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Abstract

Objective: Diagnoses using imaging-based measures alone offer the hope of improving the accuracy of clinical diagnosis,
thereby reducing the costs associated with incorrect treatments. Previous attempts to use brain imaging for diagnosis,
however, have had only limited success in diagnosing patients who are independent of the samples used to derive the
diagnostic algorithms. We aimed to develop a classification algorithm that can accurately diagnose chronic, well-
characterized neuropsychiatric illness in single individuals, given the availability of sufficiently precise delineations of brain
regions across several neural systems in anatomical MR images of the brain.

Methods: We have developed an automated method to diagnose individuals as having one of various neuropsychiatric
illnesses using only anatomical MRI scans. The method employs a semi-supervised learning algorithm that discovers natural
groupings of brains based on the spatial patterns of variation in the morphology of the cerebral cortex and other brain
regions. We used split-half and leave-one-out cross-validation analyses in large MRI datasets to assess the reproducibility
and diagnostic accuracy of those groupings.

Results: In MRI datasets from persons with Attention-Deficit/Hyperactivity Disorder, Schizophrenia, Tourette Syndrome,
Bipolar Disorder, or persons at high or low familial risk for Major Depressive Disorder, our method discriminated with high
specificity and nearly perfect sensitivity the brains of persons who had one specific neuropsychiatric disorder from the
brains of healthy participants and the brains of persons who had a different neuropsychiatric disorder.

Conclusions: Although the classification algorithm presupposes the availability of precisely delineated brain regions, our
findings suggest that patterns of morphological variation across brain surfaces, extracted from MRI scans alone, can
successfully diagnose the presence of chronic neuropsychiatric disorders. Extensions of these methods are likely to provide
biomarkers that will aid in identifying biological subtypes of those disorders, predicting disease course, and individualizing
treatments for a wide range of neuropsychiatric illnesses.
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Introduction

Clinicians and researchers have long sought to use brain

imaging measures as an aid in clinical diagnosis. In prior attempts

to use magnetic resonance imaging (MRI) in the diagnosis of

neuropsychiatric illnesses, conventional anatomical measures of

putative pathological involvement, such as the overall volume of a

brain region or a combination of brain regions, have not proven

particularly useful, probably because brain regions that can be

identified on MRI scans are anatomically and functionally

heterogeneous, which means that for any given brain region,

opposing measures of pathological involvement in its various

subregions (such as volume loss in one subregion, compensatory

hypertrophy in another, and normal volumes in yet another),

when combined into an overall volume are dilute and highly

variable, producing substantial overlap between diagnostic groups

in the distributions of overall volumes. The overlap in distribu-

tions, in turn, yields poor sensitivity and specificity when trying to

use those measures for clinical diagnosis. [1] However, recent

methods in image processing permit measurements of local

variation in the morphological features of brain subregions that

are thought to be more anatomically and functionally homoge-

neous than are conventional overall volumes, [1] and that are

associated significantly and more uniquely with various neuropsy-

chiatric disorders than are overall volumes of the brain or a brain

subregion. [2–7]
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These measures of local variation in morphological features of

the brain have been used to build algorithms that classify the

brains of participants according to diagnostic group. For several

reasons, however, those diagnostic algorithms have met with

limited success when attempting to classify brains that are

independent of the imaging dataset used to generate the diagnostic

algorithm. First, the morphological measures at each voxel of the

brain generally have been assumed to be statistically independent

variables when building the classifiers, even though they are not

independent of one another. Second, measures at each voxel of the

brain generally have been treated as equally informative when

building the diagnostic classifiers, when in fact the imaging

measures at some voxels are much more diagnostically informative

than at other voxels. More important, however, is that diagnostic

information is more likely to be represented by the within-subject

spatial variation in morphological measures across voxels and

across brain subregions than by the between-subject variation

within voxels. For it is the spatial variation across voxels and across

brain subregions that is most likely to represent the circuit-based

morphological abnormalities that produce and uniquely define a

given neuropsychiatric illness. The value of identifying spatial

patterns of variation in brain measures across voxels and across

brain subregions is much like the value of identifying the spatial

patterns for variation in the epidermal ridges of a fingerprint,

which define more efficiently and more accurately the identity of

an individual than do independent, point-wise measures of

displacement of the dermal surface on the tip of a finger. Third,

voxel-wise measures of morphological variation yields a vastly

larger feature space on which the classification algorithm must

operate compared with the feature space for the pattern of spatial

variation across voxels, either compromising the validity and

reproducibility of the algorithm for a given number of observations

(participants) or requiring a much larger number of participants to

yield comparable validity and reproducibility of the algorithm.

The fundamental assumption that we make in this paper, and

the assumption that constitutes the foundation of our algorithm for

diagnostic classification, is that identifying patterns of variation in

morphological features that extend over many sets of contiguous

voxels and across numerous brain subregions will capture

individual disturbances in the morphological features of neural

circuits that are unique to each neuropsychiatric disorder being

classified. We also believe that rather than using variation at

individuals voxels for diagnostic classification, basing the classifi-

cations on these patterns of regional variation will reduce the

adverse effects of noise on the stability of the diagnostic algorithm,

particularly when classifying brains that are independent of the

datasets used to generate the algorithm. Herein we demonstrate

that a classification using anatomical MR images of the brain if

sufficiently precise delineations of brain regions are available

across sufficiently distributed neural systems in a sufficiently large

number of individuals drawn from healthy and patient popula-

tions.

Extant methods for machine-based classification of individual

brains in imaging datasets generally [8–19] use quantitative

imaging data and known clinical diagnoses to learn optimal

decision boundaries in the feature space of the imaging dataset

that best separate individuals who have differing illnesses. The

quantitative features that enter the training dataset (e.g., the

Jacobian matrix of the deformation field) have usually been

extracted from images using voxel based morphometry [20,21]

(VBM), a technique that provides automated, quantitative, and

fine-grained morphological information about the brain. To

ensure that the imaging measures are smoothly varying across

the brain, the estimated deformation fields are constrained to be

locally smooth. These smoothness constraints, however, create

difficulties for the imaging measures when trying to classify

individuals accurately into diagnostic categories. First, they assume

that a voxel in template space (a brain from a healthy individual to

which all other brains in the sample are point-wise matched)

represents the corresponding anatomical region in the brains

across all other individuals in the dataset. This assumption is

unlikely to be true, even when the brains of differing individuals

have been spatially normalized to the template using high-

dimensional deformations, because the smoothness constraints

employed when warping a brain into template space, and the

variability in anatomy across individual brains, limit the ability of

the normalization procedures to match precisely the correspond-

ing anatomical regions across individuals. Second, the smoothness

constraint causes deformations in a brain region to be influenced

by deformations at all neighboring brain regions, and therefore

brain measures derived from these deformation fields do not

provide accurate measures of local changes in the brain region of

interest. Third, brain measures derived using VBM are defined at

each voxel in the brain, and therefore the dimensionality of the

feature space is very high, requiring either implementation of

techniques that can reduce the dimensionality substantially or else

datasets from a much larger number of participants, in order to

adequately train and validate the classification algorithms.

Together, these limitations of techniques for machine-based

classification introduce imprecision when identifying the point-

to-point correspondences across brains that are required for

accurate classification, as they allow measures from any point in

the brain that is warped to a template space to be influenced by

the variable features of brain regions at a distance remote from

that point. Although more recently developed algorithms for high-

order nonlinear warpings [22] significantly reduce these inaccu-

racies, brain features close to but outside of the regions of interest

likely still influence the smoothed deformation fields.

One alternative to VBM, termed ‘‘surface morphometry’’, may

be more accurate in identifying the point-to-point correspondenc-

es that are required to define the feature space upon which

classification algorithms operate. Surface morphometry first

delineates the surface of each brain region precisely and

independently from other brain regions, and then it spatially

registers independently points on the surface of each brain region

to the corresponding points on the surface of the same region in

the template brain. One of its major advantages is that point

correspondences on brain surfaces are independent of the

morphological features of points remote from those surfaces. In

addition, its brain measures are defined on fewer voxels compared

to VBM-like measures that are defined on all points throughout

the entire three-dimensional volume of the brain, thereby

dramatically reducing the dimensionality of the feature space on

which the classification algorithm is developed and applied.

Despite these limitations, the VBM-based algorithms afford the

promise of providing completely automated techniques for

diagnosing neuropsychiatric disorders, making them potentially

attractive for applications within clinical settings. Therefore,

comparing the performance of the VBM-based methods with

ours and others is essential for future applications of imaging-based

diagnostic algorithms. In the future, therefore, we will rigorously

compare the performance of our algorithm with that of VBM-

based classifications.

Methods

We present a method to identify valid, naturalistic groupings of

the brains based on the spatial patterns of local variation in the
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morphological features across the surfaces of numerous cortical

and subcortical brain regions, with the aim of identifying neural

circuit-based disturbances that are unique to specific neuropsy-

chiatric disorders. We capture the patterns of spatial variation in

these fine-grained, local morphological features across the surfaces

of numerous brain regions in an attempt to represent neural

circuit-based patterns of variation in local morphology. The

patterns of spatial variations are analyzed using machine-based

learning techniques to identify natural groupings of brains. We

show that these naturalistic groupings map with high sensitivity

and specificity to specific neuropsychiatric disorders. We use

computer-generated datasets to validate this general approach,

and use human MRI datasets comprising many individuals across

a variety of neuropsychiatric disorders to validate and reproduce

the specific diagnostic algorithms that classify brains with high

sensitivity and specificity as belonging to persons of one specific

diagnostic group rather than another.

Isolating the Brain and Defining ROIs
We isolated the brain from non-brain tissue and defined various

brain regions using valid and highly reliable procedures to

preclude any rater bias in region definitions. [23–25] We first

removed inhomogeneities in image intensity [26] and then rotated

the brains into a standard head orientation. Next, to ensure the

absence of rater bias, we flipped images randomly in the left-right

(ear-to-ear) direction prior to region definition and reversed the

flips following region definition. We then isolated the brain from

non-brain tissue [27] together with manual editing. Therefore, the

imaging data were not influenced in any way by knowledge of

illness labels prior to generation and testing of the classification

algorithm. We defined cortical gray matter using a combination of

automated thresholding of gray and white matter and manual

editing in orthogonal views. The boundary of each brain region

was manually delineated by an expert neuroanatomist using

detailed, validated, and well-documented procedures published

elsewhere, providing surface delineations that were independent of

the influences of other regions [2,3,25,28,29]. The manual editing

needed to isolate the brain from non-brain tissue was 8 hours, to

define the cortical mantle was 6 hours, to delineate the amygdala

and hippocampus was 4 hours, and to define the basal ganglia was

6 hours of rater time. Therefore, up to 24 hours of a trained,

bachelor’s level rater was needed to provide initial definitions for

all the brain regions used in these classification algorithms. An

additional 8 hours was required to check all these definitions in

their entirety and to make the necessary revisions by another

trained rater before the definition was considered final. Although

manual delineations were onerous and time-consuming for a

trained expert, they provided valid, precise, and highly reliable

region definitions that we believe was important in identifying

individual variability in circuit-based morphological characteristics

in each participant’s brain that was important for the success of

our automated classification algorithm.

The various brain regions that we used to train and validate the

classification algorithm were defined by more than thirty trained

raters over a period of fifteen years. During this 15-year period,

several NIMH grants supported the costs for image acquisition

and post-processing, with each grant providing support for a five-

year period. Trained groups of raters delineated individual brain

regions concurrently and while blind to clinical diagnosis and

other demographic characteristics for all participants, and region

definitions were interleaved randomly across diagnoses over time

in our dataset (Fig. S1). Therefore, any potential rater bias is

unlikely to have confounded the gold-standard clinical diagnoses

used to train and validate the automated classification algorithms.

Moreover, a senior, more experience rater verified and, when

necessary, corrected the definitions before they were made

available for further processing, further reducing the likelihood

of rater bias. In addition, we reestablished the reliability of each

rater every four months in the same set of 10 standardized brains

to ensure the absence of drift in delineation of regions over time or

raters. When a rater left the laboratory, we trained a new rater

who continued to define brain regions on the remaining brains in

the dataset. Intraclass correlation coefficients calculated from 10

brains defined by 2 or more raters were greater than (1) 0.91 for

the hippocampus [2], (2) 0.89 for the amygdala [2], (3) 0.95 for the

caudate and putamen [29], (4) 0.90 for the globus pallidus [29], (5)

0.99 for the cerebral hemispheres [29], (6) 0.95 for the thalamus

[30], and (7) 0.98 for cortical thickness [3].

Quantifying Local Variation in Surface Morphology
We used previously described methods [1–3,28,31] to quantify

precisely the local variations in morphological features across the

surfaces of all of the brain regions that we have defined. These

methods permit a much finer-grained subdivision of cerebral

regions than is possible using more conventional measures of

overall volume, thereby providing much greater power to detect

localized abnormalities within the region. We first coregistered the

cerebrum to a template brain using a similarity transformation

that maximized mutual information across the images. [32] We

then used a rigid body transformation to coregister individual

brain regions to the corresponding template region. Next we

warped each brain region nonlinearly to the corresponding

template region using a high-dimensional warping algorithm.

[33] Each brain region was thus warped to the exact same size and

shape as the template region, allowing us to identify points on the

surface of each region that corresponded precisely with those of

the template region. We then calculated across the entire surface

of each region the Euclidean distance of each point from the

corresponding point on the template. These distances were

positive in sign for protrusions and negative for indentations

relative to the template surface. For any given group of

participants, this set of signed Euclidean distances constituted a

smooth random field on the surface of the template region that

quantified local variation in surface morphological features of that

region for each participant. A single representative brain was

selected as a template rather than an averaged brain because tissue

interfaces, such as CSF gray matter or gray-white matter

interfaces, are well defined in a single brain. In contrast, in an

average brain these interfaces are blurred, thereby increasing

registration errors that are subtle but important when distinguish-

ing subtle effects across populations. In addition, precise surface

morphometry requires smooth surface devoid of topological

defects, which can only be ensured by using a single brain as a

template.

We measured the thickness of the cortical mantle in each brain

using a 3-dimensional morphological operator to distance-

transform the surface of the white matter to the surface of the

cortex. [34,35] This operation calculated cortical thickness as the

smallest distance of each point on the external cortical surface

from the outermost surface of the white matter. Because these

thicknesses were measured in template space, their values

inherently accounted for generalized scaling effects in the brain.

Conformal Mapping of Local Variations in Brain Measures
We used conformal mapping to prepare the surface measures

(Euclidean distances and cortical thickness) for spherical wavelet

analyses. The purpose of conformal mapping was to transfer the

surface measures from the template region onto the surface of a
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unit sphere, while preserving the angles between vectors on the

template and spherical surfaces. Because conformal mapping

preserved angles, the shape of a small region on the brain surface

was preserved when it was mapped onto the unit sphere. We first

used a Marching Cubes algorithm to extract the surface S5<3 of

the template region as a triangular mesh. [36] The extracted

surface
P

was embedded into the three dimensional space <3 and

was assumed to be of genus 0, i.e. the surface was topologically

equivalent to a sphere S
2

and does not intersect itself. By

removing a single point p from the surface
P

and a point p9 from

the sphere S2, the conformal mapping z :
P

\fpg?S2
\fp0g was

estimated by solving the partial differential equation

Dz~
L
Lu

{
L
Lv

� �
dp,

where D is the Laplace-Beltrami operator, dp is the Dirac delta

function at point p, and u and v are the conformal coordinates in

the neighborhood of the point p. This equation was solved using a

method for finite element analysis by first mapping the coordinates

of the template surface to the coordinates of a plane while

preserving the angles between all measures on that surface. [37]

Next, a stereographic projection mapped the coordinates of the

plane to the coordinates of the sphere. We then used those

coordinates to transfer the brain measures from the template

surface to the corresponding locations on the sphere’s surface.

Spherical Wavelet Representation
Morphological features are typically measured at more than

10,000 voxels across the surface of a template region. Although a

classification algorithm can in principle diagnose an individual in a

high-dimensional feature space, an imaging dataset containing

many thousands of brains would be required to generate valid

classification boundaries that have sufficient reproducibility and

generalizability to be potentially useful in a clinical setting.

Because even the largest imaging datasets contain images from

only a few hundred participants, however, the dimensionality of

the feature space must be reduced to generate an algorithm that

has valid classification boundaries. Therefore, we elected to use

morphological measures defining the two-dimensional manifold of

regional surfaces rather than morphological measures for the

entire three-dimensional volume of the corresponding regions.

Moreover, our interest was not in classifying individual points

on the surface, but instead in classifying the spatial patterns of

variation in those measures across the surface of each region.

Therefore, before applying clustering (i.e., classification) tech-

niques to the two-dimensional surface dataset, we first captured

that spatial pattern in variation of our measures in a manner that

also reduced further the dimensionality of the imaging dataset. We

accomplished this by applying a spherical wavelet transform to

surface measures that had been conformally mapped onto a unit

sphere. This wavelet transform generated scaling coefficients that

encoded the spatial variation in our measures on the unit sphere at

varying degrees of spatial resolution.

Because wavelets have local support – i.e., they equal zero

outside a small region – in both the spatial and frequency domains,

they have been used to represent functions at multiple levels of

spatial detail. A wavelet transform, through dyadic translations

and dilations of a mother wavelet and scaling function, generates

coefficients for a function such that only a small subset of the

coefficients can represent the function with a high degree of

precision, thereby permitting compression and efficient processing

of imaging data. The wavelet function yj,k and the scaling qj,k, at

a resolution j and an index k[K(j) (K(j) is a set of integers at

resolution j indexing the position of the wavelet and scaling

function), is a linear combination of the scaling functions qjz1,k at

the higher resolution jz1. Therefore, the wavelet and scaling

functions are self-similar at differing spatial resolutions. If

L2(S2,dv) is the space of all scalar functions having finite energy

over the sphere S2, a multi-resolution analysis generates a

sequence of closed subspaces Vj5L2,Vj§0, such that: (1)

Vj5Vjz1, that is qj,k~
P

l

hj,k,lqjz1,l , (2)
S

j§0 Uj is dense in

L2, and (3) the set of scaling functions fqj,k Dk[K(j)g is a Riesz

basis of Vj . The wavelet functions yj,k form the bases of the

difference space Wj between two successive levels of representa-

tion, that is Vj+Wj~Vjz1. In addition to local support, the

wavelet functions have vanishing moments: If wavelets yj,k have N

vanishing moments, then there exist N independent polynomials

Pi,0ƒiƒN such that Syj,k,PiT~0, for all j§0, m[M(j), where

M(j)5K(jz1) is an index set.

Historically, wavelet transforms were initially limited to infinite

Rn spaces [38], but they subsequently were extended to finite Rn

spaces. [39] More recently, they have been extended to analyze

scalar functions defined on a sphere using lifting schemes. [40,41]

A lifting scheme builds biorthogonal wavelets that are smoother

and that have more vanishing moments than do simple scaling and

wavelet functions. A forward analysis of a spherical wavelet

transform begins computing coefficients for a function at the

highest spatial resolution, continuing until it reaches the lowest

possible spatial resolution. At each resolution, unlifted wavelet

coefficients are computed, and then these coefficients are lifted to

compute the wavelet coefficients, cj,k, and the scaling coefficients,

lj,k. Synthesis, or the inverse transform, in contrast, begins by

computing the coefficients at the lowest resolution and ends at the

function with the highest resolution. We used two differing

methods of wavelet analyses to compute scaling coefficients for our

surface measures: (1) the linear lifted method, which used

information from the two nearest neighbors K(j)~ v1,v2f g at a

location on the mesh of the unit sphere to interpolate the

transformation, and (2) the lifted butterfly method, which used

information from all eight neighbors

K(j)~ v1,v2,f1,f2,e1,e2,e3,e4f g on the mesh of the sphere to

compute the scaling coefficients (Fig. 1).

Controlling for Nuisance Variables
Brain measures may differ because of differing ages, gender, or

whole brain volume (WBV) across individuals, in addition to

differences caused by pathological processes in neuropsychiatric

illnesses. To ensure that our method generated naturalistic

groupings that represent only the underlying pathological

processes and not age and sex effects, we (1) matched our groups

on age and sex, and (2) computed brain measures that were

corrected for age, gender, and WBV. We had also assessed the

effects of higher-order age terms but the linear effects alone were

significant, and therefore, we only used linear terms to control for

the effects of age. Because brain measures were computed on

brains that were normalized into the coordinate space of a

template brain of a healthy individual, they were inherently

corrected for differing WBV across individuals. These brain

measures were further corrected for age and gender effects by

applying linear regression with age and gender as the independent

variables and brain measure as the dependent variable.
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Machine Learning
We employed a semi-supervised method for machine learning

to identify natural groupings of people in the spatial variation of

fine-grained, local morphological features across their brains.

Machine-based learning and pattern classification seek to

construct algorithms that automatically learn decision rules for

classification from experimental datasets, and then it applies the

learned rules to classify individuals in other datasets. [42] These

methods generally belong to either supervised or unsupervised

classes of learning. Consider the pairs of data points

f(xi,yi),i~1, . . . ,ng, where xi[Rm are m-dimensional feature

vectors and yi are scalar-valued labels. For our purposes, the

vectors xi are brain measures and the labels yi are clinical

diagnoses. Supervised learning uses a training sample to learn the

mapping between xi and yi using a parametric or nonparametric

function, f (x). This function encodes a decision rule, or boundary,

that optimally separates the feature vectors xi using the labels, yi.

If the labels yi are missing, then methods for unsupervised learning

(for example, hierarchical clustering procedures) can be used to

discover natural groupings within the data. Our method is semi-

supervised because we first applied leave-one-out cross validation

to select a set of features that differed significantly between groups

of individuals who were already clinically diagnosed, and then we

applied hierarchical clustering to the feature vectors to discover

naturalistic groupings of individuals in the dataset. We then

assessed the validity of these naturalistic groupings by applying

leave-one-out and split-half cross-validation procedures to datasets

that were independent of those that have been mined to generate

the groupings.

Discovering Natural Groupings Using Hierarchical

Clustering. Hierarchical clustering is a powerful, unsupervised

tool for discovering natural structure within a dataset, especially

when the groupings of data are unknown a priori. Groupings of

brains that are generated from clinical diagnoses alone could

frequently misclassify brains if their features do not map tightly to

a clinical diagnosis, especially when disturbances affect neural

pathways that are common across disorders. To minimize these

classification errors, we used hierarchical clustering procedures to

discover naturalistic groupings of brain features. We presumed

that those common features supported similar computational and

behavioral functions, and that the brains that shared them would

map more accurately to biologically based groupings of illnesses

than would groups of brains classified on the basis of morpholog-

ical features associated with clinical symptoms as identified by

prior classification schemes. A clinical diagnostic label was

assigned by a simple majority rule to each of the two naturalistic

groupings, so that the known clinical diagnosis affecting the

majority of participants in each group provided the diagnostic

labels for those groupings. We then used those groupings and

labels to classify new brains from a separate dataset. Thus,

although the features that generated the classification algorithm

were defined by the clinical diagnoses, hierarchical clustering

generates groupings based solely on the morphological features

and therefore the brains from participants were clustered in groups

that shared similar morphological features.

One method for hierarchical clustering generated a sequence of

clusters that partitions an imaging dataset from n participants,

using a measure of dissimilarity between any two groups of feature

vectors. Starting with n clusters at level 1, with each cluster

containing data from exactly one participant, the dataset was

partitioned into n{1 clusters at level 2, n{2 clusters at level 3,

and so on, such that only one cluster was present at level n. In this

sequence of clusterings, any two feature vectors x and x9 were

grouped into one cluster at some level, and they remained together

at all higher levels. Furthermore, dissimilarity between any two

clusters increases with increasing levels, and therefore the

Figure 1. Scaling coefficients at decreasing spatial resolutions. The numbers of vertices in the triangulated mesh at each level of resolution
are indicated at the bottom of the figure. The meshes with 12 and 162 vertices correspond to resolutions 0 and 2, respectively, of the spherical
wavelet transformation. Top Row: Approximating a unit sphere at decreasing spatial resolutions. Middle and Bottom Row: Examples of scaling
coefficients at decreasing resolutions for local variations in the surface morphological features of the right hippocampus in a representative healthy
participant (NC) and a person with Schizophrenia (SZ). The scaling coefficients are color encoded and displayed at the vertices of sphere at the
various resolutions. Protrusions with respect to a template surface are encoded in Red and Yellow, and indentations in the surface are encoded in
Violet and Blue. Green indicates no difference in the surface. The scaling coefficients were computed by first using conformal mapping to map local
variations in surface morphological features onto a unit sphere and then applying the lifted interpolate transformation to the mapped variations. At
the lowest resolution, i.e. Resolution 0 of the wavelet transformation, scaling coefficients at the 12 vertices of the icosahedron very coarsely
approximate the high-resolution variations in local morphological features. Using scaling coefficients at low spatial resolutions for classification
greatly reduces the dimensionality of the feature space.
doi:10.1371/journal.pone.0050698.g001
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groupings of feature vectors that were generated by hierarchical

clustering were visualized at various levels using a nonintersecting,

binary tree called dendrogram. A dendrogram was drawn to scale

to show the dissimilarity between the groups of feature vectors and

to help identify natural groupings within the dataset. An unusually

large difference in the similarity values across levels may indicate a

natural clustering at the lower level. If the similarity values for

various levels were evenly distributed across the range of possible

values, however, then no particular clustering was more natural

than any other.

The use of hierarchical clustering to generate a correct natural

grouping of participants depends heavily on the similarity measure

used to compare feature vectors, as well as on the method that

groups these features using those similarity measures. We defined

the similarity between features (sets of scaling factors) as either the

Euclidean distance for the feature vectors encoding local variations

in the surface morphological measures of a single brain region, or

the standardized Euclidean distance for the feature vectors

encoding local variations in the surfaces from multiple brain

regions. We then used either the average linkage or Ward’s linkage

on the similarity measures to group the feature vectors. The

average linkage calculated the average of the distances between all

pairs of feature vectors in the two clusters and then merged as level

k the two groups that had the smallest distance between averages.

In other words, the average distance dave(Di,Dj) between clusters

Di and Dj was computed as

dave(Di,Dj)~
1

DDi DDDj D

X
x[Di ,x

0[Dj

x{x0k k

Ward’s linkage, in contrast, calculated the distance between two

clusters Di and Dj as the increase in the error sum of squares (ESS)

of the new cluster Dij~Di|Dj , obtained as the union of the

individual clusters. For a cluster Di, the ESS(Di) was computed as

ESS(Di)~
X
x[Di

x{
1

DDi D

X
y[Di

y

������
������

2

and therefore Ward’s distance dward (Di,Dj) was computed as

dward (Di,Dj)~ESS(Dij){½ESS(Di)zESS(Dj)�:

Ward’s linkage therefore generated cohesive groupings of partic-

ipants by minimizing the increase in within-group variance at each

level.

Hierarchical clustering as we implemented it may converge to

local rather than global optima. Starting with n sets of features

from n brains, hierarchical clustering iteratively combines the

features from two sets of brain features to generate a new set of

features, thereby reducing the number of sets by one in each step

of the iteration. Also at each step, among all possible combinations

of two sets, only those two are combined such that the new set

optimizes a pre-specified criterion. In our implementation of

hierarchical clustering, we used for this pre-specified criterion

Ward’s distance, which computes within-set variance of brain

features. Therefore, in our implementation of hierarchical

clustering, two sets of features were combined such that the

within-set variance (i.e., Ward’s distance) of the new set was

smallest among all possible other combinations of two feature sets.

This strategy is a greedy one, in that the two sets to be combined at

each step are selected from all sets available in that step, and

therefore the two groups generated in the last step may not have

the least possible within-group variance among all possible two-

group combinations of n brains. Higher variances in the generated

groupings would typically indicate that some brains are assigned to

a group erroneously. Such groupings may limit the effectiveness of

classification because use of these groupings would possibly create

an erroneous assignment of a new participant. Although this is a

risk using our implementation of hierarchical clustering, the

superb performance and reliability of our classification algorithm

suggests that local optima and their attendant errors in classifica-

tion were very few.

Independent Validation
We validated the naturalistic groupings using both leave-one-

out (LOO) cross-validation analyses and 10 independent split-half

replication analyses. In addition, we computed misclassification

rates using LOO cross-validation applied to the random halves of

data generated in the split-half analyses. In each of the 10 split-half

analyses, we (a) partitioned the imaging datasets randomly into

two halves, the training set and the test set, (b) generated the

classification algorithm using the training set, and then (c)

evaluated the performance of the classification algorithm using

the second, independent test half of the dataset. Automated,

computer-based procedures assigned a brain in the second test

dataset to one of the two putative diagnostic groups identified in

the training dataset by assessing which of the two groups had

morphological features most similar to its own. To assign the brain

to one of the two previously defined groups, we first computed the

distance between its scaling coefficients and the average coeffi-

cients of both groups, and then we assigned the brain to the

diagnostic group having the smaller distance from its scaling

coefficients. The brain was considered to be misclassified if its

diagnosis differed from that of the group label assigned in the

training dataset. Assigning each brain in the test dataset one at a

time to a putative diagnostic label allowed us to compute

misclassification rates in a dataset that was entirely independent

of the training dataset that generated the classification algorithm.

These split-half procedures were repeated independently for every

pair of the 10 training and test datasets, thereby generating 10

independent estimates of the misclassification rates for each pair of

clinical diagnoses that we tried to discriminate (e.g. TS vs HC). We

computed the means and standard deviations of the misclassifi-

cation rates across these multiple split-half and LOO cross-

validations, which we then used to calculate the sensitivity and

specificity of the diagnostic algorithms. It is important to note that,

even though the features entering the classification algorithm and

the labels assigned to the subsequent naturalistic groupings of

brains were determined using previously known clinical diagnoses,

it was the hierarchical clustering algorithm alone, operating

without information about clinical diagnoses and based solely on

the morphological features shared across brains within each

dataset, that generated the naturalistic groupings of brains used in

the following validation of MRI-based diagnoses.

Validation using Computer-Generated Datasets
We generated two synthetic datasets, each with increasing levels

of complexity in their surface morphologies, by superimposing

spherical indentations or protrusions of known size positioned

precisely in the dorsolateral prefrontal cortex (DLPFC) or occipital

cortex (OC). [31] These two datasets were used to assess the

construct validity of our procedures. The deformation in DLPFC

was centered in the midportion of the pars triangularis over the

inferior frontal gyrus. The deformation in OC was placed

immediately to the left of the interhemispheric fissure on the
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lowermost portion of the occipital lobe, such that the deformation

was tangential both to the cistern immediately superior to the

cerebellum and the interhemispheric fissure (Figs. 2 & 3). We

confirmed the accuracy of the placement of these deformations by

viewing the deformed brains in the coronal, axial, and sagittal

planes. The first dataset was created from copies of a single brain,

and the second dataset was created from the brains of 20 different

individuals. The second dataset was used to determine the optimal

resolution of the scaling coefficients that best discriminate brains of

healthy individuals from those with neuropsychiatric illnesses.

Synthetic Datasets Constructed from a Single Brain. To

create the first set of 10 brains, S1
DI , we first generated a deformed

brain by adding a 15 mm indentation in the DLPFC in a copy of

s1, and then placed 10 copies of that brain, each with a differing

amounts of translations and rotations, in the coordinate space of

the template brain (Figs. 2 & 3). Similarly, for the second set of 10

brains, S2
DP, we first generated a deformed brain by adding a

15 mm protrusion to the same location of the DLPFC in a copy of

s1, and then we placed 10 copies of that same brain at 10 random

locations in the coordinate space. Using identical procedures, we

generated a third set S3
OI and a fourth set S4

OP of 10 images by

adding an indentation and protrusion, respectively, in the OC

region in the copies of s1 and then placing them at 10 random

locations in the space. From these four sets of deformed brains we

generated three new sets: (1) SDIP~S1
DI|S2

DP of 20 brains, (2)

SOIP~S3
OI|S4

OP of 20 brains, and (3)

SDOIP~S1
DI|S2

DP|S3
OI|S4

OP of 40 deformed brains. We then

applied our wavelet transform and classification procedures to

discover natural groupings in each of these three synthetic

datasets. Because brains in these datasets were identical to s1

except for the added protrusion and indentation, we expected the

brains to be clustered into four groups: one with protrusions in the

DLPFC, a second with indentations in the DLPFC, a third with

protrusions in the OC, and a fourth group with indentations in the

OC.

Synthetic Datasets Constructed from Different

Individuals. From the brains of 20 healthy individuals,

fs1,s2, . . . ,s20g, we generated 4 sets of synthetic data: (1) the first

set D1
DI~fs1

DI ,s2
DI , . . . ,s20

DIg of 20 deformed brains contained a

15 mm indentation in the DLPFC, (2) the second set

D2
DP~fs1

DP,s2
DP, . . . ,s20

DPg of 20 brains contained a 15 mm

protrusion in the DLPFC, (3) the third set

D3
OI~fs1

OI ,s2
OI , . . . ,s20

OIg of 20 brains contained a 15 mm

indentation in the OC, and (4) the fourth set

D4
OP~fs1

OP,s2
OP, . . . ,s20

OPg of 20 brains contained a 15 mm

protrusion in the OC. From these 4 sets of synthetic data we

created 3 new subsets of brains: (1) the first subset

DDIP~fs1
DI , . . . ,s10

DI ,s11
DP, . . . ,s20

DPg contained 10 brains with

indentations and another 10 brains with protrusions in the

DLPFC, (2) the second subset DOIP~fs1
OI , . . . ,s10

OI ,s11
OP, . . . ,s20

OPg
of 10 brains with indentations and another 10 brains with

protrusions in the OC, and (3) the third subset

DDOIP~fs1
DI , . . . ,s10

DI ,s11
DP, . . . ,s20

DP,s1
OI , . . . ,s10

OI ,s11
OP, . . . ,s20

OPg of

10 brains with indentations at DLPFC, another 10 brains with

protrusion in the DLPFC, 10 more brains with indentations in the

OC, and yet another 10 brains with protrusions in the OC. We

then applied the method to automatically discover the natural

groupings within these three sets of brains. For each of the two sets

DDIP and DOIP, we expected to cluster the brains into two groups:

one with only indentations and the other with only protrusions.

We expected to cluster brains from the set DDOIP into four groups,

one with only protrusions in the DLPFC, another with only

indentations in the DLPFC, another with only protrusions in the

OC, and a last one with only indentations in the OC.

Validation using Real-World Data and Gold-Standard
Clinical Diagnoses

We validated the natural groupings identified in our classifica-

tion algorithm using surface morphological measures in a large

group of healthy individuals and groups of patients with known

clinical diagnoses established by senior clinicians using research-

based diagnostic interviews, either the Kiddie-Schedule for

Affective Disorders and Schizophrenia (K-SADS) [43] in partic-

ipants younger than 18 years or the Structured Clinical Interviews

for DSM Disorders (SCIDs) [44] in participants older than 18

years. Final clinical diagnoses were assigned following a best-

estimate consensus procedure conducted by two board-certified

psychiatrists using all available research records but while blind to

Figure 2. Warping a deformed brain to the template brain. We added deformations to copies of the template brain and then normalized
those deformed brains to the undeformed template. The deformed brains were spatially normalized using a method that maximizes mutual
information in the gray scale values across the images [32] and then warped the coregistered brain using a method based on fluid dynamics. [33]
Because a deformed brain was identical to the template brain except for the added deformation, the deformation field only shows a large spatial
deformation in the region of the added deformation.
doi:10.1371/journal.pone.0050698.g002
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prior clinical diagnoses. [45,46] All participants were free of a

history of neurological illness, substance dependence, sustained

loss of consciousness, and significant medical illness. All partici-

pants provided written informed consent for their participation in

these studies.

Healthy Participants. We acquired imaging data in 42

healthy children (18 males, age 10.562.43 years) and 40 healthy

adults (22 males, age 32.42610.7 years). [47] Additional exclusion

criteria for healthy participants included a lifetime or a current

DSM-IV Axis 1 or 2 disorder, and IQ,80 as measured by the

WISC-III [48], WAIS [49], or Kaufmann-Brief Intelligence Test.

[50]

Tourette Syndrome (TS) Participants. Imaging data was

acquired in 71 TS children (59 males, age 11.1962.2 years) and

36 TS adults (21 males, age 37.34610.9 years). [47] They were

ascertained through the local chapter of the Tourette Syndrome

(TS) Association and through the Tic Disorder Clinic of the Yale

Child Study Center, New Haven, Conn. Diagnoses were

supplemented using the Schedule for Tourette and Other

Behavioral Syndromes [51]., and ratings of current and worst

ever severity of tic symptoms using the Yale Global Tic Severity

Scale. [52]

ADHD Participants. We imaged 41 ADHD children (33

males, age 12.663.18 years) [28] who were recruited through the

general outpatient clinic at the Yale Child Study Center or

through advertisements with a local chapter of ChADD (Children

with Attention Deficit Disorder). Diagnostic assessments were

supplemented using the Conners ADHD Parent and Teacher

Figure 3. Deformations at the dorsolateral prefrontal cortex (DLPFC) in the template brain. Top Row: In copies of the template brain we
added a 15 mm wide protrusion or indentation in the DLPFC by centering the deformation over the midportion of the pars triangularis in the inferior
frontal gyrus. We placed the deformed brains randomly in the coordinate space of the template brain. The deformed brains were coregistered to the
template brain and then we computed the signed Euclidean distances between the surface of the coregistered brain and the surface of the template
brain. The signed Euclidean distances were color-encoded and displayed on the template brain, and were mapped onto a unit sphere using a
conformal mapping. Red: protrusion on the surface; Violet: indentations on the surface. Bottom Row: The distances on the unit sphere were
transformed by applying spherical wavelet transformation to compute scaling coefficients at decreasing resolutions.
doi:10.1371/journal.pone.0050698.g003

Figure 4. Optimal P-value threshold for scaling coefficients. Naturalistic groupings of the brains were generated using scaling coefficients
that differed significantly with at most a specified P-value between groups of participants in our cohort. The optimal P-value of the statistical
significance was selected from the plots of sensitivity and specificity, and the number of scaling coefficients, for various P-value thresholds in our
cohort of 42 healthy children (HC) and 71 children with Tourette’s Syndrome (TS). The scaling coefficients were computed for the right and left
amygdalae, hippocampi, global pallidus, putamina, caudate nuclei, thalami, and hemisphere surfaces. At each P-value threshold, we applied
hierarchical clustering to all coefficients that differed with at most the specified P-value to generate groupings of the brains. These groupings were
analyzed using leave-one-out (LOO) cross validation to compute the sensitivity and specificity of our method for classifying an individual as a healthy
child or a child with TS. We independently computed sensitivity and specificities for various P-value thresholds and plotted the sensitivity (SE, solid
line) and specificity (SP, dashed line) (Left), and the number of coefficients (Right), as a function of P-value thresholds. For a P-value threshold,1027,
the method classified an individual with both high sensitivity and high specificity. At this P-value threshold, moreover, the number of coefficients was
sufficiently reduced, thereby reducing the dimensionality of the feature space. We therefore applied a P-value,1027 as a threshold for classifying an
individual among various neuropsychiatric illnesses. SE, sensitivity; SP, specificity.
doi:10.1371/journal.pone.0050698.g004
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Rating Scales [53,54] and the DuPaul-Barkley ADHD rating scale

[55]. ADHD subjects with lifetime of Obsessive Compulsive

Disorder (OCD), Tourette Syndrome or Tic disorder, and

premature birth (gestation #36 weeks) were excluded from this

group.

Bipolar Disorder (BD) I Participants. This group com-

prised 26 adults with BD (11 males, age 37.65610.35 years) who

were identified from general psychiatry outpatient clinics [56] at

the Yale School of Medical Center or the Veterans Affairs

Connecticut Healthcare System, or referred by the practitioner.

[57] During the history of their illness, all participants met DSM-

IV criteria for having had a clearly defined manic episode lasting

at least one week.

Schizophrenia (SZ) Participants. We acquired imaging

data in 65 adults with SZ (41 males, age 42.1668.71 years). [58]

They were identified from general psychiatry outpatient clinics at

Yale University Medical Center. All participants had been on their

medication for at least 30 days and had not abused substances for

at least 60 days. Diagnostic assessments were supplemented using

the Positive and Negative Symptom Scale for Schizophrenia.

[58,59]

Participants at High or Low Risk for Major Depressive

Disorder (MDD). These individuals belonged to a 3-generation

cohort in which the first two generations have been followed for

more than 22 years. [3] In the first generation (‘‘G1’’), one group

of adults was clinically ascertained during treatment of moderate

to severe, recurrent, and functionally debilitating MDD; the other

group was a sample of matched control adults from the same

community who had no discernible lifetime history of depression.

The biological offspring of the first generation comprised the

second generation (‘‘G2’’), and the offspring of the second

generation comprised the third generation (‘‘G3’’). [3,60] The

participants identified at ‘‘high risk’’ for developing MDD were

those members of G2 and G3 who were biological descendants of

the MDD group in G1 and those identified at ‘‘low risk’’ were the

G2 and G3 biological descendants of the unaffected control group

in G1. We acquired imaging data for 131 individuals in G3: 66 (12

children, 54 adults) in the high risk group, and 65 in the low risk

group (31 children, 34 adults).

MRI Pulse Sequence
T1-weighted MR images were acquired on a 1?5 Tesla GE

scanner using a sagittal spoiled gradient recall sequence

(TR = 24 msec, TE = 5 msec, 45u flip, frequency encoding S/I,

no wrap, 2566192 matrix, FOV = 30 cm, 2 excitations, slice

thickness = 1.2 mm, 124 contiguous slices). This sequence was

Figure 5. Identifying natural groupings of identical brains containing differing known deformations. Left Column: Brains 1 through 10
contained a protrusion, and brains 11 through 20 contained an indentation, in the DLPFC. Middle Column: Brains 1 through 10 contained a protrusion,
and brains 11 through 20 contained an indentation, in the occipital cortex (OC). Right Column: Brains 1 through 10 had a protrusion at the OC, the
brains 11 to 20 had an indentation at the OC whereas brains 21 through 30 contained a protrusion at the DLPFC and brains 31 through 40 had an
indentation at the DLPFC. The deformed brains were normalized to the template to compute signed Euclidean distances. Those distances were
mapped onto a sphere using a conformal mapping. We then applied either the lifted interpolate (top two rows) or the lifted butterfly (bottom row) to
compute the scaling coefficients. Hierarchical clustering computed distances between features using either the average linkage or Ward’s linkage.
Left and middle dendrograms demonstrate that the brains were correctly clustered into two groups, one with indentations only and the other with
protrusions only. Right dendrogram shows that the brains were correctly clustered into four groups: one with only protrusions in the OC, another
with only protrusions in the DLPFC, another one with only indentations in the OC, and the last with only indentations in the DLPFC. Furthermore,
Ward’s distances between groups were larger than the average distances, indicating good separation of groups according to the type of synthetic
deformation that was introduced into the data. Ward distances for feature vectors generated using lifted interpolate were generally greater than
those generated using lifted butterfly, motivating our subsequent use of the lifted interpolate wavelet to compute scaling coefficients and use of
Ward’s linkage to cluster brains into naturalistic groups. Dp, protrusion in DLPFC; Di, indentation in DLPFC; Op, protrusion in OC; Oi, indentation in
OC.
doi:10.1371/journal.pone.0050698.g005
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selected to provide superior signal-to-noise and contrast-to-noise

ratios in high-resolution images having nearly isotropic voxels

(1.17161.17161.2 mm). For the participants who were at either a

high (HR) or a low (LR) familial risk for depression, imaging data

were acquired on a 1.5T Siemens Sonata scanner using a 3D

MPRAGE sequence with the same parameters [3].

We computed feature vectors from several brain regions,

according to the availability of their manual tracings. The feature

vector was composed of the scaling coefficients that were derived

from the measures of surface morphology. For discriminating

brains of individuals with either TS or ADHD from those of

healthy comparison individuals and for discriminating TS children

from ADHD children, we used feature vectors computed for the

morphology of the cortex, globus palladus, putamen, caudate,

thalamus, amygdala, and hippocampus. For discriminating brains

between persons with other clinical diagnoses, however, we used

feature vectors computed from the cortex, amygdala, and

hippocampus. The brains of individuals who were at either high

or low risk for depression, we used feature vectors computed from

the cortical thickness. We applied our classification procedures to

discriminate (a) 41 children with ADHD from 42 healthy children,

(b) 71 children with TS from 41 children with ADHD, (c) 26 adults

Figure 6. Identifying natural groupings of brains with known deformations from differing individuals. Deformations were placed at
either Dorsolateral Prefrontal Cortex (DLPFC) or Occipital Cortex (OC) in brain from 20 individuals. TopRow, Left: Brains 1 through 10 had protrusions
and brains 11 through 20 had indentations at the DLPFC location. TopRow, Right: Brains 1 through 10 had protrusions and brains 11 through 20 had
indentations at the OC location. The brains differed morphologically in addition to the added deformations. Variations in surface morphology from
the template brain were analyzed by applying a method for spherical wavelet analysis to compute scaling coefficients at decreasing spatial
resolution. The scaling coefficients were grouped by applying hierarchical clustering, which generated one group of brains with indentations only
and another group of brains with protrusions only. TopLeft: Brains 1 through 10 had protrusions and brains 11 through 20 had indentations at the
DLPFC location. Using the scaling coefficients at Resolution2 that differed significantly between these groups (P-value,1027), the dendrogram shows
that the brains were naturally clustered into two groups: one only with indentations, and the other only with protrusions. Top Right: Brains 1 through
10 had protrusions and brains 11 through 20 had indentations at the OC location. Using a different scaling coefficients at Resolution2 that differed
significantly, the dendrogram shows that the data were naturally clustered into two groups: one only with indentations, and the other only with
protrusions. Bottom: Brains 1 through 10 had protrusions, and brains 11 through 20 had indentations, at the DLPFC location. Brains 21 through 30
had protrusions, and brains 31 through 40 had indentations, at the OC location. Using scaling coefficients at Resolution2, the dendrogram shows that
the data were naturally clustered into 4 groups: one only with indentations at the DLPFC, another only with protrusions at the DLPFC, another only
with indentations at the OC, and the last only with protrusions at the OC. However, brain 28 with protrusion at the OC was grouped with brains that
had indentations at the OC location. Dp; protrusion in DLPFC; Di; indentation in DLPFC; Op, protrusion in OC; Oi, indentation in OC.
doi:10.1371/journal.pone.0050698.g006
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Figure 7. Classifying a child as healthy or with ADHD, or as having either TS or ADHD. In our cohort of 42 healthy children (HC), 41 ADHD
children, and 71 children with TS, we first computed scaling coefficients for the left and right globus pallidus, putamina, caudate nuclei, thalami,
amygdalae, and hippocampi. We then independently applied hierarchical clustering to those coefficients that differed significantly (P-value,1027)
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with BD from 40 healthy adults, (d) 65 adults with schizophrenia

(SZ) from 36 TS adults, (e) 65 adults with SZ from 26 BD adults, (f)

65 adults with SZ from 40 healthy adults, (g) 36 adults with TS

from 40 healthy adults, (h) 71 children with TS from 42 healthy

children, (i) 65 adults with SZ, 36 adults with TS, and 40 healthy

adults, and (j) 65 adults with SZ, 26 adults with BD, and 40

healthy adults.

We applied our classification scheme to the scaling coefficients

that we determined differed at high levels of statistical significance

(P-valuesv10{7) between persons with a specific neuropsychiatric

disorder and healthy comparison persons. The p-value for the

statistical significance was determined empirically by first applying

LOO analysis to scaling coefficients that differed at decreasing p-

values and then selecting the p-value associated with the lowest

misclassification rates (Fig. 4). Using feature vectors that differed

at this stringent statistical threshold both reduced the dimension-

ality of the feature space and identified the features that best

discriminated feature vectors for brains in each of the two groups.

We then applied hierarchical clustering techniques to the selected

scaling coefficients to identify two natural groupings of brains

based solely on the similarity of their morphological features.

Each group of brains that hierarchical clustering generated was

assigned the diagnosis of the majority of participants contained in

that group. Furthermore, although we empirically selected the

feature vectors upon which hierarchical clustering was performed,

that selection was subsequently validated and their reproducibility

was assessed using split-half cross validation. The selected feature

vectors therefore should generalize to other similar datasets.

Identification of Persons at High or Low Familial Risk for
Developing a Disorder

We attempted to classify individuals who were at either high

familial risk (HR) or low familial risk (LR) for developing Major

Depressive Disorder (MDD). The group consisted of 66 HR and

65 LR individuals. Previously we demonstrated the presence of a

thinning of the cortical mantle in the lateral aspect of the right

cerebral hemisphere and mesial wall of the left hemisphere of the

HR compared with LR participants. [3] The cortical thinning was

present even in those HR individuals who had never been ill with

MDD. Therefore we computed scaling coefficients for local

variations in cortical thickness of the HR and LR participants.

Classification was more challenging in these high and low risk

groups than in groups of already-affected people because most of

the HR and LR participants had no lifetime history of MDD,

some of the LR participants in generation 3 had parents with prior

depression who married into the cohort, and some of the members

of the LR group did have a lifetime history of MDD. Therefore,

we expected at least some of the participants in these two risk

groups to have similar brain features, and we expected misclas-

sification of at least some participants in the HR group as being in

the LR group, and vice versa.

Results

Synthetic Datasets Constructed from a Single Brain
In the dataset with 40 brains with indentations and protrusions

in both the DLPFC or OC, our method correctly clustered all

brains into 4 groups of 10 brains each, one with only protrusions in

the DLPFC, another with only indentations in the DLPFC, a third

group with only protrusions in the OC, and a last group with only

indentations in the OC (Fig. 5). Classification rates were perfect

for this synthetic dataset.

Additionally, the same groupings were generated when using

either a lifted interpolate or a lifted butterfly wavelet and when

using either an Average or a Ward’s linkage measure of distance.

The analysis using the lifted, interpolate wavelet and the Ward’s

linkage distance, however, generated more coherent and better

separated groups (Fig. 5). Thus, in all subsequent analyses we used

the lifted interpolate wavelet to compute scaling coefficients and

Ward’s linkage to generate optimal groupings in hierarchical

clustering.

Synthetic Datasets Constructed from Different
Individuals

Using scaling coefficients at a higher resolution of the wavelet

analyses, the method generated groups of brains with indentations

in the DLPFC only, protrusions in the DLPFC only, indentations

in the OC only, and protrusions in the OC only (Fig. 6). At lower

resolution, the performance of classification was poor when using

datasets constructed from different individuals because differing

surface morphology across individuals differentially affected the

added deformations. The scaling coefficients at the lower

resolution therefore encoded both the inherent variation in surface

morphology in these individuals and the added deformations, and

therefore the groupings generated by the method were guided by

inherent variation in surface morphological features in these

individuals. At higher resolutions (i.e. at smaller spatial extents

across the cortical surface), the effects of inherent variation in

surface morphology was smaller in the scaling coefficients

computed across individuals; the scaling coefficients at the higher

resolution therefore encoded more accurately the deformation

added to the surfaces of these brains. Thus, we used scaling

between (1) ADHD children and HC, and (2) TS children and ADHD children. The left dendrogram suggested the presence of two groups: one (labeled
as HC) consisted of 36 healthy children, and the other (labeled as ADHD children) consisted of the 41 ADHD children and 6 healthy children. The right
dendrogram suggested that the brains were clustered into two distinct groups: one labeled TS only comprised of TS children and the other labeled
ADHD only consisted of ADHD children. The adjusted misclassification rates (Table 1) were: 11.5% for healthy children and 6.4% for ADHD children;
and 0.17% for TS children and 0.5% ADHD children. Therefore, the sensitivity and specificity were: 93.6% and 89.5%, respectively, for classifying a
child as an ADHD child; and 99.83% and 99.5%, respectively, for classifying a child as having either ADHD or TS. We plotted the patterns of surface
features across the various brain regions that best classified a child. Left: The patterns that discriminated ADHD child from healthy child were localized
to: lateral and posterior portions of the right putamen; anterior portions of the left and medial portion of the right globus pallidus; ventral portion of
the left caudate; posterior and medial portions of the left thalamus; ventral portion of the left amygdala, and anterior and posterior portions of the
right amygdala; and posterior portion of the left hippocampus. In red are regions with local protrusions, and in violet are regions with local
indentations in ADHD children compared with the healthy children. Right: The pattern of surface features that discriminated between children with
TS or ADHD included: anterior, lateral, and dorsal portions of the left globus pallidus, and dorsal, lateral, and medial portions of the right globus
pallidus; ventral portion of the left caudate; dorso-medial portions of the left putamen, and lateral, dorsal, and medial portions of the right putamen;
dorsal, posterior, and medial portions of the left thalamus, and posterior portion of the right thalamus; dorsal and posterior portions of the left
amygdale, and anterior and posterior portions of the right amygdala; anterior and medial portions of the left hippocampus, and lateral portions of
the right hippocampus. Regions in red are local protrusions, and regions in violet are local indentations, in TS children compared with ADHD children.
GP, globus pallidus, CN, caudate nucleus; PUT, putamen; TH, thalamus; AMY, amygdala; HC, hippocampus; A: Anterior; P: Posterior.
doi:10.1371/journal.pone.0050698.g007
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coefficients computed at the higher resolution for classifying

individuals subsequently in all of our analyses of real-world

datasets.

Human Datasets
The classification algorithms that our procedures generated

were able to discriminate the brains of persons with a specific

neuropsychiatric disorder from the brains of healthy persons from

the brains of persons who had differing neuropsychiatric disorders,

with high sensitivities and specificities (Table 1). They discrim-

inated the brains of children with ADHD from HC with 93.6%

sensitivity and 88.5% specificity (Fig. 7, left); children with TS

from children with ADHD with 99.83% sensitivity and 99.5%

specificity (Fig. 7, right); adults with BD from HA with 100%

sensitivity and 96.4% specificity (Fig. 8, 1st column); adults with

SZ from adults with TS with 99.99% sensitivity and 100%

Figure 8. Classifying an adult as healthy or with disorder, or between two neuropsychiatric illnesses. In our cohort of 40 healthy adults
(HA), 26 bipolar (BD) adults, 36 TS adults, and 65 adults with schizophrenia (SZ), we first computed scaling coefficients for the left and right
hemispheres, amygdalae, and hippocampi. We then independently applied hierarchical clustering to those coefficients that differed significantly (P-
value,1027) between (1) BD adults and healthy adults (1st column), (2) SZ adults and TS adults (2nd column), (3) SZ adults and BD adults (3rd column),
and (4) SZ adults and HA (4th column). The first dendrogram suggested the presence of two groups: one (labeled as HA) consisted of the 40 healthy
adults, and the other (labeled as BD adults) consisted of the 26 BD adults. The second dendrogram demonstrated that the brains were clustered into
two distinct groups: one containing only TS adults and the other only SZ adults. The third dendrogram also consisted of two distinct groups, one
group only of BD adults and the other group only of SZ adults. The fourth dendrogram showed two groups of the brains, one labeled healthy adults
consisted of healthy adults only, and the other labeled SZ consisted of all SZ adults and two healthy adults. The adjusted misclassification rates were
(1) 3.6% for HA and 0% for BD adults, (2) 0% for both the TS and SZ adults, (3) 0% for both the BD and SZ adults, and (4) 6.9% for SZ adults and 5.5%
for healthy adults. Therefore, the sensitivity and specificity were (1) 100% and 96.4%, respectively, for classifying a participant as a BD adult, (2) 100%
for classifying an adult as TS or SZ adult, (3) 100% for classifying an adult as BD or SZ adult, and (4) 93.1% and 94.5%, respectively, for classifying a
participant as SZ adult. We plotted the patterns of surface features across the various brain regions that best classified an adult. 1st Column These
patterns were localized to: anterior and lateral regions of the left amygdala, and dorsal, lateral, and posterior regions of the right amygdala; posterior
regions of the left hippocampus; and dorso-medial regions of the right hemisphere. In red are regions with local protrusions, and in violet are regions
with local indentations in BD adults compared with the healthy adults. 2nd Column The pattern of surface features (Bottom) that discriminated
between groups included: anterior and medial portions of the left amygdala, and lateral and posterior regions of the right amygdala; anterior and
lateral aspects of the left hippocampus, and posterior portion of the right hippocampus; and dorsolateral prefrontal, parietal, and medial regions of
the left hemisphere, and dorsolateral prefrontal, temporal, medial, and parietal regions of the right hemisphere. Regions in red are local protrusions,
and regions in violet are local indentations, in SZ adults compared with TS adults. 3rd Column The pattern of surface features (Bottom) that
discriminated between groups included: dorso-medial portions of the left amygdala, and ventro-medial regions of the right amygdala; posterior and
lateral aspects of the left hippocampus, and anterior and posterior portion of the right hippocampus; medial dorso-lateral prefrontal, and parietal
regions of the left hemisphere, and ventro-posterior, medial, and posterior lateral regions of the right hemisphere. Regions in red are local
protrusions, and regions in violet are local indentations, in SZ adults compared with BD adults. 4th Column The surface features that best
discriminated SZ adults from healthy adults were localized to: dorsolateral prefrontal cortex, superior parietal, and medial regions of the left
hemisphere, and temporal, occipital, dorso-lateral, and medial regions of the right hemisphere; dorsal regions of left amygdala, and anterior regions
of right amygdala; posterior regions of the left hippocampus, and anterior and posterior regions of the right hippocampus. In red are regions with
local protrusions, and in violet are regions with local indentations in SZ adults compared with the healthy adults. LH, left hemisphere; RH, right
hemisphere; AMY, amygdala; HC, hippocampus; A, anterior; P, posterior.
doi:10.1371/journal.pone.0050698.g008
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specificity (Fig. 8, 2nd column); adults with SZ from adults with

BD with 99.99% sensitivity and 100% specificity (Fig. 8, 3rd
column); adults with SZ from healthy adults with 93.1%

sensitivity and 94.5% specificity (Fig. 8, 4th column); adults

with TS from HA with 83.2% sensitivity and 90% specificity

(Fig. 9, left); children with TS from HC with 94.6% sensitivity

and 79% specificity (Fig. 9, right); and participants at HR for

depression from those at LR for depression with 81% sensitivity

and 71% specificity (Fig. 10). The positive predictive values for

each of these classifications were high, ranging from 0.89 to 1.0,

except for a value of 0.74 when classifying persons at HR or LR

for depression that was not surprising, given we were classifying

people at risk for developing an illness and not those with an

already-established disorder. Specificities tended to be somewhat

lower than sensitivities when classifying patient groups against

healthy participants, as misclassifications tended to be more

frequent in the healthy participants than when discriminating one

neuropsychiatric disorder from another. We suspect that the

misclassification of healthy participants may derive from their

carrying a brain feature that could place them at greater risk for

developing an illness, even though that illness may never become

manifest. We have previously demonstrated that kind of brain-

based vulnerability in our sample of participants at high or low

familial risk for depression. [3] The positive predictive value

(PPV), the likelihood that a person diagnosed with an illness using

the classification algorithm actually has the illness, was close to 1.0

for most of the datasets. This high PPV could derive in part from

be due to the roughly equal number of healthy and affected

Figure 9. Classifying an individual as a healthy individual or an individual with Tourette Syndrome (TS). In 42 healthy children (HC), 40
healthy adults (HA), 71 children with TS, and 36 adults with TS, we independently applied hierarchical clustering to scaling coefficients that differed
significantly (P-value,1027) between (1) adults with TS and healthy adults (left), and (2) children with TS and healthy children (right). The two largest
groups in the right dendrogram were labeled HC (this group consisted of 27 healthy children) or TS children (which consisted of 71 TS and 15 healthy
children); and those in the left dendrogram were labeled HA (40 healthy and 6 TS adults) or TS adults (30 TS adults). The adjusted misclassification
rates were 5.4% and 21% for the TS children and HC, respectively, and 10% for HA and 16.8% for TS adults. Therefore, the sensitivity and specificity of
the method were 94.6% and 79%, respectively, for classifying a child as either healthy child or as having TS, and were 83.2% and 90%, respectively, for
classifying a participant as a TS adult. Left The dorso-anterior and ventro-posterior regions of the right hippocampus best classified a participant as
either a healthy adult or TS adult. Regions in red are local protrusions, and regions in violet are local indentations, in TS adults compared with healthy
adults. Right Shown here are the regions in right globus pallidus and right hippocampus where the scaling coefficients differed significantly between
TS children and healthy children. The pattern of surface features that discriminated between the two groups included the dorso-anterior portions of
the right globus pallidus, and the dorsal and ventro-posterior portion of the right hippocampus. Regions in red are local protrusions, and regions in
violet are local indentations, in TS children compared with healthy children. RGP, Right Globus Pallidus; RHC, Right Hippocampus; A: anterior; P:
posterior.
doi:10.1371/journal.pone.0050698.g009
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participants in each classification and therefore could be lower if

the algorithms were applied to the brains of persons in the general

population, where prevalence rates for neuropsychiatric disorders

are typically 2–3%. Nevertheless, certainly 50% or more of

persons seeking medical help are likely to have a disorder, and

therefore the high PPVs may provide reasonable estimates of the

performance of the classification algorithm within a real-world

clinical setting.

Three-Way Classifications Using Real-World Data and
Gold-Standard Clinical Diagnoses

In contrast to the two-way classifications, the performance of

our method for three-way classifications was poor: In discrimi-

nating the brains of SZ adults, BD adults, and healthy adults (HA),

for example, the adjusted misclassification rates were 0.80, 0.83,

and 0.046, for SZ adults, BD adults, and HA, respectively (Fig. 11,
left). However, the brains of SZ adults, BD adults, and HA could

be accurately discriminated by applying an iterative, two-way

classification strategy in which we first discriminated the brains of

HA from those of a combined group of SZ adults and BD adults,

and then applying a different set of feature vectors to discriminate

the brains of SZ adults from BD adults (Fig. 8). Because the brains

of SZ adults can be perfectly discriminated from those of BD

adults, the misclassification rates for the iterative approach were 0

for HA, 0.14 for BD adult, and 0.14 for SZ adult. Similarly, an

iterative, two-way classification strategy was best for discriminating

the brains of SZ adults, TS adults, and HA (Fig. 11, right): we

first discriminated the brains of SZ adults from those of a

combined group of TS adults and HA, and then used a different

set of features to discriminate the brains of TS adults from HA

(Fig. 9). The misclassification rates for this iterative approach were

0.10 for HA, 0.168 for TS adult, and 0.0245 for SZ adult.

Discussion

Although previous studies have applied various machine-based

classification techniques to brain imaging measures in attempts to

Figure 10. Classifying an individual as high or low familial risk for MDD. In our cohort of 66 High Risk (HR) and 65 Low Risk (LR) participants,
we applied hierarchical clustering using Ward’s linkages to scaling coefficients computed at Resolution 2 from the local variations in cortical thickness
across the right and the left hemispheres. Each group was assigned a diagnosis using the majority rule, such that a group was labeled HR if the
majority of participants in that group belonged to a family with a grandparent who had MDD. Otherwise the group was labeled as LR. Assuming only
two groups of participants, the adjusted misclassification rates were 29% for the LR participants and 19% for HR participants. Therefore, the sensitivity
and the specificity for classifying an individual as HR were 81% and 71%, respectively. The pattern of cortical thickness that discriminated between
the groups included superior regions of the left hemisphere and lateral surface of the right hemisphere. Regions in red are local thickening, and
regions in violet are local thinning, in HR participants as compared with LR participants. The spatial pattern of variation in cortical thickness in the HR
compared with the LR group is consistent with the pattern previously identified across risk groups in this sample. [3] LH, left hemisphere; RH, right
hemisphere.
doi:10.1371/journal.pone.0050698.g010
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diagnose people with various neuropsychiatric illnesses, none to

our knowledge have achieved a similar degree of accuracy

across as wide a range of neuropsychiatric illnesses as those of

the present study. We attribute this success to several unique

features of our classification strategy. First, we applied these

classification techniques across multiple individually and

accurately defined brain regions, rather than to a single image

of the entire brain, as is common using techniques such as

voxel-based morphometry. Second, we used spherical wavelet

transforms to capture spatial patterns of variation in local

morphological features, rather than relying on individual and

group variability of those local features alone when measured at

single isolated voxels. Third, we applied hierarchical clustering

techniques to identify natural groupings of spatial patterns of

variation in morphological features of the brain across

participants, rather than applying those clustering techniques

to measures at each individual voxel of the brain. This

approach was intended to classify brains according to normal

and pathological spatial variations in morphological features

that would identify unique, distributed, circuit-based distur-

bances across the brain associated with specific neuropsychiatric

illnesses. [1,61] The high diagnostic sensitivity and specificity of

our classification algorithms across a wide range of disorders

and across cohorts of varying sizes, demographic characteristics,

and treatment histories, and even in a high risk sample (most of

whom were unaffected by manifest illness in their lifetime)

demonstrates the exceptional robustness of these methods for

imaging-based diagnostic classification of individuals with

chronic, well-characterized illness.

Our ability to use only morphological features of the brain to

classify and diagnose individuals accurately as having a specific

neuropsychiatric illness suggests that the brains of the individ-

uals who share a primary clinical diagnosis also likely share a

common core neurobiological substrate for that illness, despite

the widely known and undeniable etiologic heterogeneity of

virtually all neuropsychiatric disorders. This shared substrate

does not mean that the brains of people who have a given

neuropsychiatric diagnosis are identical. Indeed, visual inspec-

tion of the classification trees shows evidence for variability of

feature vectors within diagnostic groupings, and even evidence

for the presence of morphological subtypes within clusters of a

single clinical diagnosis. That variability could represent either

the presence of differing etiologic subtypes within a single

diagnostic label or the presence of additional, co-occurring

illnesses for persons who share a single primary clinical

diagnosis, which is common in clinical samples.

Potential sources of error in classification included errors in

the methods for extracting feature vectors from the images.

Errors in extracted features would have increased their variance

and therefore reduced the statistical power of our algorithms for

accurately classifying and diagnosing individual brains. We

have previously demonstrated, however, that our methods for

spatial normalization of brain regions to the template brain are

highly accurate. [31] Similarly, the methods that we used to

map surface features conformally onto a unit sphere have also

been previously validated. [62] Finally, we computed scaling

coefficients using the well-validated wavelet transform. The

methods applied in each of the various steps, therefore, have

been extensively validated previously, and they computed

highly accurate scaling coefficients. Another source of potential

error in classification was the overlap of the feature spaces

across disorders. We validated the structures discovered in our

datasets by using leave-one-out and split-half cross validation

procedures, which generally demonstrated very low rates of
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Figure 11. Three-way classifications of an adult. In our cohort of 40 healthy adults (HA), 26 BD adults, 65 SZ adults, and 36 TS adults, we applied
hierarchical clustering to the scaling coefficients for the left and right amygdalae, hippocampi, and hemisphere surfaces that significantly
differentiated between (1) both BD and SZ adults from HA (left), and (2) both TS and SZ adults from HA (right). The two largest groups in the left
dendrogram were labeled HA (this group consisted of 40 HA) or BD+SZ adults (which consisted of 26 BD adults and 65 SZ adults). The groups in the
right dendrogram were labeled HA+TS (which consisted of 40 HA and 35 TS adults) or SZ (which consisted of 65 SZ and 1 TS adults). Because the
method performed poorly for these 3-way classifications of adults, we suggested an iterative two-step procedure for classification of these 3 groups.
For classifying an individual as a healthy adult, an adult with BD, or an adult with SZ, first an individual was classified as belonging to one of two
groups: (1) a healthy adult, or (2) a patient (i.e., as either an adult with BD or an adult with SZ). Our method classified adults between these two
groups with 86% sensitivity and 100% specificity. Second, using a different set of scaling coefficients, the individual was classified as either an adult
with BD or an adult with SZ with high sensitivity and specificity (Fig. 2). Similarly, for classifying an individual as healthy adult, an adults with SZ or an
adult with TS, an individual first was classified between two groups: (1) an adult with SZ, and (2) a healthy adult or an adult with TS. Our method
classified an adult between these two groups with 99.99% sensitivity and 97.76% specificity. Second, using a different set of scaling coefficients, the
individual was classified as either an adult with TS or a healthy adult (Fig. 3). Left The pattern of the surface features that best classified an individual
as either a healthy adult or a patient (i.e. as either an adults with BD or an adult with SZ) in the first 2-way classification included: smaller anterior and
dorsal portions of the left amygdala, and smaller anterior and lateral portions of the right amygdala; smaller posterior regions of the left
hippocampus, and smaller posterior portions of the right hippocampus; larger dorsolateral prefrontal, smaller ventro-medial, and larger parietal
portions of the left hemisphere, and larger superior-parietal, larger superior-occipital, smaller temporal, and smaller medial portions of the right
hemisphere. Regions in red are local protrusions, and regions in violet are local indentations, in BD adults or SZ adults compared with healthy adults.
Right The pattern of the surface features that best classified an individual into one of the two groups (either as an adult with SZ, or as a healthy adult
or adult with TS) included: anterior and lateral regions of the left and right amygdalae; posterior and lateral regions of the left hippocampus, and
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misclassification in independent datasets and a high level of

reproducibility in generating the algorithms used for group

classifications.

Although we expected that the accuracy of our classification

algorithms would improve significantly by including as many as

possible of the brain regions that are components of the many

neural circuits distributed across the brain, cost constraints limited

our inclusion of only those brain regions that already had been

delineated in sufficient number for each disorder at the time when

we trained and validated each classification algorithm. We have

listed in Table 1 the brain regions initially assessed in the training

of each classification algorithm and those that contributed

significantly to accurate classification. If and when these

algorithms are ever used in future real-world applications, a

clinician who had narrowed the diagnostic field for a patient to

one of two disorders and who wanted assistance in determining

which of those disorders was most likely present would use Table 1

to determine the brain regions that need to be defined on the brain

images of that patient and then enter those definitions into the

relevant diagnostic algorithm. To determine whether a patient’s

most likely diagnosis is schizophrenia or bipolar disorder, for

example, a clinician would need to obtain precisely defined

boundaries of the amygdala, hippocampus, and cerebral hemi-

spheres (regions that contribute to accurate discrimination of these

disorders) and then enter those boundary definitions into the

classification algorithm for schizophrenia and bipolar disorder.

Because our classification algorithm requires for its input the

highly precise delineation of several brain regions, it is yet unsuited

for dissemination as a complete and practical tool to aid in clinical

diagnosis, for three reasons. First, the manual delineation of brain

regions is onerous, requiring 3–4 days of rater time to define the

various brain regions used to train and validate each of our

classification algorithms. Any potential future application of the

classification algorithms in practical clinical settings will require

the development either of a more automated tool for region

delineation or the availability of a central expert processing center

that can define these brain regions with a high degree of precision

and at relatively low cost, neither of which is currently available.

Nevertheless, with these caveats limiting the real-world clinical

implementation and dissemination of these techniques and

algorithms, we have provided compelling evidence demonstrating

the proof of concept that accurate neuropsychiatric diagnosis in

single individuals is possible using anatomical MRIs alone. Given

that demonstration, the way forward to real-world clinical

implementation and dissemination is clear: we must now develop

methods that will make precise region delineations widely

available for front-line clinicians. Therefore, along with other

investigators, we are designing and testing algorithms that

automatically delineate brain regions and extract their image

features with sufficiently high precision to maintain the perfor-

mance of our diagnostic algorithms. Second, the critical assess-

ment, comparison, and benchmarking of various combinations of

algorithms for region delineation and diagnostic classification will

be important in determining which of these combinations is most

accurate and cost-effective for future applications within real-

world settings. Third, because our algorithms were tested in

chronically ill patients, they will need to be tested in new-onset

patients if ever they are to be used in real-world practice, as the

greatest diagnostic confusion tends to arise clinically with newly

presenting patients. It is possible that the brain features that our

algorithms found to be most discriminating among the various

diagnostic categories were the consequences of the chronicity of

the illnesses or their treatments, in which case they may not be as

accurately discriminating in new-onset patients. This possibility

notwithstanding, it is worth noting that most psychiatric illnesses

are already chronic by the time patients present for initial clinical

evaluation [63,64], with the duration of illness prior to first

treatment ranging from 2 years for schizophrenia [65], to 6–8

years for mood disorders and 9–23 years for anxiety disorders

[66].

Although our classification algorithms identified patients in

specific diagnostic groups with remarkable accuracy, they did so in

individuals who had chronic, well-defined illness. We intentionally

assessed performance of these algorithms in patients whose

illnesses were diagnostically clear and unambiguous because we

needed confidence in the accuracy of the ground truth clinical

labels with which the results of our automated classification could

be compared. Those ground truth clinical labels generally are

clearest and least ambiguous in chronic patients, for whom the

range of symptoms and their clinical courses have fully evolved

over time. [67,68] The accuracy of those ground truth clinical

labels was essential for this initial proof-of-concept demonstration

that anatomical images alone can accurately diagnose neuropsy-

chiatric illness. The clinical diagnoses were accurate and

unambiguous for the participants with either TS, ADHD, SZ, or

BD in our cohort because the participants had chronic, well-

characterized psychiatric illnesses that had evolved over an

average duration of illness of more than 10 years [69,70], and

their diagnoses had been established using carefully applied,

research-based diagnostic instruments (SCID) [44] using DSM-IV-

TR criteria. Diagnoses were confirmed by two senior, board-

certified clinicians who reached clear consensus for the neuropsy-

chiatric diagnoses [46] for each participant. Moreover, we note

that our classification accuracies were greatest, and in fact near

perfect, when discriminating between two disorders (i.e., between

TS or ADHD, SZ or BD, or SZ or TS), compared with rates when

we were discriminating between one patient group and healthy

participants (Table 1). We attribute this remarkable accuracy to

the fact that when discriminating two patient groups, morpholog-

ical abnormalities in both groups deviated from normal, so that the

vectors representing those abnormalities in feature space for each

group were further from one another than were their distances

from the vectors in feature space for the healthy participants.

Diagnosing neuropsychiatric illnesses using brain imaging

measures alone has the potential to transform the clinical care

and research of these conditions. If imaging-based diagnoses prove

to be as accurate at the stage of initial diagnosis as they seem to be

in the diagnostic classification of our chronically ill patients, they

will offer the promise of reducing the cost and morbidity associated

with inappropriate treatments that are begun following an

incorrect initial clinical diagnosis. In addition, imaging-based

classifications will likely facilitate the development of primary or

secondary prevention strategies for persons who are at increased

risk for developing a neuropsychiatric illness. We have demon-

strated the feasibility of identifying people who are at risk for

becoming ill by discriminating individuals at high or low risk for

familial MDD, a sample that include many individuals who had

not yet manifested overt symptoms of illness. One of the most

anterior and posterior regions of the right hippocampus; anterior, ventral, posterior, medial, and superior regions of the left hemisphere, and medial
and lateral regions of the right hemisphere. Regions in red are local protrusions, and regions in violet are local indentations, in SZ adults compared
with healthy adults or adults with TS. LH, left hemisphere; RH, right hemisphere; AMY, amygdala; HC, hippocampus; A, anterior; P, posterior.
doi:10.1371/journal.pone.0050698.g011
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important potential future applications of this work is the use of the

natural groupings of brains generated by our algorithms to identify

brain-based subtypes within a single clinical diagnosis. Differing

neurobiological subtypes of illness likely have differing natural

histories and respond differentially to specific therapeutic inter-

ventions. Identifying those neurobiological subtypes would thereby

facilitate the development of truly individualized plans for clinical

care. Finally, brain-based diagnoses and the identification of

biological subtypes will reduce the presence of phenocopies that

are detrimental to the discovery of the genes that predispose to the

development of neuropsychiatric illness.
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9. Klöppel S, Stonnington CM, Chu C, Draganski B, Scahill RI, et al. (2008)

Automatic Classification of MR Scans in Alzheimer’s Disease. Brain 131: 681–

689.

10. Duchesnay E, Cachia A, Roche A, Rivière D, Cointepas Y, et al. (2007)

Classification Based on Cortical Folding Patterns. IEEE Trans on Medical

Imaging 26: 553–565.

11. Davatzikos C, Fan Y, Wu X, Shen D, Resnick SM (2008) Detection of

prodromal Alzheimer’s disease via pattern classification of MRI. Neurobiol

Aging 29: 514–523.

12. Liu Y, Teverovskiy L, Carmichael O, Kikinis R, Shenton M, et al.

Discriminative MR Image Feature Analysis for Automatic Schizophrenia and

Alzheimer’s Disease Classification. In: Barillot C, Haynor DR, Hellier P, editors;

2004. Springer-Verlag GmbH, Saint-Malo, France. pp. 393–401.

13. Teipel SJ, Born C, Ewers M, Bokde AL, Reiser MF, et al. (2007) Multivariate

deformation-based analysis of brain atrophy to predict Alzheimer’s disease in

mild cognitive impairment. NeuroImage 38: 13–24.

14. Fan Y, Shen D, Davatzikos C (2005) Classification of structural images via high-

dimensional image warping, robust feature extraction, and {SVM}. Med Image

Comput Comput Assist Interv Int Conf 8: 1–8.

15. Kawasaki Y, Suzuki M, Kherif F, Takahashi T, Zhou SY, et al. (2007)

Multivariate voxel-based morphometry successfully differentiates schizophrenia

patients from healthy controls. NeuroImage 34: 235–242.

16. Mourao-Miranda J, Bokde AL, Born C, Hampel H, Stetter M (2005) Classifying

brain states and determining the discriminating activation patterns: Support

Vector Machine on functional MRI data. NeuroImage 28: 980–995.

17. Herholz K, Salmon E, Perani D, Baron JC, Holthoff V, et al. (2002)

Discrimination between Alzheimer dementia and controls by automated analysis

of multicenter FDG PET. NeuroImage 17: 302–316.

18. Lerch JP, Pruessner J, Zijdenbos AP, Collins DL, Teipel SJ, et al. (2006)

Automated cortical thickness measurements from MRI can accurately separate

Alzheimer’s patients from normal elderly controls. Neurobiol Aging 29: 23–30.

19. Jack CR, Shiung MM, Gunter JL, O’Brien PC, Weigand SD, et al. (2004)

Comparison of different MRI brain atrophy rate measures with clinical disease

progression in AD. Neurology 62: 591–600.

20. Ashburner J, Friston KJ (2000) Voxel-based morphometry–the methods.

NeuroImage 11: 805–821.

21. Lochhead RA, Parsey RV, Oquendo MA, Mann JJ (2004) Regional brain gray

matter volume differences in patients with bipolar disorder as assessed by

optimized voxel-based morphometry. Biol Psychiatry 55: 1154–1162.

22. Ou Y, Davatzikos C (2009) DRAMMS: deformable registration via attribute

matching and mutual-saliency weighting. Inf Process Med Imaging 21: 50–62.

23. Kates WR, Abrams MT, Kaufman WE, Breiter SN, Reiss AL (1997) Reliability

and validity of MRI measurement of the amygdala and hippocampus in children

with fragile X syndrome. Psychiatry Res: Neuroimaging 75: 31–48.

24. Watson C, Andermann F, Gloor P, Jones-Gotman M, Peters T, et al. (1992)

Anatomic basis of amygdaloid and hippocampal volume measurement by

magnetic resonance imaging. Neurology 42: 1743–1750.

25. Peterson BS, Riddle MA, Cohen DJ, Katz LD, Smith JC, et al. (1993) Reduced

basal ganglia volumes in tourette’s syndrome using three-dimensional recon-

struction techniques from magnetic resonance images. Neurology 43: 941–949.

26. Sled GJ, Zijdenbos AP, Evans AC (1998) A Nonparametric Method for

Automatic Correction of Intensity Nonuniformity in MRI Data. IEEE Trans of

Medical Imaging 17: 87–97.

27. Shattuck DW, Leahy RM (2002) BrainSuite: An Automated Cortical Surface

Identification Tool. Medical Image Analysis 8: 129–142.

28. Plessen KJ, Bansal R, Zhu H, Whiteman R, Quackenbush GA, et al. (2006)

Hippocampus and amygdala morphology in Attention-Deficit/Hyperactivity

Disorder. Arch Gen Psychiatry 63: 795–807.

29. Peterson BS, Thomas P, Kane MJ, others a (2003) Basal ganglia volumes in

patients with Gilles de la Tourette syndrome. Arch Gen Psychiatry 60: 415–424.

30. Ivanov I, Bansal R, Hao X, Zhu H, Kellendonk C, et al. (2010) Morphological

Abnormalities of the Thalamus in Youths With Attention Deficit Hyperactivity

Disorder. Am J Psychiatry 167: 397–408.

31. Bansal R, Staib LH, Wang Y, Peterson BS (2005) ROC-based assessments of 3D

cortical surface-matching algorithms. Neuroimage 24: 150–162.

32. Viola P, Wells, W. M. Alignment by Maximization of Mutual Information; 1995

June 20–23; Boston, MA. pp. 16–23.

33. Christensen GE, Rabbitt RD, Miller MI (1994) 3D brain mapping using a

deformable neuroanatomy. Physics in medicine and biology 39: 609–618.

34. Haralick R, L. S (1992) Computer and Robot Vision, volume 1: Addison-Wesley

Publishing Company.

35. Rosenfeld A, Kak AC (1982) Digital Picture Processing: Academic Press, Inc.

36. Lorensen W, Cline H (1987) Marching Cubes: a High-Resolution 3D surface

construction algorithm. Computer Graphics 21: 163–169.

37. Angenent S, Haker S, Tannenbaum A, Kikinis R (1999) On the Laplace-

Beltrami Operator and Brain Surface Flattening. IEEE Trans on Medical

Imaging 18: 700–711.

38. Daubechies I (2004) Ten Lectures on Wavelets: Society for Industrial and

Applied Mathematics.

39. Cohen A, Daubechies I, Jawerth B, Vial P (1993) Multiresolution analysis,

wavelets and fast algorithms on an interval. CR Acad Sci Paris Ser I Math I 316:

417–421.

40. Schroder P, Sweldens W (1995) Spherical Wavelets: Efficiently Representing

Function on the Sphere. Proceedings of the 22nd annual conference on

Computer graphics and interactive techniques 161–172.

41. Sweldens W (1994) The lifting scheme: A custom design construction of

biorthogonal wavelets. Department of Mathematics, University of South

Carolina.

42. Duda RO, Hart PE (1973) Pattern Classification and Scene Analysis: John Wiley

& Sons.

43. Kaufman J, Birmaher B, Brent D, Rao U, Flynn C, et al. (1997) Schedule for

Affective Disorders and Schizophrenia for School-Age Children-Present and

Lifetime Version (K-SADS-PL): initial reliability and validity data. J Am Acad

Child Adolesc Psychiatry 36: 980–988.

44. American Psychiatric Association Staff (2000) Diagnostic and Statistical Manual

of Mental Disorders, DSM-IV-TR Text Revision. 4th ed. Arlington: American

Psychiatric Publishing, Incorporated.

45. Peterson BS, Thomas P, Kane MJ, Scahill L, Zhang H, et al. (2003) Basal

Ganglia volumes in patients with Gilles de la Tourette syndrome. Arch Gen

Psychiatry 60: 415–424.

46. Leckman JF, Sholomskas D, Thompson WD, Belanger A, Weissman MM (1982)

Best estimate of lifetime psychiatric diagnosis: a methodological study. Arch Gen

Psychiatry 39: 879–883.

47. Peterson BS, Staib L, Scahill L, Zhang H, Anderson C, et al. (2001) Regional

brain and ventricular volumes in Tourette syndrome. Arch Gen Psychiatry 58:

427–440.

Diagnosing Chronic Psychiatric Disorders

PLOS ONE | www.plosone.org 20 December 2012 | Volume 7 | Issue 12 | e50698



48. Wechsler D (1996) WISC-III Manual. Canadian Supplement.Toronto:

Psychological Corporation.
49. Wechsler D (1991) Wechsler Adult Intelligence Scale-III. New York:

Psychological Corporation

50. Grados JJ, Russo-Garcia KA (1999) Comparison of the Kaufman Brief
Intelligence Test and the Wechsler Intelligence Scale for Children-Third

Edition in economically disadvantaged African American youth. J Clin Psychol
55: 1063–1071.

51. Pauls DL, Hurst CR (1996) Schedule for Tourette and Other Behavioral

Syndromes. New Haven, Conn.
52. Leckman JF, Riddle MA, Hardin MT, Ort SI, Swartz KL, et al. (1989) The Yale

Global Tic Severity Scale: initial testing of a clinician-rated scale of tic severity.
J Am Acad Child Adolesc Psychiatry 28: 566–573.

53. Conners CK, Sitarenios G, Parker JD, Epstein JN (1998) The revised Conners’
Parent Rating Scale (CPRS-R): factor structure, reliability, and criterion validity.

J Abnorm Child Psychol 26: 257–268.

54. Conners CK, Sitarenios G, Parker JD, Epstein JN (1998) Revision and
restandardization of the Conners Teacher Rating Scale (CTRS-R): factor

structure, reliability, and criterion validity. J Abnorm Child Psychol 26: 279–
291.

55. DuPaul GJ (1991) Parent and teacher ratings of ADHD symptoms: psychometric

properties in a community-based sample. J Clin Child Psychol 20: 245–253.
56. Blumberg HP, Kaufman J, Martin A, Whiteman R, Zhang JH, et al. (2003)

Amygdala and hippocampal volumes in adolescents and adults with bipolar
disorder. Arch Gen Psychiatry 60: 1201–1208.

57. Blumberg HP, Krystal JH, Bansal R, Martin A, Dziura J, et al. (2006) Age,
Rapid-Cycling, and Pharmacotherapy Effects on Ventral Prefrontal Cortex in

Bipolar Disorder: A Cross-Sectional Study Biol Psychiatry 59: 611–618.

58. Wexler BE, Zhu H, Bell MD, Nicholls S, S,, Fulbright RK, et al. (2009)
Neuropsychological Near Normality and Brain Structure Abnormality in

Schizophrenia. Am J Psychiatry 166: 189–195.
59. Kay SR, Fiszbein A, Opler L (1987) The Positive and Negative Symptom Scale

for Schizophrenia. Schizophr Bull 13: 261–276.

60. Weissman MM, Wickramaratne P, Nomura Y, Warner V, Verdeli H, et al.

(2005) Families at High and Low Risk for Depression. Arch Gen Psychiatry 62:

29–36.

61. Insel T, Cuthbert B, Garvey M, Heinssen R, Pine DS, et al. (2010) Research

Domain Criteria (RDoC): Toward a New Classification Framework for

Research on Mental Disorders. Am J Psychiatry 167.

62. Angenent S, Haker S, Tannenbaum A, Kikinis R (1999) On the Laplace-

Beltrami operator and brain surface flattening. IEEE Transactions on Medical

Imaging 18: 700–711.

63. Substance Abuse and Mental Health Services Administration (2012) Results

from the 2010 National Survey on Drug Use and Health: Mental Health

Findings. Substance Abuse and Mental Health Services Administration,

Rockville, MD.

64. SoRelle R (2000) Nearly half of Americans with severe mental illness do not seek

treatment. Circulation 101: E66–E66.

65. Larsen TK, McGlashan TH, Moe LC (1996) First-episode schizophrenia: I.

Early course parameters. Schizophr Bull 22: 241–256.

66. Wang PS, Berglund P, Olfson M, Pincus HA, Wells KB, et al. (2005) Failure and

delay in initial treatment contact after first onset of mental disorders in the

national comorbidity survey replication. Archives of General Psychiatry 62: 603–

613.

67. Bromet EJ, Kotov R, Fochtmann LJ, Carlson GA, Tanenberg-Karant M, et al.

(2011) Diagnostic shifts during the decade following first admission for psychosis.

Am J Psychiatry 168: 1186–1194.

68. Kraemer HC, Kupfer DJ, Clarke DE, Narrow WE, Regier DA (2012) DSM-5:

How Reliable Is Reliable Enough? American Journal of Psychiatry 169: 13–15.

69. Blumberg HP, Krystal JH, Bansal R, Martin A, Dziura J, et al. (2006) Age,

rapid-cycling, and pharmacotherapy effects on ventral prefrontal cortex in

bipolar disorder: a cross-sectional study. Biol Psychiatry 59: 611–618.

70. Wexler BE, Zhu H, Bell MD, Nicholls SS, Fulbright RK, et al. (2009)

Neuropsychological near normality and brain structure abnormality in

schizophrenia. Am J Psychiatry 166: 189–195.

Diagnosing Chronic Psychiatric Disorders

PLOS ONE | www.plosone.org 21 December 2012 | Volume 7 | Issue 12 | e50698


