only 2 MOCAIP metrics (mean ICP and

diastolic pressure point). But by excluding one subject from the

training dataset (in this case normal subject # 15), the PMTM

template size increases to 9 at its largest (for n = 20) and includes 6

metrics with an increasing/decreasing trend during vasodilata-

tion/vasoconstriction (dP2, dV2, mICP, diasP, K1/RC1, RC3/

RC1) and 3 metrics with decreasing/increasing trend during

vasodilatation/vasoconstriction (dV1/dV2, dP1/dV2 and RC1/

RC2). Further exclusion of another subject (normal subject #27)

from the training dataset results in a larger PMTM template of 12

metrics (for n = 19) which includes three latency ratio metrics

(LV1P1/LV1P3, LV1P1/LP1P3 and LV1P3/LP1P3), in addition to the

aforementioned 9 metrics. We conclude that these 12 metrics are

good indicators of vasoreactivity. In fact, detection of vasodilata-

tion and vasoconstriction employing the proposed method with

this template (of 12 metrics) and the comparison threshold of (VDI

or VCI.0.57) results in accuracy of 94% and 88%, respectively.

Please note that excluding more number of subjects from the

training dataset would produce a larger template, but aiming at

obtaining a template made from a large training dataset with good

accuracy for detection of vasoreactivity, the aforementioned

template of 12 metrics seems to be a reasonable solution.

Discussion

In the present work, two CBFV-based novel indices (VDI and

VCI) have been proposed to for real-time detection of cerebral

arterial vasodilatation and vasoconstriction, respectively. These

two indices in essence quantify the matching degree between a

template, which is a set of common CBFV pulse morphological

metrics that consistently increase/decrease during a vasodilatation

or vasoconstriction process for a set of training subjects, and the set

of morphological metrics that increase/decrease for a testing

CBFV segment. The results (figures 4-a and 4-b) showed that these

two indices can detect vasodilatation and vasoconstriction with an

accuracy of 0.92 and 0.82, respectively.

Intracranial Pulse Morphology and the Cerebral Vascular
Changes

The proposed PMTM method fundamentally departures from

existing approaches of characterizing cerebrovascular changes in

terms of avoiding both simplified assumptions of the cerebral

hemodynamics that are needed in model based approaches [7]

and approximating cerebral arterial blood pressure using extra-

Figure 7. The effect of training dataset on the detection of vasoreactivity; (a) accuracy of the detection of vasodilatation and
vasoconstriction for different number of subjects in the training dataset; (b) The size (number of consistent MOCAIP metrics) of the
largest template obtained from a training dataset of n-subject where n = 1,…,21.
doi:10.1371/journal.pone.0050795.g007
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cranial systemic blood pressure [24,25].Instead, the PMTM

heavily depends on characterizing morphological changes of

intracranial pulse waveforms to detect cerebrovascular changes.

Intracranial pulses such as ICP and CBFV originate from the

transmitted systemic pulses and are under the influence of the

cerebrovascular changes. Acute changes in the diameter, tone, and

compliance of the cerebrovascular are reflected in the changes of

the pulse shape. However, an analytic description of how the

shape changes are related to cerebrovascular changes does not

exist. Hence, the PMTM uses a data-driven approach to establish

a template that characterizes the expected changes of pulse

morphology in terms of 128 metrics derived from MOCAIP

analysis. In this way, the accuracy of detecting cerebrovascular

changes will only depend on the quality of the training data that

implicitly define the changing patterns of pulse morphology in

response to cerebrovascular changes, which are acute cerebral

vasodilatation and vasoconstriction as studied in the present work.

Indeed, some metrics of pulse morphology of systemic arterial

blood pressure pulses have been already used to characterize

properties of the systemic arterial bed such as compliance and

resistance [26,27]. However, a single metric may not be sufficient

to reflect complex morphological patterns associated with acute

cerebral vascular changes. There are indications in our previous

studies that intracranial pulse morphological metrics are able to

reflect cerebral vascular and hemodynamic changes. In a study of

using ICP pulse waveforms to classify cerebral perfusion status

[28], it was found that elevation of the third peak of an ICP pulse

may be associated with low global CBF. In a recent study [14], we

have reported the existence of consistent changes of ICP pulse

waveforms induced by hypercapnic cerebral vasodilatation.

Further evidence of the potential of using pulse waveform

changes to inference cerebral vascular changes has been obtained

in our investigation of the association between ICP pulse

waveform changes and cerebral Lactate Pyruvate ratio (LPR)

increase [29]. The present work is built upon these existing studies

by proposing an algorithm to conduct the detection of vasodila-

tation and vasoconstriction using only intracranial pulse morpho-

logical features.

Performance of PMTM
Performance of the PMTM was rigorously studied using two

independent data sets. Using the template built from five patients

with severe headache undergoing CO2 challenge test, the

performance of detecting vasodilatation for 27 normal subjects

achieved a TPR of 0.92 and a FPR of 0.10. Detecting

vasoconstriction has an inferior TPR of 0.82. It is inherently

challenging to establish the ground truth of the vasodilatation and

vasoconstriction cases because a direct observation of arterial

caliber changes is almost impossible. In the present work, we

primarily rely on the well-known physiological influence of CO2

on dilating the cerebral arteries to identify true vasodilatation

cases. However, it is more ambiguous to identify true vasocon-

striction cases from the hyperventilation dataset. We therefore use

a conventional metric CVRi as a cross-reference to filter out some

obviously false vasoconstriction cases. This practice may result in a

large amount of uncertain vasoconstriction cases and eventually

affect the performance of VCI.

On the other hand, it is important to point out that the

proposed approach will never misclassify a vasodilatation case for

a vasoconstriction case and vice versa. This can be guaranteed by

using a threshold greater than 0.5 on VDI and VCI because the

summation of VDI and VCI is strictly less or equal to one. This

means that an inquiry data segment can only be judged to be

either a vasodilatation case or a vasoconstriction case. Indeed,

ROC curve analysis shows that the operating threshold for both

VDI and VCI is slightly greater than 0.5.

Training Data Set
Employing the training dataset of headache subjects (versus

healthy subjects) resulted in a higher performance of detection of

vasoconstriction, while it did not significantly affect that of the

vasodilatation. While the template obtained from the training

dataset of five headache subjects included 49 MOCAIP metrics,

the average number of such metrics (over 300 selected copies of

trainings) for 5 healthy subjects was 19:13+7:11. This result

indicates that that the changes of CBFV pulse morphology in

response to vasodilatation/vasoconstriction in the headache

subjects were more consistent than those of the healthy subjects.

Moreover, it is possible that even some of the 16 normal subjects

with the expected decreasing trend in the level of PETCO2 were

unable to maintain the target rate and/or depth of breathing

during the hyperventilation phase to cause a significant vasocon-

striction (e.g. subject# 15 and 27 from figure 7-b). So training

dataset of healthy subjects (specially the vasoconstriction segments)

may not result in an accurate representation of the pulse

morphology templates and this can cause a degraded performance

for detection of vasoconstriction.

Enlargement of the training dataset may have a two-fold effect

on the performance of the proposed method of detection; adding

more subjects to the training dataset may increase the accuracy of

detection of vasodilatation/vasoconstriction by diversifying the

training set, but it may also impair the performance by limiting the

number of metrics in the PMTM template (As the training dataset

become larger, the number of consistent metrics over all subjects

decreases). Our results show that size of the training dataset does

not affect the good performance of the detection of vasodilatation

as long as it includes the data of at least 5 subjects. Moreover,

although the performance of detection of vasoconstriction may

slightly change depending on the size of the training dataset, the

level of change is small (less than 1% decrease in accuracy per

added subject).

Finally, the PMTM template of 12 metrics (dP2, dV2, mICP,

diasP, K1/RC1, RC3/RC1, LV1P1/LV1P3, LV1P1/LP1P3, LV1P3/

LP1P3, dV1/dV2, dP1/dV2 and RC1/RC2) was obtained from a

training dataset of 19 subjects and demonstrated a high accuracy

in detection of vasoreactivity. Therefore, this template is a

recommended template to be prospectively evaluated for future

studies.

Potential Limitations of the Approach
Simple monotonic trend detection is currently used to build the

PMTM template. This apparently cannot handle more complex

changes of MOCAIP metrics in response to cerebral vasodilatation

and vasoconstriction. Furthermore, the amount and the rate of

change of MOCAIP metrics are not considered in the template

building process. However, it can be also argued that adopting a

simple trending pattern is a key reason for success in determining a

set of consistent metrics to form the template because such a

simple pattern is more likely to be shared by different subjects

given the complex relationship between CO2 and CBFV exists in

individual subjects [30].

To realize the full potential of achieving a continuous detection

of acute cerebral vascular changes by the bedside, further studies

are needed to test the proposed method and determine its efficacy

in TBI and SAH patients undergoing neurocritical care. To be

able to continuously monitor cerebral vasoreactivity, ICP pulse is

more appropriate and this would require the construction of an

ICP template following the same approach descried here for
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CBFV pulses. In addition, a new set of training data may be

required to build the template when applying the proposed

method to different patient populations.
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