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Abstract

The availability of complete pathogen genomes has renewed interest in the development of diagnostics for infectious
diseases. Synthetic peptide microarrays provide a rapid, high-throughput platform for immunological testing of potential B-
cell epitopes. However, their current capacity prevent the experimental screening of complete ‘‘peptidomes’’. Therefore,
computational approaches for prediction and/or prioritization of diagnostically relevant peptides are required. In this work
we describe a computational method to assess a defined set of molecular properties for each potential diagnostic target in
a reference genome. Properties such as sub-cellular localization or expression level were evaluated for the whole protein. At
a higher resolution (short peptides), we assessed a set of local properties, such as repetitive motifs, disorder (structured vs
natively unstructured regions), trans-membrane spans, genetic polymorphisms (conserved vs. divergent regions), predicted
B-cell epitopes, and sequence similarity against human proteins and other potential cross-reacting species (e.g. other
pathogens endemic in overlapping geographical locations). A scoring function based on these different features was
developed, and used to rank all peptides from a large eukaryotic pathogen proteome. We applied this method to the
identification of candidate diagnostic peptides in the protozoan Trypanosoma cruzi, the causative agent of Chagas disease.
We measured the performance of the method by analyzing the enrichment of validated antigens in the high-scoring top of
the ranking. Based on this measure, our integrative method outperformed alternative prioritizations based on individual
properties (such as B-cell epitope predictors alone). Using this method we ranked *10 million 12-mer overlapping peptides
derived from the complete T. cruzi proteome. Experimental screening of 190 high-scoring peptides allowed the
identification of 37 novel epitopes with diagnostic potential, while none of the low scoring peptides showed significant
reactivity. Many of the metrics employed are dependent on standard bioinformatic tools and data, so the method can be
easily extended to other pathogen genomes.
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Introduction

Infectious diseases remain a major public health problem

worldwide. Several intervention and control strategies have been

devised throughout the years to manage these complex diseases. In

this scenario, immunodiagnostics have been, and still are, essential

tools for demonstrating infection, for follow up studies (clinical

management, prognosis of a disease), and as tools to monitor

success of control strategies, and to support infection surveillance

campaigns [1]. Particularly in the case of intracellular pathogens,

the most straight-forward strategies for immunodetection of

pathogens usually rely on the detection of antibodies that bind

to whole-parasite extracts or some fraction of a parasite, e.g. a

flagellar fraction. These methods, however, suffer from specificity

problems, as cross-reactive antibodies are common, confounding

the diagnostic and often requiring additional (and perhaps more

complex) diagnostic tests.

Development of new diagnostics is partly limited by the

availability of well characterized antigens. Peptide scanning is a

widely used technique for mapping linear epitopes in a protein

antigen [2–5]. The recent availability of peptide microarray

platforms allow rapid and inexpensive high-throughput serological

screenings [6]. This, coupled with the increasing number of

complete pathogen genomes, means that it is now theoretically

possible to identify immunodominant linear epitopes by scanning

all predicted protein sequences using a similar approach. For

pathogens with small genomes – e.g. viruses and small bacteria – it

is therefore straightforward to synthesize and test the presence of

antibodies directed against thousands of individually addressable

peptides, that in concert represent the whole proteome. However,

this approach cannot be applied directly to bigger bacterial or

eukaryotic genomes, given their larger proteomes. Therefore

computational methods are required to filter down the list of

candidate peptides to be tested, while at the same time enriching

them in potentially reacting epitopes.
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The challenge for this bioinformatic exercise is thus to identify,

within a given proteome, those peptides that could be good targets

for a B-cell response. The problem of B-cell epitope prediction,

refers to the identification of regions in an antigen that are

recognized by the corresponding binding site (‘‘paratope’’) of

antibodies. Over time, a number of algorithms have been

developed for the computational prediction of B-cell epitopes.

[7–15] However, perhaps with the exception of immunodominant

epitopes, the set of epitopes recognized by a polyclonal sera is not

independent of the method of immunization (e.g. artificial

immunization vs. natural infection), immunized species, use of

adjuvants, etc. As a consequence, prediction of diagnostic epitopes

in the context of a particular disease or infection is a more complex

problem, where many additional constraints apply, such as

mechanism of entry of the infectious agent, expression pattern of

parasite proteins (when, where, abundance) amongst others. All

these additional variables affect the outcome of the immune

response, and may explain the variability in responses observed,

for example, against the same protein in different species [3].

A number of successful antigen discovery efforts have been

published recently, in which a computational strategy guided the

selection of candidates for experimental validation. In Trypanosoma

cruzi (a unicellular protozoan), Goto Y et al [16] identified and

experimentally validated 8 antigens by searching for proteins

bearing large tandem repeats; Cooley and coworkers [17]

performed a high-throughput serological screening of T. cruzi

proteins, prioritizing their candidates by known expression in

relevant lifecycle stages, proteomic evidence and secretion or

surface exposure likelihood. In this latter study, and starting from

400 proteins expressed in an heterologous system, the authors

identified 39 promising antigens for further testing, and selected 16

for a multi-bead assay. In Echinococcus (a metazoan) List et al.

described a bioinformatic filtering strategy, where they targeted

alpha helical coiled-coils and intrinsically unstructured regions in

secreted or surface-exposed parasite proteins [18]. Starting from

11 proteins from two Echinococcus species they identified 45

candidate peptides between 24 and 30 amino acids in length that

were then screened using peptide microarrays. These papers

provide a proof of principle for the discovery of diagnostically

relevant large peptides using a computational selection.

However, we argue that many additional criteria can be

integrated and exploited in a computational strategy to further

guide the process of diagnostic peptide discovery. Firstly, we

consider that there are significant advantages in using a peptide-

level prioritization, as opposed to a protein selection process

followed by peptide selection. Furthermore, we propose a feature

weighting approach, in contrast to a strict filtering strategy that

excludes targets/peptides that don’t match the specified criteria.

For this exercise, we chose to use the genome of the protozoan

parasite Trypanosoma cruzi, the causative agent of Chagas Disease,

for a number of reasons. Firstly, the genome size of T. cruzi is large

and complex for a protozoan parasite. Furthermore, this is an

interesting biological model for the application of a diagnostic

peptide discovery strategy, not only due to its high health impact

and the need for novel diagnostics [19], but also because many

antigens have already been described which can be used either to

identify predictive features or to assess our method’s efficacy.

Chagas disease is endemic in 18 countries in Central and South

America, affecting up to 8 million individuals [20]. Vectorial

transmission of the disease occurs in endemic countries through

the bite of some hematophagous insects, or by consumption of

food exposed to secretions from infected insects [21]. However, in

non-endemic countries transmission mother-to child, blood

transfusion, and organ transplantation also occurs. Diagnosis of

the disease is challenging, because T. cruzi human infection evolves

into a chronic stage where circulating parasites or their products

are difficult to detect. In addition, serological diagnostic tests can

be misleading due to cross-reactivity with other related protozoan

pathogens that are geographically overlapped, such as Leishmania

spp. (causative agent of Leishmaniasis) and T. rangeli (a south

American trypanosome that does not cause disease). Currently, a

‘‘conclusive’’ diagnosis of T. cruzi infection is reached only after

multiple serological tests [19], and there are urgent needs to

develop new diagnostics that can be used in the early detection of

congenital infections, to monitor blood banks and drug treatments

in clinical studies.

In this work we present a comprehensive computational strategy

for the discovery of diagnostically relevant peptides that can be

applied to large genomes. We demonstrate the utility of our

method by predicting candidate diagnostic epitopes starting from a

complete eukaryotic genome.

Results and Discussion

Devising a computational strategy for diagnostic peptide
prioritization

The main driving idea behind this computational exercise was

to learn from known validated antigens and use this knowledge to

find new candidate diagnostic markers. However, although the

number of known antigens in our case study is reasonable (Chagas

Disease, *30 validated antigens), it is still a limited dataset to

perform an unbiased learning exercise (e.g. using a machine-

learning type of algorithm or a regression analysis). Therefore we

decided to implement a prioritization strategy in which the

selection of features and their weights was done manually (and

may be subjective to some extent).

Ideally, as a result of this strategy we would like to end up with

peptides containing continuous (linear) B-cell epitopes from an

immunogenic protein that is also expressed by the pathogen

during infection in a human host.

One other major constraint that our method had to take into

consideration was derived from our choice of experimental

screening platform. In our case, we decided to perform high-

throughput B-cell epitope discovery and mapping experiments.

Therefore, peptide microarrays were a natural choice mostly

because of their good benefit-cost ratio, in comparison with, e.g.

protein microarrays. Peptide microarrays display short peptides

(usual length is 10–20 residues) deposited or directly synthesized

on a solid support. As in phage display, these arrays reveal the

binding of pathogen-directed antibodies to linear peptides that are

either present in a similar linear conformation in the parent

protein, or that mimic structural features of the epitope [22].

Based on these initial ideas and requirements, we started to

define desirable and undesirable properties or features for

inclusion in our computational biomarker discovery method.

These are shown in Table 1. The table lists some properties that

are assessed at the whole-protein level (e.g. protein expression,

abundance) and others that are assessed at the level of short

peptides (e.g. antigenicity, internal aminoacid repeats) or even at

the level of individual residues (presence of non-synonymous

polymorphisms). These will be described to some extent next.

Assessment of the exposure of candidate antigens during

an infection. The first properties we considered in our method

were related to the expression, abundance, and subcellular

localization of the proteins carrying the identified antigenic

epitopes. Intuitively, a diagnostic epitope should be present in an

abundant protein located either at the pathogen’s surface, or

secreted during the initial stages of infection; therefore maximizing
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early exposure of the protein to B-cells in the host. The utility of

these criteria for selecting candidate antigens has been demon-

strated recently by Liang et al. using full proteome microarrays

containing Brucella melitensis proteins [23].

Abundance of pathogen proteins was assessed using a number

of complementary strategies and datasets. From a diagnostics

perspective, relevant proteins are those expressed by the life cycle

stages of the pathogen that occur in the mammal host (in the case

of T. cruzi these are the trypomastigote and amastigote stages).

Proteomic data is available for all T. cruzi life cycle stages

(successfully exploited for diagnostic marker discovery by Cooley et

al. [17]). These data allows the identification of mass spectra

(corresponding to peptides obtained after proteolytic digestion)

and their relative abundance. However, the main drawback of

these data is their low coverage. After grouping allelic copies and

paralogues, we were able to obtain trypomastigote/amastigote

expression (and abundance) information for only 649 proteins

(7.5% of the predicted proteome, includes proteins with at least 1

mass spectra) or 349 (4% of the predicted proteome, when

considering proteins with at least 2 mass spectra from at least 2

distinct peptides).

An alternative approach to estimate and compare expression

levels for the entire proteome, takes advantage of evidence

showing that gene copy number and codon usage are correlated

with protein expression levels in trypanosomes [24]. Due to the

limited gene regulation at the transcriptional level [25] it has been

suggested that synonymous codon usage may have an important

role in controlling protein abundance in trypanosomatids. Using a

set of highly expressed tandem-repeated genes that displayed a

strong synonymous codon usage bias, Horn has shown that there is

a significant correlation between this biased codon usage and

protein abundance in T. cruzi [24]. Using the same dataset, we

calculated a Codon Adaptation Index (CAI, see Methods) for all

protein coding genes. This index is a measure of how similar the

codon usage of a given gene is in comparison with the biased

codon usage derived from the set of highly expressed genes.

Therefore, it provides indirect evidence for protein abundance in

any life stage. For the final scoring of protein abundance we

derived a composite ‘‘protein expression index’’ (PEI) score that

combines the proteomic data (counts of mass-spectra normalized

over protein length), gene copies (paralogues) numbers, and CAI

(see Methods).

The most probable subcellular localization of proteins was

assessed using standard bioinformatic tools (see Table 1 and

Methods). Using these tools, we identified proteins that contain

classic ER-secretory route signals, membrane attachment signals

(e.g. glycosylphosphatidyl inositol anchors), and trans-membrane

domains. To prioritize diagnostic targets, we derived a composite

‘‘Cellular Surface Localization Index’’ (CSLI) based on these

predictions (see Methods). Proteins with positive predictions for

membrane/secretory route localization are usually synthesized in

the cell as pre-proteins, that are later cleaved to remove N-

terminal (ER or mitochondrial signal peptides) or C-terminal

(trailing end after GPI anchor addition) peptides. These peptides

are not present in mature protein products. Therefore, at the

peptide level, we also used data from these predictions to penalize

these regions in our peptide prioritization strategy (see ‘‘Integra-

tion’’ section below).

Other regions that, although present in a mature product, are

probably not available for B-cell receptors are highly hydrophobic

sequences (e.g. those located in buried trans-membrane domains)

or those covered by post-translational modifications, such as those

that are O-glycosylated. These regions were similarly identified

and scored by our method (see Table 1 and Methods).

Predicting the potential antigenicity and immunogenicity

of proteins and peptides. From the standpoint of a serological

Table 1. Features, Attributes and Tools.

Feature Basis Method Weight (Score)

Cellular Surface Localization Index (CSLI) Potentially secreted/surface protein SignalP, DGPI Positive, Large (5)

Protein Expression Index(PEI) Timing and abundance of expression Proteomic data, Codon
Usage Bias, Gene copy number

Positive, Large (5)

Predicted B-cell epitopes Antigenicity Bepipred Positive, Medium (3)

Internal Aminoacid Repeats Immunogenicity Trust Positive, Medium (3)

Extracellular domain of integral membrane protein Surface Localization TMHMM Positive, Low (1)

Trans-membrane domain Low accessibility TMHMM Negative, Large (25)

Natively unstructured region Selection of linear epitopes IUPred Positive, Medium (3)

High local sequence similarity agains host proteins Low immunogenicity FASTA Negative, Large (25)

High local sequence similarity against related
pathogens

Misleading diagnosis FASTA Negative, Large (25)

Protein has an additional domain not present
in other orthologs

Potential immunogenic domain BLASTP/Perl Positive, Large (5)

Potentially glycosylated regions Avoid post-transcriptional modifications NetOGlyc Negative, Low (21)

Regions with very low sequence complexity Low specificity SEG Negative, Large (25)

Region upstream of Signal peptide cleavage residue Absent in mature protein SignalP Negative, Large (25)

Region downstream of GPIanchor addition residue Absent in mature protein DGPI Negative, Large (25)

Intra-species genetic diversity(polymorphic residues) Non conserved peptides TcSNP Database Negative, Large (25)

Cysteine in peptides Synthetic peptides are sensitive to
oxidation and cyclization

Custom Perl Script Negative, Large (25)

The Table lists features evaluated by our computational pipeline, the basis for their selection and method for calculation. The numerical weight (score) listed for each
features is applied to modulate the contribution of each attribute to the final peptides scores.
doi:10.1371/journal.pone.0050748.t001
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diagnostic method, our interest is focused on identifying markers

that are able to elicit a strong antibody response. A number of

predictive algorithms have been developed over time to identify

antigenic regions of proteins from their primary structure based on

aminoacid propensity scales [7,26–30]. The performance of these

original methods however, was marginally better than random

[31]. Computational prediction of B-cell epitopes is still an active

research field and a number of state of the art predictors show

improved performance [8,9,11–15], however, prediction accura-

cies are still not satisfactory. Here we are interested in identifying

B-cell epitopes recognized by naturally infected humans, which

could represent a special subset of all known epitopes. However,

current B-cell epitope predictors are trained on epitopes derived

from heterogeneous experimental conditions (e.g. the AntiJen

dataset [32]) including many cases in which laboratory animals

were immunized with relatively large doses of highly purified

antigens. It has been described that humoral responses against the

same antigen can differ between species (human, rat, mouse, dog,

rabbit, etc.) [3,33] but also between members of the same species

(significant variability in individual B-cell epitopes reactivity has

been reported in pulmonary tuberculosis and toxoplasmosis

[34,35]). This variability may be explained for example, by the

genetic background of the immunized host, and its immunological

memory (previous exposure to different antigens). Despite all these

drawbacks, state of the art B-cell epitope predictors are indeed

capturing some signals shared by these heterogeneously deter-

mined epitopes. For example, immunodominant epitopes, ‘‘seen’’

across different species and experimental conditions, could

represent a dataset with such shared features.

In our bioinformatic method, we include results of predictions

from one state-of-the-art B-cell epitope predictor (Bepipred) [8].

However, based on our assessment of its performance we gave a

moderate weight to its overall contribution to our own prioriti-

zation method (see Table 1).

Aminoacid tandem repeats as surrogate markers of

immunogenicity. Another feature that contributes to a protei-

nâ’s immunogenicity is the presence of tandem repeats, defined as

two ore more copies of an aminoacid sequence. Particularly in the

case of tandemly-repeated, short, aminoacid sequences, it has been

demonstrated that the overall immunogenicity of proteins

harboring these repeats is increased, as well as the antigenicity

of epitopes contained within these repetitive units [36–39]. In the

case of T. cruzi many of the currently validated protein antigens are

repetitive. SAPA (Shed Acute Phase Antigen) is the repetitive C-

terminal domain of a number of members of the trans-sialidase

superfamily [3]; the Surface Antigen 2 (CA-2) is another well

validated antigen that is composed almost entirely of imperfect

repeats [40]. The presence of tandem repeats as an indicator of the

potential immunogenicity of proteins was validated to some extent

in T. cruzi in previous works. Out of 9 repetitive proteins assayed,

Goto and coworkers showed that 8 of these were recognized

specifically by sera from T. cruzi infected patients [16].

Prioritizing linear peptides, and exploiting sequence

similarity to avoid non-immunogenic and cross-reactive

epitopes. To select the best candidate peptides for our choice of

experimental screening platform, we decided to prioritize epitopes

located in intrinsically unstructured regions. Natively unfolded

(disordered) regions are ubiquitous across species, but are

particularly abundant in eukaryotes, participating in a wide range

of functions [41]. We expect that peptides in these regions would

display similar conformations both in the native protein and in the

form of short peptides immobilized on a solid support. Therefore

we gave a moderate positive weight to peptides that were located

in the context of intrinsically unstructured regions.

Furthermore, because intrinsically unstructured regions lack

well defined 3D structure, primary sequence similarity might

predict, more than in any other case, the potential for molecular

mimicry of a peptide, not only against host proteins, but also to

avoid selecting potentially cross-reacting epitopes. Due to the

immunological tolerance, peptides with high sequence similarity to

host proteins are expected to be non-antigenic (to avoid self

recognition) [42]. Similarly, sequence similarity between two

pathogens could result in the identification of cross-reactive

markers. Therefore we gave large negative weights to peptides

that showed high similarity against human and Leishmania peptides

(see Table 1 and Methods), and to very low complexity sequences

(e.g. homopolymers). The approach is essentially similar to that

followed to build the mimicDB Molecular Mimicry database [43].

One other similarity-based feature that we incorporated in our

method, was the identification of natural chimeric proteins in

which one part of the protein represents a conserved region/

domain, while another part corresponds to a region uniquely

found in the parasite (a phylogenetically restricted domain). A

number of such cases were described for T. cruzi, corresponding to

two major antigens, SAPA/trans-sialidase, and cruzipain [44]. In

these cases a conserved catalytic domain (neuraminidase-like, and

cathepsin-like, respectively) is attached to a unique region, that

may be repetitive (as in the SAPA antigen) or non-repetitive (as in

the C-terminal domain of cruzipain), but that was found to be

highly immunogenic, directing the immune response away from

the catalytic domains. In our strategy we searched for these cases

using a similarity-based approach (see Methods).

Integration of selected criteria for diagnostic target and
epitope prioritization

Based on the assessment of the attributes described above, we

obtained a fine grained map of peptide- and protein-level features

for the T. cruzi proteome. These data were stored in a custom

MySQL database, including sequence location of features and the

corresponding prediction scores, allowing for fine granularity in

the interrogation of the data.

For our diagnostic epitope discovery strategy, we followed a

peptide-level prioritization/scoring approach. The output of our

method is a ranked list of peptides, therefore facilitating the task of

designing and organizing the peptides in an array. In this strategy,

each peptide was rewarded or penalized with points, based on the

presence of desirable or undesirable properties carried by the

peptide itself, or by its parent protein. To calculate the final score

for a peptide we first normalized individual peptide feature scores

(the raw scores provided by each prediction tool) so that all scores

fell a fixed 0–1 range (see Methods). A sigmoid transform was

applied in many cases to reduce the influence of extreme values

(seeFigure S1). Finally, features were manually assigned to six

classes according to their a priori expected influence on their

diagnostics potential: positive low effect, positive medium effect,

positive large effect, negative low effect, negative medium effect

and negative large effect, with associated numerical weights of 1, 3,

5, 21, 23 and 25, respectively (listed in Table 1). Once the

normalized feature scores and weights were defined, the score for

each peptide (PS) was simply calculated as:

PS~
Pk

f ~1

wf � nsf

where k is the number of evaluated features, and wf and nsf are the

weight and normalized score of feature f. By applying this strategy,

we effectively ranked each of the *10 million 12-residue

Diagnostic Peptide Discovery in Pathogen Genomes
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overlapping peptides in which our pathogen proteome can be

conceptually fragmented.

We generated a visualization of these data in the form of a

peptide score plot with a number of feature-tracks aligned to the

plot (see Figure 1). These were used to facilitate the task of

manually locating and inspecting candidate or previously de-

scribed epitopes within a complete protein. As observed in the

Figure, peptides are displayed in the plots as colored boxes

(width = 12 residues) with both the color and height of the boxes

conveying information about the peptide’s score. The feature

tracks below the plot provide a simple way to rapidly locate

interesting attributes as well as a visual aid when decomposing the

score for any peptide. The Figure shows only a couple of examples,

but profiles for all proteins have been generated and are available

as supplementary material.

To our knowledge this approach is innovative, as previously

reported diagnostic antigen discovery strategies were all protein-

centric, narrowing protein candidates based on properties

averaged over the protein sequence length, and on the presence

of favorable features (protein disorder, antigenic propensity, low

sequence similarity against host, etc) without consideration for how

these features overlap. Therefore, our peptide-centric approach

allows the identification of peptides with excellent characteristics

but that don’t overlap with otherwise unfavorable features. In

previous strategies, proteins containing these undersirable features

would have been penalized, and filtered at early stages of the

selection process. In our case, in contrast, these proteins will not be

removed from the analysis, and all peptides will also be assessed. A

final score will be calculated for each peptide, that is the result of

all the feature overlaps, and their corresponding weights.

Testing the method: assessing enrichment of previously
described antigens

To validate the strategy of epitope prioritization we analyzed

the performance of our method by measuring its ability to rank

known validated antigens. For this exercise we used a dataset of 33

non-homologous T. cruzi antigens compiled from the literature and

the IEDB database as our set of validated antigens (Table S2). To

produce a ranked list, we merged redundant information (data

from paralogues and allelic copies of the same locus) into a set of

Figure 1. Visualization of peptide-score profiles generated by the method. A) the 60S ribosomal protein L19 (locus identifier
TcCLB.509149.40), and B) a putative lectin (locus TcCLB.506239.30). These plots display peptide scores and features along protein sequences. Mapped
features in these examples are those listed in Table 1: antigenicity (Bepipred), protein disorder, internal repeats, signal peptide, signal peptide
cleavage site, non-synonymous polymorphisms, high conservation vs human, high conservation vs Leishmania spp, low sequence complexity,
glycosylated threonines, cysteines, and presence of domain absent in orthologous proteins (NC DOMAIN). Vertical boxes represent overlapped 12-
residue peptides, and their height and level of green are proportional to the peptide score. They vary around their base protein scores (i.e. 4.7 and
5.5), which accounts for subcellular localization and expression.
doi:10.1371/journal.pone.0050748.g001
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*8,700 clusters. Using this dataset we produced a number of

different prioritizations, for comparison purposes. These are

analyzed in detail in Figure 2. In one case we calculated the

overall score for each protein, as described above, as the

summation of the individual weighted scores of all features (our

composite method). The only difference in this case, was the

omission of the analysis of potentially cross-reacting peptides (high

local similarity against related pathogens such as Leishmania),

mostly because the antigens in our test set were not tested for

cross-reactivity. In all other cases, we used a single criteria or index

to obtain a ranked list of proteins. In all cases the highest scoring

member of each cluster was chosen to represent the group for the

final ranking. Enrichment (recall) of known validated antigens was

assessed simply by calculating the cumulative number of these

antigens for each ranking position (black solid curve in each plot,

see Figure 2). The resulting area under the curve (AUC) therefore

represents a measure of enrichment.

As an example, ranking the clustered T. cruzi proteome using

proteomic evidence of expression in amastigotes and trypomasti-

gotes as the single prioritizing criteria, produces a highly

significant enrichment (AUC = 0.757, Bonferroni corrected p-

valuev10{3, as estimated from 104 random permutations, fourth

plot in Figure 2). This finding is plausible with the idea that

proteomic studies usually sample the most abundant proteins in an

extract, and that these proteins are therefore more likely to be

targets of the human humoral response. Other features that

produced significant enrichment of known antigens are the use of a

codon adaptation index to measure a codon usage bias similar to

that found in highly expressed genes (AUC = 0.818, Pv10{3) (a

surrogate indicator of a potential for high levels of expression), the

number of internal repeats in a protein (related to the immuno-

genicity of the protein, AUC 0.758, Pv10{3), the presence of

natively unstructured regions in proteins (AUC 0.702, Pv10{3),

the antigenicity as predicted by Bepipred (AUC 0.666, Pv10{3),

and the exposure of proteins at the cell surface (AUC = 0.589,

Pv0.05). However, other criteria performed only marginally

better or not better than a random ranking: i.e. they produced an

AUC value close to 0.5. This is the case, as expected, for the

epitope predictor Antigenic. This algorithm belongs to the family

of predictors based on aminoacid propensity scales, which were

recently shown to perform poorly [31].

As can be observed in the Figure, our composite method

produced the highest enrichment (AUC = 0.885, corrected p-

valuev10{3) outperforming all other prioritizations. This is not

surprising because our method integrates additional, orthogonal

information on the prioritized antigens. Interestingly, the analysis

of synonymous codon usage patterns, as measured by the CAI,

yielded the highest performing individual feature. The CAI

measures the similarity of a gene’s synonymous codon usage

against that found in a set of highly expressed genes, therefore

serving as a surrogate marker for high levels of expression. In our

case the CAI was calculated against a set of T. cruzi highly

expressed genes (as measured by mass spectra counts). This means

that the CAI index and the proteomic evidence are correlated.

However, interestingly the CAI method outperformed the latter,

presumably by identifying highly expressed proteins that were not

detected in the mass spectrometry study.

The fact that our method can successfully recall w80% of the

known validated antigens from the top 20% entries in the ranking,

essentially means that the currently known antigens share many

features which could be collectively exploited to prioritize antigens.

However, although this enrichment exercise provides support a

posteriori for our prioritization method, this test dataset was not

unbiased and big enough to be used in a reverse engineering

strategy (e.g. a completely unbiased feature selection coupled with

a feature weight optimization process).

Experimental validation: selecting and testing candidate
peptides in a peptide-chip format

Our ultimate goal was to identify novel diagnostic antigens,

therefore at this stage we decided to further validate our method

by experimentally testing peptides from the top of the ranking. To

select peptides for inclusion in a peptide-chip, every protein in the

predicted proteome was first assigned the score of its highest-

scoring 12-mer peptide. Next, protein profiles (see Figure 1) were

generated for the 300 top scoring proteins (large protein groups

containing many paralogs were clustered, and one profile was only

generated for the gene with highest score). These profiles were

Figure 2. Assessing enrichment of known antigens. The figure
shows a number of enrichment plots obtained under different
prioritization scenarios. In all plots: the x axis contains the prioritized
proteome (top ranking proteins at the origin); the y axis displays the
fraction of known validated antigens recovered in the top x proteins;
the blue dashed line displays an hypothetical enrichment plot with an
AUC = 0.5 (expected by chance), while the black solid line represents
the actual enrichment obtained in each prioritization. From the top-left:
comparison of different prioritization strategies (ordered by decreasing
AUC values): 1) our composite method, 2–9) a number of prioritizations
using a single criteria in each case: 2) Codon Usage bias (CAI), 3) Internal
repeats, 4) Proteomic evidence of expression, 5) natively unstructured
regions, 6) antigenicity (Bepipred), 7) surface localization (GPI), 8) O-
Glycosylation, 9) antigenicity (EMBOSS antigenic). �� p-valuev10{4, �
p-valuev0:05 (p-values based on a random permutation test,
n = 10,000).
doi:10.1371/journal.pone.0050748.g002
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manually examined and in all cases we selected between 1 and 5

peptides for experimental validation (these are so far serologically

uncharacterized peptides). As mentioned before, in this strategy we

penalized peptides with many non-synonymous SNPs, as they are

not conserved within the species and would favor the identification

of peptides that may not be recognized by humans infected by

different strains of the pathogen. Notwithstanding this, in a second

prioritization, we only considered polymorphic peptides (number

of non-synonymous SNPsw~1), and now rewarded the presence

of non-synonymous sites, reasoning that this could help us discover

polymorphic peptides with the ability to serologically discriminate

between distinct evolutionary lineages. In this alternative priori-

tization, these top scoring ‘‘polymorphic’’ peptides all had

significantly lower scores than those in the main peptide

prioritization. A second group of peptides was selected for

inclusion in the array from this set, to provide a useful contrast

of e.g. higher scoring vs. lower scoring peptides, and hopefully to

identify lineage discriminating epitopes.

As a result of this selection, we obtained a set of 190 12-mer

peptides (high-scoring) that were synthesized and spotted in glass

slides (see Methods). These peptides, derived from 85 different

protein products, were present in the microarray in three internal

replicas, which also contained 36 additional synthetic peptides

derived from curated, validated, B-cell linear epitopes, and other

40 peptides (low scoring) that contain a moderate to high degree of

allelic polymorphism (these were derived from 16 pairs of

polymorphic proteins). An exploratory experimental validation

was conducted using these peptide-chips. Five slides were

incubated with sera of Chagas Disease patients from different

geographic areas in Argentina, 5 other arrays were incubated with

sera of healthy donors and 2 were incubated with sera of

Leishmaniosis patients (1 visceral leishmaniosis, 1 cutaneous

leishmaniosis, both serologically negative for Chagas’ disease.

Binding was quantified for each spot in the array, and

statistically significant signals were determined as described in

Methods. An example scanned image of an array is available in

Figure S2. Plots of antibody-binding data for two representative

arrays are shown in Figure 3).

The serological reactivity profiles obtained were in all cases

consistent between replicates (within the 3 internal sub-arrays) but

variable across individual positive samples, showing that epitope

specificities differ between Chagas Disease patients. Notwithstand-

ing the observed variability, there were a number of spots that

consistently gave high intensity, and high signal/noise ratios

against all sera tested. A detailed list of peptides, and their

reactivities against different sera is available as Table S3. Amongst

these, there were a number of peptides derived from currently

validated antigens such as the TcD/Ag13 surface antigen [45], the

JL8/CRA/R-27 antigen [46], the Ag2 (CA-2,B13) antigen [40],

and the TcE antigen (ribosomal protein L19) [47]. Novel epitopes

discovered in this exercise were derived from proteins that were

not characterized as antigens previously. These are good candidate

epitopes for further serological characterization. At the top of this

list is a short peptide from an hypothetical protein (locus ID

TcCLB.504159.10) that has *68% of its length covered by almost

perfect repeats of a short, 14-aminoacid repeat (consensus

sequence: ‘‘GGFGSATHTSAPAA’’). In the array, the 12-mer

peptide with the sequence ‘‘APAVGGFGSAAH’’ gave consistent-

ly high signal/background ratios, being recognized by 80% of the

chagasic sera tested.

Other interesting peptides were those that showed a high-

specificity profile against the panel of sera. In this case good

candidates were those that gave significant reactivity with any of

the positive sera for Chagas Disease, but not with any of the

negative or Leishamaniosis sera. These conditions were satisfied by

32 of the 190 high-scoring selected peptides (16.8%, derived from

23 distinct novel proteins), 13 of the 36 curated epitopes (36.1%)

and by none of the polymorphic (low scoring) peptides (0/40) (see

Table 2). A complete listing of the peptides that were reactive

against at least one sera, is available in Table 3 and as Table S1.

These data suggest that the selection of high-scoring peptides: i)

provides a signal that is infection-specific (as the number of

reactive peptides in positive samples is larger than the number of

peptides in samples from healthy subjects, Mann–Whitney–

Wilcoxon test, p{valuev0:01); and ii) is enriched in B-cell

epitopes (as the proportion of reactive peptides in this set is larger

than the corresponding fraction in the polymorphic (low-scoring)

peptide set (Fisher’s Exact Test, p{valuev0:001).

Figure 3. Experimental Distribution of peptide intensities
ratios (log2 fold change) vs. statistical significance of the
signal (negative log scale of q-value) after multiple testing
adjustment. FDR = False Discovery Rate. The q-value is the FDR analog
of the p-value. Panel A corresponds to measurements obtained from a
peptide chip assayed with sera from a pool of Chagas positive samples,
while panel B corresponds to a chip assayed with sera from healthy
donors. Points in the higher-right corner of the quadrant are marked as
reactive peptides.
doi:10.1371/journal.pone.0050748.g003
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From a more general perspective, it is worth pointing out that

although the bioinformatics strategy was guided by a rational

selection of features derived from knowledge of previously

described antigens, only 8 out of the 85 proteins represented in

the array had significant sequence similarity to any of 33

previously characterized T. cruzi antigens (BLASTP vs the

complete T. cruzi proteome; E-valuev0.01). Furthermore, none

of the succesful peptides in the experimental screening were

derived from these 8 proteins. This shows that even though the

proteins containing high-scoring peptides might have a feature

space that is similar to that of previously known antigens, they

could not have been selected using simple sequence similarity

searches.

Conclusion
We have described an integrated approach for diagnostic B-cell

epitope discovery. This strategy allowed us to prioritize all 12-mer

peptides from the complete proteome of a complex pathogen such

as Trypanosoma cruzi for inclusion in a high-throughput screening

platform. A first serological screening using short-peptide micro-

arrays allowed the identification of new epitopes with diagnostic

potential. Further serology characterization of these peptides is

required to obtain a thourough diagnostic profile (in terms of their

sensitivity and specificity) of these candidates. We conclude that

peptide microarrays combined with a bioinformatic peptide

selection strategy constitute a powerful and cost-effective platform

for serodiagnostic biomarker screening of infectious diseases

caused by pathogens with large and complex proteomes. The

method described can be easily extended to other pathogen

genomes.

Methods

Datasets and bioinformatic analysis
T. cruzi genome data was obtained from the TriTrypDB/

GeneDB databases [48,49]. Natively unstructured regions were

identified with IUPred [50] (‘‘short’’ type disorder with default

parameters). For B-cell epitope/antigenicity prediction, we used

BepiPred 1.0 [8] with default parameters, and EMBOSS

Antigenic with window length = 6 [7,51]. Trust 1.0 [52] was used

to detect protein internal repeats, with the substitution matrix

BLOSUM80 and low complexity filtering inactivated. Subcellular

localization signals were assessed with SignalP 3.0 [53] (signal

peptide), DGPI [54] (Glycosylphosphatidylinositol anchor),

TMHMM 2.0 [55] (trans-membrane domains). To predict

putative O-glycosylated residues we used NetOGlyc 3.1 [56].

Low complexity sequences were detected with SEG [57] (windows

length = 6, low cut-off = 1 bit). Grouping of paralogous genes and

putative allelic copies in the T. cruzi genome was based on the

ortholog detection pipeline implemented by the OrthoMCL

database [58,59]. Some large gene families such as the trans-

sialidase superfamily, mucins, mucin-associated proteins (MASP)

and dispersed gene family protein 1 (DGF-1), initially assigned to

multiple OrthoMCL gene clusters, were merged according to the

their current annotation and sequence similarity. Information on

non synonymous SNPs between allelic copies of T. cruzi genes were

obtained from the TcSNP Database of T. cruzi genetic variation

[60]. To calculate genome-wide Codon Adaptation Indexes, we

used EMBOSS CAI [51,61]. The codon usage table was

generated with EMBOSS CUSP, from a set of T. cruzi highly

expressed tandem repeated genes compiled by Horn [24].

Conserved aminoacid stretches between the target proteome and

other potential cross-reacting species or the host species were

detected by calculating small local sequence alignments using

FASTA 3.4 (gap opening and extension penalties, 10 and 30

respectively; ktup = 2; substitution matrix = BLOSUM80) [62]. To

detect non-conserved domains between orthologues, pathogen

proteins were aligned against human proteins using BLASTP.

Significant reciprocal best matches (E-valuev10{5) were filtered

to identify cases were: i) at least 50% of the human protein

(including its C-terminal) and at least 50% of the pathogen protein

were aligned; ii) the C-terminal unaligned region of the pathogen’s

protein is at least 30 residues longer than the human counterpart;

and iii) the C-terminal unaligned region doesn’t belong to a PFAM

domain.

The dataset of experimentally tested T. cruzi antigens used for

the enrichment analysis was compiled from the literature

[16,17,40,45,63] and from the Immune Epitope Database [64]

(search for peptidic B-cell epitopes from source organism T. cruzi

and host species Homo sapiens). Identified peptidic epitopes were

then mapped to the corresponding protein using EMBOSS fuzzpro,

allowing for 1 missmatch every 10 residues (mismatches can be

due to sequence polymorphisms—).

Output from all programs was parsed with custom Perl scripts,

and transformed into protein features, that were loaded into a

MySQL database in GFF format (storing feature name, gene id,

position in protein and score).

Peptide scoring, ranking and visualization
Scoring of peptide features. Protein sequences were

scanned to identify all overlapping 12-residue peptides in which

the protein can be conceptually fragmented. At each step, the

MySQL database was queried (see above) to retrieve information

for the features mapped to each 12-mer peptide. For each feature,

a raw feature score (RFS) was calculated as RFS~PSxFPO,

where PS (prediction score) is the score assigned by the software

package used to make the prediction, and FPO (feature-peptide

overlap) was calculated as the fraction of the peptide length

covered by the feature (e.g.: if a 12-mer peptide is part of a trans-

membrane domain that begins in its 6th residue, its feature-

Table 2. Summary of peptide reactivities.

Peptide Class Assayed AND Chagas (+) AND Healthy (2) AND Leishmaniasis (2)

Curated 36 16 (44.4%) 13 (36.1%) 13 (36.1%)

New 1901 52 (27.4%) 37{ (19.5%) 32* (16.8%)

The table summarizes the results from the screening of pools of positive (Chagas), negative (healthy donors) and related (Leishmaniasis) sera. From left to right the
columns show the results of cumulative additional criteria (boolean AND): 1) Assayed, 2) Assayed AND Positive for Chagas Disease sera, etc.
1derived from 85 distinct proteins.
{derived from 27 distinct proteins.
*derived from 23 distinct proteins.
doi:10.1371/journal.pone.0050748.t002

Diagnostic Peptide Discovery in Pathogen Genomes

PLOS ONE | www.plosone.org 8 December 2012 | Volume 7 | Issue 12 | e50748



T
a

b
le

3
.

C
o

m
p

le
te

lis
t

o
f

re
ac

ti
ve

p
e

p
ti

d
e

s.

ID
G

e
n

e
N

a
m

e
D

e
sc

ri
p

ti
o

n
P

o
s.

S
e

q
u

e
n

ce
S

co
re

T
c+

(N
=

5
)

H
e

a
lt

h
y

+
(N

=
5

)
L

e
is

h
+

(N
=

2
)

n
4

2
T

cC
LB

.5
0

8
1

7
5

.3
2

9
6

0
S

ri
b

o
so

m
al

p
ro

te
in

L1
9

,
p

u
ta

ti
ve

3
3

5
P

A
K

A
A

A
A

P
A

K
A

A
1

0
.5

7
8

0
%

0
%

0
%

n
6

7
T

cC
LB

.5
0

9
1

4
9

.4
0

6
0

S
ri

b
o

so
m

al
p

ro
te

in
L1

9
,

p
u

ta
ti

ve
2

7
5

A
P

P
A

K
A

A
A

P
P

A
K

1
2

.8
4

8
0

%
0

%
0

%

n
1

2
6

T
cC

LB
.5

0
4

1
5

9
.1

0
h

yp
o

th
e

ti
ca

l
p

ro
te

in
,

co
n

se
rv

e
d

4
4

3
A

P
A

V
G

G
FG

SA
A

H
6

.9
1

8
0

%
0

%
0

%

n
8

6
T

cC
LB

.5
0

8
8

3
1

.1
5

0
h

yp
o

th
e

ti
ca

l
p

ro
te

in
,

co
n

se
rv

e
d

4
7

SP
FK

SV
FG

A
P

SS
7

.3
0

6
0

%
0

%
5

0
%

n
9

0
T

cC
LB

.5
0

6
2

3
9

.3
0

le
ct

in
,

p
u

ta
ti

ve
4

0
9

EQ
P

Q
H

Y
EQ

P
Q

Q
H

1
3

.5
4

6
0

%
0

%
0

%

n
9

6
T

cC
LB

.5
1

1
6

7
1

.5
0

h
yp

o
th

e
ti

ca
l

p
ro

te
in

,
co

n
se

rv
e

d
4

7
ES

P
FK

SV
FG

A
P

S
7

.1
0

6
0

%
0

%
0

%

n
2

5
T

cC
LB

.5
1

0
3

0
5

.7
0

h
yp

o
th

e
ti

ca
l

p
ro

te
in

,
co

n
se

rv
e

d
4

5
7

FP
V

V
G

M
P

R
P

G
G

F
8

.9
1

6
0

%
2

0
%

5
0

%

n
1

T
cC

LB
.5

1
1

6
3

3
.7

9
m

ic
ro

tu
b

u
le

-a
ss

o
ci

at
e

d
p

ro
te

in
,

p
u

ta
ti

ve
2

3
9

D
V

G
P

R
H

V
D

P
D

H
F

1
1

.4
8

4
0

%
0

%
0

%

n
2

6
T

cC
LB

.5
1

0
3

0
5

.7
0

h
yp

o
th

e
ti

ca
l

p
ro

te
in

,
co

n
se

rv
e

d
4

6
3

P
R

P
G

G
FP

V
V

G
M

P
8

.6
2

4
0

%
0

%
0

%

n
3

8
T

cC
LB

.5
0

8
1

7
5

.3
2

9
6

0
S

ri
b

o
so

m
al

p
ro

te
in

L1
9

,
p

u
ta

ti
ve

2
3

3
A

A
A

A
P

A
K

A
A

A
A

P
1

0
.6

8
4

0
%

0
%

0
%

n
4

0
T

cC
LB

.5
0

8
1

7
5

.3
2

9
6

0
S

ri
b

o
so

m
al

p
ro

te
in

L1
9

,
p

u
ta

ti
ve

2
7

3
A

K
A

A
T

A
P

A
K

A
A

A
8

.9
4

4
0

%
0

%
0

%

n
8

5
T

cC
LB

.5
0

8
8

3
1

.1
5

0
h

yp
o

th
e

ti
ca

l
p

ro
te

in
,

co
n

se
rv

e
d

4
1

EK
P

P
A

ES
P

FK
SV

8
.1

5
4

0
%

0
%

0
%

n
8

7
T

cC
LB

.5
0

8
8

3
1

.1
5

0
h

yp
o

th
e

ti
ca

l
p

ro
te

in
,

co
n

se
rv

e
d

5
3

FG
A

P
SS

T
A

A
K

P
P

7
.7

3
4

0
%

0
%

0
%

n
8

8
T

cC
LB

.5
0

6
2

3
9

.3
0

le
ct

in
,

p
u

ta
ti

ve
3

6
3

H
EQ

P
Q

H
Y

EQ
P

Q
H

1
2

.9
9

4
0

%
0

%
0

%

n
4

1
T

cC
LB

.5
0

8
1

7
5

.3
2

9
6

0
S

ri
b

o
so

m
al

p
ro

te
in

L1
9

,
p

u
ta

ti
ve

3
2

3
K

A
A

T
A

P
A

K
A

A
A

A
9

.9
1

4
0

%
2

0
%

0
%

n
1

5
4

T
cC

LB
.5

0
6

4
4

1
.2

0
h

yp
o

th
e

ti
ca

l
p

ro
te

in
,

co
n

se
rv

e
d

6
7

7
ER

SG
R

EG
R

ER
G

Y
9

.5
6

4
0

%
2

0
%

5
0

%

n
1

9
0

T
cC

LB
.5

0
8

7
1

9
.7

0
h

yp
o

th
e

ti
ca

l
p

ro
te

in
,

co
n

se
rv

e
d

3
9

0
R

C
R

G
V

Y
A

P
K

T
G

T
6

.7
6

4
0

%
2

0
%

5
0

%

n
2

4
T

cC
LB

.5
1

0
3

0
5

.7
0

h
yp

o
th

e
ti

ca
l

p
ro

te
in

,
co

n
se

rv
e

d
4

5
1

M
P

R
P

G
G

FP
V

V
G

M
8

.7
2

2
0

%
0

%
5

0
%

n
2

8
T

cC
LB

.5
0

6
1

7
7

.2
0

le
ct

in
,

p
u

ta
ti

ve
3

4
7

Q
Y

EQ
P

Q
Q

H
Y

EQ
P

1
2

.7
5

2
0

%
0

%
0

%

n
3

1
T

cC
LB

.5
0

6
1

7
7

.2
0

le
ct

in
,

p
u

ta
ti

ve
3

9
3

Q
P

Q
Q

H
EQ

P
Q

Q
Y

E
1

2
.9

4
2

0
%

0
%

0
%

n
4

4
T

cC
LB

.5
0

8
3

8
5

.1
0

h
yp

o
th

e
ti

ca
l

p
ro

te
in

,
co

n
se

rv
e

d
1

3
1

3
G

Q
Y

SP
Q

H
P

Q
W

N
A

8
.0

0
2

0
%

0
%

0
%

n
5

1
T

cC
LB

.5
0

6
7

9
1

.3
0

h
yp

o
th

e
ti

ca
l

p
ro

te
in

,
co

n
se

rv
e

d
1

7
7

5
D

P
G

P
P

V
P

A
FT

FA
7

.3
4

2
0

%
0

%
0

%

n
5

6
T

cC
LB

.5
1

0
2

1
7

.1
0

h
yp

o
th

e
ti

ca
l

p
ro

te
in

9
5

SP
EP

SA
A

W
R

N
FA

9
.2

3
2

0
%

0
%

0
%

n
6

3
T

cC
LB

.5
0

6
5

5
9

.5
5

9
an

ti
g

e
n

ic
p

ro
te

in
,

p
u

ta
ti

ve
2

2
0

9
R

Q
P

FV
LP

EP
Q

ET
1

0
.3

5
2

0
%

0
%

0
%

n
7

4
T

cC
LB

.5
0

6
9

5
9

.9
0

h
yp

o
th

e
ti

ca
l

p
ro

te
in

,
co

n
se

rv
e

d
1

2
3

T
A

P
A

A
P

EP
P

R
T

A
9

.4
6

2
0

%
0

%
0

%

n
7

7
T

cC
LB

.5
0

8
6

7
7

.6
0

h
yp

o
th

e
ti

ca
l

p
ro

te
in

9
9

R
G

G
P

C
P

P
N

P
A

P
P

1
1

.6
8

2
0

%
0

%
0

%

n
8

9
T

cC
LB

.5
0

6
2

3
9

.3
0

le
ct

in
,

p
u

ta
ti

ve
4

0
7

H
Y

EQ
P

Q
H

Y
EQ

P
Q

1
3

.4
9

2
0

%
0

%
0

%

n
9

7
T

cC
LB

.5
1

1
6

7
1

.5
0

h
yp

o
th

e
ti

ca
l

p
ro

te
in

,
co

n
se

rv
e

d
5

3
V

FG
A

P
SS

T
A

A
K

P
7

.3
4

2
0

%
0

%
0

%

n
1

1
2

T
cC

LB
.5

0
8

5
9

5
.2

0
U

D
P

-G
al

-d
e

p
e

n
d

e
n

t
g

ly
co

sy
lt

ra
n

sf
e

ra
se

4
1

G
A

P
G

P
N

N
P

R
H

P
R

1
1

.7
6

2
0

%
0

%
5

0
%

n
1

1
5

T
cC

LB
.5

0
6

1
4

7
.1

9
0

h
yp

o
th

e
ti

ca
l

p
ro

te
in

,
co

n
se

rv
e

d
2

5
3

P
SK

P
SP

K
A

A
P

K
K

9
.8

2
2

0
%

0
%

0
%

n
1

2
2

T
cC

LB
.5

1
0

5
6

5
.1

1
ty

ro
si

n
e

am
in

o
tr

an
sf

e
ra

se
,

p
u

ta
ti

ve
2

7
K

P
SP

SP
K

P
IIK

L
7

.9
8

2
0

%
0

%
0

%

n
1

2
4

T
cC

LB
.5

1
0

7
3

3
.5

0
h

yp
o

th
e

ti
ca

l
p

ro
te

in
,

co
n

se
rv

e
d

9
9

K
P

SP
K

A
A

P
K

K
A

M
1

0
.0

2
2

0
%

0
%

5
0

%

n
1

2
9

T
cC

LB
.5

1
0

8
7

7
.4

0
h

yp
o

th
e

ti
ca

l
p

ro
te

in
,

co
n

se
rv

e
d

1
7

3
R

G
G

R
G

G
G

R
G

N
N

S
1

2
.1

3
2

0
%

0
%

0
%

n
1

3
5

T
cC

LB
.5

1
1

8
6

1
.1

2
0

h
yp

o
th

e
ti

ca
l

p
ro

te
in

9
7

P
R

P
C

V
P

D
G

G
P

T
D

9
.8

5
2

0
%

0
%

0
%

n
1

3
6

T
cC

LB
.5

1
1

8
6

1
.1

2
0

h
yp

o
th

e
ti

ca
l

p
ro

te
in

1
0

1
V

P
D

G
G

P
T

D
V

W
T

G
1

0
.2

6
2

0
%

0
%

0
%

Diagnostic Peptide Discovery in Pathogen Genomes

PLOS ONE | www.plosone.org 9 December 2012 | Volume 7 | Issue 12 | e50748



T
a

b
le

3
.

C
o

n
t.

ID
G

e
n

e
N

a
m

e
D

e
sc

ri
p

ti
o

n
P

o
s.

S
e

q
u

e
n

ce
S

co
re

T
c+

(N
=

5
)

H
e

a
lt

h
y

+
(N

=
5

)
L

e
is

h
+

(N
=

2
)

n
1

4
7

T
cC

LB
.5

0
4

6
2

5
.7

0
ki

n
e

to
p

la
st

D
N

A
-a

ss
o

ci
at

e
d

p
ro

te
in

,
p

u
ta

ti
ve

4
4

3
V

A
R

EE
A

A
R

R
M

H
E

9
.5

6
2

0
%

0
%

0
%

n
1

5
2

T
cC

LB
.5

0
6

4
4

1
.2

0
h

yp
o

th
e

ti
ca

l
p

ro
te

in
,

co
n

se
rv

e
d

6
6

5
R

G
Y

P
EE

K
ED

SR
R

9
.8

7
2

0
%

0
%

5
0

%

n
1

6
1

T
cC

LB
.5

0
3

9
7

5
.1

0
0

h
yp

o
th

e
ti

ca
l

p
ro

te
in

,
co

n
se

rv
e

d
3

4
3

A
G

P
Y

G
G

M
G

G
N

G
A

7
.0

2
2

0
%

0
%

0
%

n
1

6
5

T
cC

LB
.5

0
7

6
0

3
.2

6
0

ca
th

e
p

si
n

L-
lik

e
,

p
u

ta
ti

ve
3

5
3

A
P

G
P

SP
SY

FV
Q

M
1

1
.6

5
2

0
%

0
%

0
%

n
1

8
4

T
cC

LB
.4

6
3

1
5

5
.2

0
re

tr
o

tr
an

sp
o

so
n

h
o

t
sp

o
t

(R
H

S)
p

ro
te

in
5

1
1

P
R

V
LI

G
T

P
G

IG
N

7
.5

6
2

0
%

0
%

0
%

n
1

8
6

T
cC

LB
.5

1
1

8
1

5
.1

7
0

h
yp

o
th

e
ti

ca
l

p
ro

te
in

,
co

n
se

rv
e

d
5

0
K

EE
V

P
EE

V
N

A
P

E
1

0
.0

9
2

0
%

0
%

0
%

n
1

7
6

T
cC

LB
.5

1
1

2
3

3
.2

0
6

0
S

ri
b

o
so

m
al

p
ro

te
in

L3
4

,
p

u
ta

ti
ve

1
1

1
H

A
K

SQ
K

EK
K

R
R

D
1

0
.7

5
2

0
%

2
0

%
0

%

n
1

8
3

T
cC

LB
.5

1
1

3
4

5
.1

0
re

tr
o

tr
an

sp
o

so
n

h
o

t
sp

o
t

(R
H

S)
p

ro
te

in
5

3
9

FP
LV

D
G

FF
FV

D
T

4
.5

2
2

0
%

2
0

%
5

0
%

C
u

ra
te

d
(v

a
li

d
a

te
d

)
e

p
it

o
p

e
s1

ID
G

e
n

e
N

a
m

e
D

e
sc

ri
p

ti
o

n
A

A
P

o
s.

S
e

q
u

e
n

ce
S

co
re

T
.

cr
u

z
i+

(N
=

5
)

H
e

a
lt

h
y

+
(N

=
5

)
L

e
is

h
m

a
n

ia
+

N
=

2

c1
T

cC
LB

.5
0

5
9

7
5

.2
0

T
cD

/A
g

1
3

9
0

3
K

P
A

EP
K

SA
EP

K
P

1
3

.1
0

8
0

%
0

%
0

%

c2
T

cC
LB

.5
0

5
9

7
5

.2
0

T
cD

/A
g

1
3

9
0

5
A

EP
K

SA
EP

K
P

A
E

1
3

.1
0

8
0

%
0

%
0

%

c1
0

T
cC

LB
.5

0
6

3
0

3
.8

0
R

2
7

-2
/F

R
A

/J
L8

1
1

4
5

A
T

K
V

A
EA

EK
Q

K
A

8
.2

3
6

0
%

0
%

0
%

c1
2

T
cC

LB
.5

0
6

3
0

3
.8

0
R

2
7

-2
/F

R
A

/J
L8

1
1

5
3

K
Q

K
A

A
EA

T
K

V
A

E
8

.2
4

6
0

%
0

%
0

%

c7
T

cC
LB

.5
0

8
8

3
1

.1
4

0
B

1
3

/A
g

2
/C

A
-2

2
1

7
D

K
P

SP
FG

Q
A

A
A

G
8

.6
6

4
0

%
0

%
0

%

c8
T

cC
LB

.5
0

8
8

3
1

.1
4

0
B

1
3

/A
g

2
/C

A
-2

5
8

9
G

K
P

SP
FG

Q
A

A
A

G
8

.2
4

4
0

%
0

%
0

%

c1
9

T
cC

LB
.5

0
6

6
5

9
.1

0
T

c4
0

4
0

9
A

K
A

A
A

P
P

A
A

A
R

S
3

.9
7

4
0

%
0

%
0

%

c1
1

T
cC

LB
.5

0
6

3
0

3
.8

0
R

2
7

-2
/F

R
A

/J
L8

1
1

4
9

A
EA

EK
Q

K
A

A
EA

T
8

.2
7

2
0

%
0

%
0

%

c1
7

T
cC

LB
.5

0
8

3
5

5
.2

5
0

6
0

S
ac

id
ic

ri
b

o
so

m
al

p
ro

te
in

P
0

3
1

1
ED

D
D

D
D

FG
M

G
A

8
.0

7
2

0
%

0
%

0
%

c2
4

T
cC

LB
.5

0
3

4
1

9
.3

0
th

io
l-

tr
an

sf
e

ra
se

T
c5

2
*

7
1

SR
Y

ID
R

IS
SP

A
N

1
.7

3
2

0
%

0
%

0
%

c2
8

T
cC

LB
.5

0
9

3
9

1
.3

0
Fl

ag
e

lla
r

ca
lc

iu
m

-b
in

d
in

g
p

ro
te

in
3

*
3

3
R

IR
Q

A
IP

R
EK

T
A

7
.6

3
2

0
%

0
%

0
%

c3
5

T
cC

LB
.5

0
7

5
1

1
.9

1
T

SS
A

3
9

EN
K

P
A

T
G

EA
P

SQ
6

.8
8

2
0

%
0

%
0

%

c3
6

T
cC

LB
.5

0
7

5
1

1
.9

1
T

SS
A

4
1

K
P

A
T

G
EA

P
SQ

P
G

7
.2

9
2

0
%

0
%

0
%

c2
2

T
cC

LB
.5

0
3

4
1

9
.3

0
th

io
l-

tr
an

sf
e

ra
se

T
c5

2
4

1
P

Q
W

Y
K

EL
N

P
R

ET
3

.8
9

2
0

%
2

0
%

5
0

%

c2
7

T
cC

LB
.5

0
9

3
9

1
.3

0
fl

ag
e

lla
r

ca
lc

iu
m

-b
in

d
in

g
p

ro
te

in
3

*
2

7
R

K
EA

W
ER

IR
Q

A
I

6
.9

7
2

0
%

2
0

%
5

0
%

P
e

p
ti

d
e

s
d

is
p

la
yi

n
g

at
le

as
t

o
n

e
T.

cr
u

zi
p

o
si

ti
ve

as
sa

y
w

it
h

at
m

o
st

1
h

e
al

th
y

in
d

iv
id

u
al

(c
o

n
tr

o
l)

p
o

si
ti

ve
ar

e
lis

te
d

,s
h

o
w

in
g

th
e

co
rr

e
sp

o
n

d
in

g
Lo

cu
s

Id
e

n
ti

fi
e

r,
p

ro
te

in
d

e
sc

ri
p

ti
o

n
,a

m
in

o
ac

id
st

ar
t

p
o

si
ti

o
n

,s
e

q
u

e
n

ce
,p

ri
o

ri
ti

za
ti

o
n

sc
o

re
an

d
th

e
p

e
rc

e
n

ta
g

e
o

f
as

sa
ye

d
sa

m
p

le
s

in
w

h
ic

h
th

e
p

e
p

ti
d

e
w

as
p

o
si

ti
ve

fo
r

T.
cr

u
zi

in
fe

ct
e

d
,h

e
al

th
y

co
n

tr
o

la
n

d
Le

is
h

m
a

n
ia

in
fe

ct
e

d
su

b
je

ct
s

(e
.g

.p
e

p
ti

d
e

n
4

2
re

ac
te

d
in

4
o

f
5

-8
0

%
-

o
f

th
e

T.
cr

u
zi

sa
m

p
le

s)
.L

e
tt

e
rs

n
an

d
c

in
P

e
p

ti
d

e
ID

in
d

ic
at

e
‘‘n

o
ve

l’’
(h

ig
h

ly
ra

n
ke

d
)

an
d

‘‘c
u

ra
te

d
’’

p
e

p
ti

d
e

s,
re

sp
e

ct
iv

e
ly

.
1
B

ib
lio

g
ra

p
h

ic
re

fe
re

n
ce

s
fo

r
va

lid
at

e
d

an
ti

g
e

n
s

ca
n

b
e

fo
u

n
d

in
T

ab
le

-S
2

,
e

xc
e

p
t

fo
r

an
ti

g
e

n
s

m
ar

ke
d

w
it

h
* .

d
o

i:1
0

.1
3

7
1

/j
o

u
rn

al
.p

o
n

e
.0

0
5

0
7

4
8

.t
0

0
3

Diagnostic Peptide Discovery in Pathogen Genomes

PLOS ONE | www.plosone.org 10 December 2012 | Volume 7 | Issue 12 | e50748



peptide overlap is 50%). Each raw (peptide) feature scores was

stored in the MySQL database, mapped to the corresponding

location coordinates (begin, end) of the peptide in the parent

protein. Although the total number of possible 12-mer overlapping

peptides is 9,540,317, we noticed that the scores of contiguous

peptides (1 residue offset, 11 residues overlap) were highly

correlated. Therefore, to accelerate the process, we decided to

calculate scores only for peptides starting at odd positions,

effectively producing a 2 residue offset, and a 10 residue overlap

between contiguous peptides, and reducing the total number of

peptides by half.

Normalization of peptide scores. To normalize the pep-

tide feature scores, a transformation was applied to obtain values

for all features that fit into a 0–1 range. In cases of features that

showed distribution of scores with extreme values, a sigmoid

transform was applied. For example, this was the case for the

number of repetitive motifs in proteins, or the number of

paralogous copies of a gene. The function used (SNF, Sigmoid

Normalization Function) was:

SNF (x,b)~
2

1z20{x=b
{1

where x is the unscaled score and b is a scaling parameter. For each

feature, we set b to the 99th percentile of its unscaled score.

Therefore, when x equals b, SNF(x,b) approaches 0.9. As a

consequence, when the unscaled feature score is in the top 1% of

the distribution, the normalized score would fall in the range 0.9–1

(i.e. it is an outlier robust normalization). An example of this

normalization is available in Figure S1 A. In all cases percentiles

were calculated from homologous gene clusters (not using all

genes), as large gene families distort the ranking. For cases of

feature scores with flat distributions, no complex transformations

were necessary. In these cases the normalized score was simply

calculated as the ratio of the peptide score and the maximum value

for the feature. Examples of these cases ere the assessment of

natively unstructured, and low complexity regions, the Codon

Adaptation Index, and SignalP Scores (peptide and cleavage).

Normalization of sequence similarity scores was performed with a

different criterion, to obtain a transformed measure of similarity

that penalizes highly similar peptides (e.g. to avoid cross-reacting

epitopes) and then rapidly decays in a non linear fashion. This re-

scaled similarity (RS) score was defined as: RS~S4 where S is the

alignment sequence identity. As an example, a score of *0.5 was

obtained with this function for a sequence identity of 84%

(S = 0.84). This value then grows rapidly until 100% sequence

identity (see Figure S1 B).

In a few cases where more than one metric/feature are

indicators of a common biological property (e.g. protein expression

or subcellular localization) we used composite scores. For protein

localization we defined a composite scoring function (Cellular

Surface Localization Index, CSLI) based on feature scores from

SignalP (signal peptide) and DGPI (GPI anchor):

CSLI~
SPScorezSPScore � CSScorezSPScore � GPITzGPIT � GPICSScore

4

where SP = Signal Peptide; CS = signal peptide Cleavage Site;

GPIT = GPI hydrophobic Tail presence (binary); GPICS = GPI

Cleavage Site. All these scores where scaled by dividing over their

maximum values. For the assessment of protein expression, we

defined a composite scoring function (Protein Expression Index,

PEI) based on proteomic data (mapped mass spectra), the codon

adaptation index (CAI) and the number of copies of the gene in

the genome. In this case the calculation of this PEI score uses the

sigmoid normalization function (SNF) defined above:

PEI~SNF (x,b)

x~3 � SMSDz3 � CAIzSPN

b~3

where SMSD = Scaled MSD (Mass Spectra Density); CAI = Co-

don Adaptation Index; SPN = Scaled Paralog Number;

MSD = Mass spectra count/protein length. Again, these scores

where scaled by dividing over their maximum values.

Human specimens
Human serum samples were obtained from an endemic area in

Argentina. T. cruzi infection was evaluated by ELISA based on

epimastigote lysates, ELISA based on recombinant antigens

(Wienner, Rosario, Argentina), Indirect Hemoaglutination Assay

(Laboratory Polychaco, Buenos Aires, Argentina), and Indirect

Immunofluorescence assay (IFI). Samples from patients reacting in

two serological tests were scored as infected.

Leishmaniasis infection was evaluated using ELISA based on

parasite lysates and Indirect Immunofluorescence assay (IFI).

Visceral leishmaniosis was also evaluated using an rK39-based

immunochromatographic test. All samples were negative for T.

cruzi infection.

Samples from healthy donors were negative for both T. cruzi

and Leishmania spp. Serum samples were stored at 220uC until use.

Ethics statement
This study was conducted in accordance with the Declaration of

Helsinki. Written informed consent was obtained from all donors.

This study was approved by the Ethical Comittee of the Instituto

de Investigaciones Biotecnológicas, Universidad Nacional de San

Martı́n. Research did not involve interaction with the serum

donors nor their identification.

Serological screening
Peptide microarrays (JPT Peptide Technologies, Berlin, Ger-

many) were employed in the serological screening. Twelve array

slides were assayed with the following samples: 5 slides with pools

(3 subjects per pool) of sera from patients infected with T. cruzi; 5

slides with pools (3 subjects per pool) of sera from healthy donors;

1 slide with a pool of 5 patients suffering from visceral

leishmaniasis and 1 slide with a pool of 5 patients with cutaneous

leishmaniasis. Serum samples were diluted at 1/100 with TBS-

blocking buffer (Sigma, St. Louis, Mo) and incubated with sample

dilutions at 30uC for 2 hs in a humidity chamber. After washing

with TBS buffer, secondary anti-total human immunoglobulin G

conjugated to Cy5 (Jackson ImmunoResearch), was diluted (1 mg/

ml) in TBS buffer (Sigma, St. Louis, Mo) and added, and slides

were incubated for 30 min at 30 in a humidity chamber. Finally,

the slides were washed several times, including a final washing step

with deionized water. Slides were dried by centrifugation before

reading in the scanner.

Quantification and Analysis of peptide reactivities
Slides were scanned using fluorescence readers GE Typhoon

and ArrayWorx BioChip Reader at maximal resolution (pixel size

Diagnostic Peptide Discovery in Pathogen Genomes
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25 mm and 10 mm respectively). Laser excitation wavelength was

633 nm (red) and an emission filter of 670 nm (band pass 30) was

used, according to the secondary antibody fluorophore. Digital

array images were analyzed and peptide spots intensities were

quantified with the software GE ImageQuant with no background

subtraction ( 1% of the spots signals were discarded from the

analysis as they presented bad quality signals due to fluorescence

smearing, spikes or other forms of non-homogeneous spot

intensities). The average intensity for each peptide was calculated

from sub-array triplicates. All sub-arrays carry 4 spots of human

IgG attached to the glass slides as positive controls. These spots

were positive in all slides assayed. Also, all slides contain a number

of spots where human and mouse proteins (beta-casein, human

and mouse IgM, etc.) were attached to the slides by the

manufacturer of the array to test them as candidate negative

controls. However, these showed the same variability across slides

as other test peptides, probably due to cross-reaction issues.

Therefore we selected a set of 6 peptide spots with consistently low

signal across all samples to estimate the background distribution.

To identify statistically significant and biologically meaningful

reactive peptides, we calculated the intra-chip fold change of

peptide spots (3 replicates average) relative to the backgroud set

average and tested mean differences (multiple Student’s T-tests).

Peptide spots with intensities bigger than 3 fold and with a False

Discovery Rate v5% (Benjamini and Hochberg’s FDR method)

were considered positive. This filter allows the identification of

peptides with statistically significant signal in each slide, however,

it does not take into account the source of the sera used to assay

each slide (infected patients, healthy individuals). Further filtering

is possible if this additional information is taken into account (see

Results).

Supporting Information

Figure S1 Examples of feature score scaling/transfor-
mation. A: Sigmoid normalization of the score for aminoacid

tandem repeats (motif copies). This feature score was normalized

using the sigmoid function (SNF) described in Methods, with

b = 12 (99th percentile) so that when a peptide bears a motif

repeated 12 times, its feature score becomes 0.9. This transfor-

mation function scales the feature score into a 0–1 range, and is

outlier robust. B: Non-linear, fourth-power scaling of the sequence

identity of peptides against the proteome of Leishmania (potential

cross-reacting pathogen). The same function was used to score

similarity against the human (host) proteome. The function (see

Methods) strongly penalyzes identities close to 1 (e.g. a 12-mer

peptide sharing 11 residues with the target protein would produce

a normalized score of *0.71 ).

(PDF)

Figure S2 Annotated image of a sector of an array. The

figure shows one sector (out of three identical sectors) of a slide

assayed with Chagas positive sera (A), and one sector from a slide

assayed with sera from a healthy donor (B). These slides are

different than those used in Figure 3. Annotations include the

descriptions of proteins from which the peptides in the array were

derived. Positive controls (human IgG spots) correspond to whole

proteins spotted on the glass. Colored boxes group spots with

similar annotation/origin. Not all marked/annotated spots in this

sub-array sector passed subsequent quality tests using data from

the three internal replicas. Figure available in file: Figure S2.pdf

(PDF)

Materials S1 Selected peptide profiles. Two sets of protein

peptide-score profiles, are included as supplementary materials, for

the purposes of visualization of prioritized peptides. The plots are

explained in Figure 1. A Peptide score profiles for the high-scoring

proteins included in the arrays. Additional information on the

selected peptides can be found in Table S3. B Peptide score

profiles for the top 1000 protein candidates (ranked by their

highest scoring peptide). For clusters of orthologous genes, only the

best candidate of the cluster is considered.

(ZIP)

Table S1 Complete list of reactive peptides. Peptides

displaying at least one T. cruzi positive assay with at most 1 healthy

individual (control) positive are listed, showing the corresponding

Locus Identifier, protein description, amino acid start position,

sequence, prioritization score and the percentage of assayed

samples in which the peptide was positive for T. cruzi infected,

healthy control and Leishmania infected subjects (e.g. peptide n42

reacted in 4 of 5 -80%- of the T. cruzi samples). Letters n and c in

Peptide ID indicate ‘‘novel’’ (highly ranked) and ‘‘curated’’

peptides, respectively. Data available in File: Table S1.xls

(XLS)

Table S2 List of known (validated) antigens used to
measure enrichment. Data available in File: Table S2.xls

(XLS)

Table S3 Complete list of peptides included in the
array, showing the reactivity (1) or lack of reactivity (0)
against different serum samples. The criteria for consider-

ing a peptide reactive is similar to that shown in Figure 3. Data

available in File: Table S3.xls

(XLS)
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