
A Sparse Representation-Based Algorithm for Pattern
Localization in Brain Imaging Data Analysis
Yuanqing Li1*., Jinyi Long1., Lin He1, Haidong Lu2, Zhenghui Gu1, Pei Sun3,4*

1 Center for Brain Computer Interfaces and Brain Information Processing, South China University of Technology, Guangzhou, People’s Republic of China, 2 Institute of

Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China,

3 Laboratory for Cognitive Brain Mapping, RIKEN Brain Science Institute 2-1 Hirosawa, Wako, Saitama, Japan, 4 Department of Psychology, Tsinghua University, Beijing,

People’s Republic of China

Abstract

Considering the two-class classification problem in brain imaging data analysis, we propose a sparse representation-based
multi-variate pattern analysis (MVPA) algorithm to localize brain activation patterns corresponding to different stimulus
classes/brain states respectively. Feature selection can be modeled as a sparse representation (or sparse regression)
problem. Such technique has been successfully applied to voxel selection in fMRI data analysis. However, single selection
based on sparse representation or other methods is prone to obtain a subset of the most informative features rather than
all. Herein, our proposed algorithm recursively eliminates informative features selected by a sparse regression method until
the decoding accuracy based on the remaining features drops to a threshold close to chance level. In this way, the resultant
feature set including all the identified features is expected to involve all the informative features for discrimination.
According to the signs of the sparse regression weights, these selected features are separated into two sets corresponding
to two stimulus classes/brain states. Next, in order to remove irrelevant/noisy features in the two selected feature sets, we
perform a nonparametric permutation test at the individual subject level or the group level. In data analysis, we verified our
algorithm with a toy data set and an intrinsic signal optical imaging data set. The results show that our algorithm has
accurately localized two class-related patterns. As an application example, we used our algorithm on a functional magnetic
resonance imaging (fMRI) data set. Two sets of informative voxels, corresponding to two semantic categories (i.e., ‘‘old
people’’ and ‘‘young people’’), respectively, are obtained in the human brain.
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Introduction

One fundamental question in neuroscience focuses on deter-

mining how information is processed within local and global

networks in the brain. Recently, multivariate pattern analysis

(MVPA) approaches have been used successfully in revealing brain

patterns activated by different stimulus conditions in brain imaging

studies [1,2,3,4,5,6]. Three common strategies have been

employed to determine where the brain contains discriminative

information for different stimulus categories, and this is known as a

pattern localization procedure. Based on prior knowledge,

multivariate analysis can be restricted to anatomically or

functionally predefined brain regions [7,8,9,10]. An alternative

method is a local multivariate search approach (e.g. the searchlight

algorithm), in which features are evaluated in local brain regions

first and then all of these local features are combined to form a

whole-brain information mapping [11,12]. The third strategy is a

whole-brain approach which treats all features/voxels as a vector

and does not need a priori information on the location of the

informative features. Whole-brain approach-based feature selec-

tion algorithms have been used to reveal fine-grained spatial

discriminative patterns both in simulations and real functional

magnetic resonance imaging (fMRI) data analysis [1,5,13,14].

Ideally, all of the informative features contributing to the

discrimination should be extracted, no matter how small a

contribution they provide. However, in most MVPA algorithms,

not all the informative variables are selected because part of the

informative variables may be sufficient for decoding or classifica-

tion. However, when trying to extract the sufficient informative

features, those representing noise may be selected; therefore

follow-up statistical tests are necessary.

For the purpose of identifying all the informative features, we

proposed a sparse representation-based pattern localization

algorithm combined with a nonparametric statistical test in this

study. We summarized the process of the algorithm as three

components: a K-fold cross-validation of recursive feature search

where feature weights were determined by a sparse representation

method, construction of two probability maps based on the

selected features, and a permutation test at the individual or group

level. In our previous study [15], we established a sparse

representation-based multivariate algorithm for voxel selection in

fMRI data analysis. Furthermore, our data analysis results
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demonstrated its better performance in detecting subtle difference

between two different brain states than several conventional

univariate methods e.g. the generalized linear model (GLM)

method [3,16,17,18]. Compared with the methods in [15] and

other related studies, the contributions of the algorithm in this

paper were three folds: 1) During the recursive feature search, the

informative features selected by sparse representation were

eliminated recursively until the decoding accuracy dropped to a

threshold close to chance level. In this way, most of the informative

features were expected to be identified/selected; 2) The positive

and negative signs of the feature weights obtained by sparse

representation were associated with the two stimulus conditions/

brain states respectively. Hence the selected features were

separated into two sets according to the signs of the weights; 3)

The permutation test guaranteed the rejection of the irrelevant/

noisy features in the above two selected feature sets. Thus, two

patterns corresponding to two stimulus classes/brain states

respectively were localized. We demonstrated the effectiveness of

our approach using a toy data set and an intrinsic signal optical

imaging data set. Furthermore, we illustrated the application of

our approach using an fMRI data set.

Materials and Methods

1 Preliminary: feature selection modeled as sparse
representation (or sparse regression) problem

The neuroimaging data were given by a matrix A[RM|K0 ,

where the M rows and the K0 columns corresponded to the time

points and the features/variables (e.g. voxels in the fMRI data or

pixels in the optical imaging data), respectively. The column vector

y[RM was a function with label information to be regressed. For

instance, y could be a stimulus function in an fMRI experiment

with 1 representing stimulus and 0 representing no stimulus, or a

label vector with 1 representing the first class and 21 representing

the second class.

Feature selection was based on the weights of all features, which

were determined by sparse representation [15]. We outline the

algorithm for weight determination below.

Sparse representation method for feature/variable
weight determination

For a data matrix A and a column vector y, we solved the

following optimization problem to obtain a weight vector w of

variables.

minjjwjj1, s: t: Aw~y ð1Þ

Model (1) can be seen as a sparse regression between the data

matrix A and the function y with label information. The optimal

solution of (1) is denoted by w0. The absolute value of each entry of

w0 reflects the contribution of its corresponding variable to the

regression between the data matrix A and the function y or to the

discrimination between two classes when y is constructed using the

labels 1 and 21.

The optimization problem (1) can be converted to a standard

linear programming problem as below [15].

Setting w~u{v, where u~½u1, � � � ,uK0
�T and v~½v1, � � � ,vK0

�T
are nonnegative, model (1) can be converted to the following linear

programming problem with nonnegative constraints,

min
XK0

i~1

(uizvi), s: t: ½A,{A�½uT ,vT �T~y, u§0,v§0, ð2Þ

which can be solved using the Matlab optimization toolbox.

Here we could also use another regression approach, e.g.,

support vector machine (SVM), instead of sparse representation

for weight determination. A difference between the two methods

is: the weights obtained by sparse representation is sparse while

those obtained by SVM are dense. Sparse weights are useful for

highlighting those variables relevant with the labels or the vector to

be regressed [15]. Additionally, the signs of weights obtained by

sparse representation are related to the classes of data, as

demonstrated by data analysis and mathematically proven based

on several simplified models in this paper. This characteristic of

SVM has also been demonstrated by simulations in this paper and

proposed in several other studies [2,14]. We mainly used sparse

representation for determining weights of features/variables in this

study.

2 Proposed sparse representation-based pattern
localization (SPL) algorithm

We first present the outline of our SPL algorithm here. As

shown in Figure 1, a K-fold cross-validation was performed with

the SPL algorithm. In each fold, a recursive iterative feature

elimination method relying on the weights obtained by sparse

representation was used to pick up as many informative variables

as possible, and these selected features were divided into two sets

according to the signs of their weights corresponding to two

stimulus classes/brain states. Next, two probability maps/density

functions were constructed using the two classes of features

selected across all the K folds of cross-validation. Inside each

probability map, the probability value of a feature was obtained by

counting the number of times the feature was picked up across all

folds. To remove the irrelevant features, these two probability

maps were tested with a permutation test at the individual level or

tested at the group level if a group of data were available.

Thereafter, two patterns corresponding to two stimulus classes/

brain states were obtained. In the following, we explain the SPL

algorithm step by step.

2.1 K-fold cross-validation of recursive feature
search. Regarding the cross-validation, both the data matrix

A and the column vector y were equally partitioned into K non-

overlapping parts according to their rows. In the k-th fold

(k~1, � � � ,K ), the j-th part was removed and the rest (K{1) parts

(denoted as A(k) and y(k) in the following) were used for searching

two sets of informative features, which correspond to two classes of

stimuli/brain states. This was implemented by a procedure of

sparse representation and recursive feature search, as described in

the following. Regarding parameter K , the number of folds, we

suggest that it is set larger than 20 since it is related to the

calculation of probability maps as shown later.

Recursive feature search in each fold of cross-validation
In each fold of cross-validation, we recursively eliminated

informative features selected by the sparse regression method until

the decoding accuracy based on the remaining features drops to a

threshold close to the chance level 50% for the two-class problem.

According to the signs of the sparse regression weights, these

identified features were separated into two sets corresponding to

two stimulus classes/brain states respectively. In this way, the

resultant two feature sets including all the identified features were

An Algorithm for Pattern Localization
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expected to involve as many informative features for discrimina-

tion as possible.

The process of the recursive feature search in the kth fold is

illustrated in Figure 2. In the first iteration, the data were the

matrix A(k) and column vector y(k). In the nth iteration

(n~1,2, � � �), we performed the following four steps:

Step 1: Sparse representation for feature weight determination.

We applied the sparse representation method to the data updated

in the previous iteration and obtained a weight vector denoted as

w(n) of variables.

Step 2: Feature selection. We used the weight vector w(n) to

determine two sets denoted as Ind
(n)
z and Ind (n)

{ , each containing

N0 informative variables/features. The two sets Ind
(n)
z and Ind (n)

{

corresponded to the N0 largest positive elements and the N0

smallest negative elements of the weight vector w(n), respectively.

Step 3: Informative feature removal. We removed these

variables in Ind
(n)
z and Ind(n)

{ from the data matrix used in the

current iteration, and the updated data matrix composed by the

remaining variables was used in the next iteration.

Step 4: Decoding. We performed a decoding by applying an

SVM classifier to the updated data matrix, and the prediction

accuracy of the labels, denoted as rn, was calculated based on a

cross-validation classification procedure (e.g. 20 folds of cross-

validation for classification in this paper). The cross-validation

here was based on the training data updated in the nth iteration,

which was separated into the training and test data sets for

classification. Specifically, this cross-validation was only for

calculating the prediction accuracy rn and subordinate to the

higher level one described above.

Terminating criterion: The above iteration procedure ran until

the prediction accuracy dropped to a threshold. Theoretically, the

best threshold was the chance level 50% for the two-class problem,

which was used in this paper.

After the iterations in the kth fold terminated, the two selected

variable sets corresponding to the two stimulus conditions

respectively were

INDz
k ~

[

n

Ind
(n)
z , IND{

k ~
[

n

Ind(n)
{

Remark 1: (i) In the above Step 2, we assumed that the signs of

those weights obtained by sparse representation were associated

with the classes of stimuli/brain states. In Appendix S1, we

presented the mathematical proof based on several simplified

models to illustrate the rationality of this assumption. (ii) In this

recursive feature search method, there was a parameter N0 (the

number of variables with the largest positive/the smallest negative

weights selected in each iteration). In sparse representation, the

number of nonzeros in the optimal weight vector is generally equal

to the number of equations (Li, et al., 2004). Thus the parameter

Figure 1. SPL algorithm diagram.
doi:10.1371/journal.pone.0050332.g001
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N0 should be less than the half of the number of equations in the

optimization problem in each iteration. If we set a smaller N0,

then more iterations are needed to extract all informative

variables. We can set the parameter N0 according to the total

number of features of data. For instance, we could set N0 to about

50 for fMRI data according to our experience. (iii) In the above

algorithm, the test data of the kth fold were not used. Through

removing the test data set in each fold of the cross-validation,

different training data sets were obtained. The features represent-

ing noise, which were selected based on different training data sets,

were generally different. On the contrary, the features, which were

frequently selected in the cross-validation, were potentially

informative.

After K folds of cross-validation, we obtained K sets INDz
k of

selected features corresponding to a stimulus class or brain state,

and K sets IND{
k of selected features corresponding to another

stimulus class or brain state. The two classes of selected features

were used to construct two probability maps (density functions)

respectively, as described in the following subsection.

2.2 Two probability maps for pattern localization. As

described above, two sets of selected variables, which correspond

to two classes of stimuli/brain states respectively, were obtained in

each fold of cross-validation. Using the K sets INDz
k of selected

features corresponding to a stimulus condition or a brain state, we

constructed a probability map. The probability value of each

feature measures the preference of this feature to this stimulus

condition or brain state. It was calculated by counting the number

of appearances of this feature in all of the K sets INDz
k and

dividing this number by the total number of selected features in

those sets. Similarly, using the K sets IND{
k of selected features

corresponding to the other stimulus condition or brain state,

another probability map was constructed. The two probability

maps will be used for permutation test as described in the

following.

2.3 Permutation tests at the individual subject level and

group level. In each fold of the cross-validation, the two feature

sets obtained by the recursive feature search included as many

informative features for discrimination as possible. However, some

irrelevant/noisy features were unavoidably selected by the

method. To determine if a feature had contribution to the

discrimination between two classes of stimuli/brain states, we

performed a permutation test at the individual subject level or the

group level on each of the two probability maps, described below.

Permutation test at the individual level: In each permutation, we

randomly gave the labels for the data and repeated the above

procedure of cross-validation, and obtained two probability maps/

density functions. A null distribution for each class was constructed

by pooling all probability values of the 100 probability maps

corresponding to this class, which were obtained through the 100

permutations [19]. Next, for a given significance level a1, we found

two critical thresholds h1 and h2 corresponding to the percentile

100(1{a1)% of the two null distributions. Finally, we applied the

two thresholds h1 and h2 to the two probability maps respectively

and obtained two sets of selected features. For a multiple

comparison correction, we may use a strict significance level e.g.

a1~0:001 or a cluster size e.g. 10 in fMRI data analysis.

Permutation test at the group level: For each subject, we

obtained two probability maps with respect to features corre-

Figure 2. The algorithm diagram for the recursive feature search in a fold of cross-validation.
doi:10.1371/journal.pone.0050332.g002

An Algorithm for Pattern Localization

PLOS ONE | www.plosone.org 4 December 2012 | Volume 7 | Issue 12 | e50332



sponding to two classes respectively as in Sections 2.2.1 and 2.2.2.

We averaged these probability maps across all subjects and

obtained two average probability maps also corresponding to two

classes respectively. Next, we performed multiple permutations

(e.g. 100). In each permutation, we randomly gave labels for the

data from each subject and obtained two probability maps for

each subject, and further calculated two average probability maps

across all subjects. A null distribution for each class was

constructed by pooling all probability values of the 100 average

probability maps corresponding to this class, which were obtained

through the 100 permutations. For a given significance level a2, we

found two critical thresholds h3 and h4 corresponding to the

percentile 100(1{a2)% of the two null distributions respectively.

Finally, using the two thresholds and their corresponding

probability maps, we obtained two sets of selected features,

corresponding to two classes. For a multiple comparison correc-

tion, we may use a strict significance level e.g. a2~0:001 or a

cluster size e.g. 10 in fMRI data analysis.

3. Experimental design and data acquisition
Experiment 1: Simulations. There were two simulations in

this experiment. In the first simulation, we showed that when the

data were sufficient, i.e., the number of known data vectors was

much larger than that of the variables, two patterns (two sets of

informative variables) corresponding to two classes of data could

be well estimated by directly using the weights with signs

determined by sparse representation or SVM. We also demon-

strated that the signs of these weights were associated with the two

classes of the data. In the second simulation, we considered the

case where the number of known data vectors was much smaller

than that of the variables. We illustrated our approach for

localizing two patterns and demonstrated its effectiveness. We also

used SVM to replace sparse representation in our SPL algorithm

for weight determination and obtained comparable results.

In the first simulation, we considered the following optimization

problem, which is a sparse representation model similar to

equation (1),

minjjwjj1, s:t:

(PzV )w~y,
ð3Þ

where P[R20|300 is a pattern matrix, of which each of the first 10

rows was the pattern p1 and each of the last 10 rows was the

pattern p2. The two fixed pattern vectors p1,p2[R300, the first 25

entries of p1 and the last 25 entries of p2 took value 1, and the

other entries were zero. V~½vjk�[R20|300 was a noise matrix, of

which each column was from colored Gaussian noise with zero

mean and variance 1. The average temporal SNR was 27.5 dB,

whereas the average spatial SNR was 217 dB. Furthermore,

w[R300 was an unknown weight vector with 300 variables, which

was determined by solving the optimization problem, and y[R20

was a label vector with the first 10 entries being 1 and the last 10

entries being 21. Thus the first 10 constraint equations of (3)

represented the first class, while the last 10 represented the second

class.

Remark 2: In this paper, the temporal SNR for a column of the

data matrix PzV was calculated as: tSNR~

10 log10½(PT
k � Pk)=(vT

k � vk)�, where Pk was a nonzero column

of the pattern matrix P, and vk was a column of the noise matrix

V . The average tSNR was obtained by averaging tSNR across all

nonzero columns of the pattern matrix P. The spatial SNR for a

row of the data matrix PzV was calculated as: SNR~

10 log10½(Pj � (Pj)T )=(vj � (vj)T )�, where Pj was a row of the

pattern matrix P, and vj was a row of the noise matrix V . The

average SNR was obtained by averaging SNR across all rows of

the matrix PzV .

Note that in (3), the data matrix PzV and the label vector y
were known, but the two patterns p1 and p2, and the noise matrix

V were unknown. We solved the optimization problem (3) for 500

times to find the two pattern vectors p1,p2. Each time, only the

noise matrix was regenerated, whereas the two pattern vectors

were unchanged. We calculated the average weight vector across

the 500 repeats and localized the two patterns p1 and p2 using the

average weight vector. For the purpose of comparison, we also

used SVM instead of the sparse representation model (3) for

determining the weights and searching the patterns p1,p2. Note

that the 500 repeats of solving the optimization problem (3) in this

simulation implied that we had 10,000 known data vectors with

labels (each data vector was a row of the matrix PzV ). However,

in a real-world experiment, it is difficult to collect such a large data

set.

In the second simulation, we used a much smaller data set to

find two patterns using our approach. Considering the model (3),

we first we generated two pattern vectors p1,p2[R300 each

containing 25 nonzeros with their positions randomly assigned

and 275 zeros and thus obtained the pattern matrix P. Each

nonzero entry of p1 and p2 took value 1. Furthermore, the index

sets of nonzeros of the two patterns were non-overlapped. We then

generated the noise matrix V[R20|300 as in the first simulation,

where the average temporal SNR and the average spatial SNR

were 27.6 dB and 217.1 dB respectively. The 20 rows of PzV
were separated into two classes, the first containing the pattern p1

were labeled as 1, and the second containing the pattern p2 were

labeled as 21. For better localizing the two patterns p1 and p2, we

regenerated the data 5 times as above (corresponding to 5 subjects

in a real-time experiment, e.g., an fMRI experiment). Each time,

only the noise matrix were regenerated, whereas the two patterns

p1 and p2 were fixed. We performed our SPL algorithm with a

permutation test at the group level, and predicted the two patterns

p1 and p2. We also used a linear SVM to replace sparse

representation method in our SPL algorithm for determining the

weights and searched the two patterns p1 and p2. Note that in this

simulation, we used 100 known data vectors with labels to localize

the two 300 dimensional patterns (each data vector was a row of

the matrix PzV ), and the number of known data vectors was

much smaller than that of variables.

For comparison, we used a standard SVM and the univariate

correlation method for localizing the two patterns p1 and p2. We

applied a SVM to the above data set containing 100 known data

vectors and obtained a weight vector. For each variable, we also

calculated the correlation coefficient between the 100 dimensional

data vector corresponding to this variable and the label vector.

Using the weight vector or these correlation coefficients, we

localized the two patterns p1 and p2.

Experiment 2: Optical imaging data acquisition. In this

experiment, intrinsic signal optical imaging [20] was used to

collect data from the primary visual cortex of a Macaque monkey.

The frame size was 1006100 pixels, covering an approximately

464 mm cortical area. Images were acquired at a frame rate of

4 Hz. Each trial lasted 4 seconds, and the stimulation started at

0.5 s and ended at 4 s. Baseline fluctuation in each trial was

reduced. Mean responses of between 1.75 and 3 s were used in the

data analysis because the response reached its maximum during

this period. There were four stimulus conditions, i.e., random dots

drifting toward the right (0 degree, c1), upward (90 degree, c2), to

the left (180 degree, c3) and downward (270 degree, c4). In each

condition, 40 trials were carried out. In this study, only 40

An Algorithm for Pattern Localization
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horizontal axis-of-motion trials (sum of each 40 trials from c2 and

c4) and vertical axis-of-motion trials (sum of each 40 trials c1 and

c3) were used. The detailed experimental procedures have been

described elsewhere [21].

Experiment 3: fMRI data acquisition. In this experiment,

fMRI data were acquired from nine human subjects. This study

was approved by the Ethics Committee of Guangdong General

Hospital, China, and all subjects gave their written informed

consent for the study. The visual stimuli were 80 grayscale pictures

of Chinese faces at two different age levels (40 old persons and 40

young persons). During each trial, which lasted 10 seconds or 5

volumes (TR = 2 s), the subject was instructed to make a covert

semantic categorization (old vs. young) based on the pictures. Each

picture was used only once in one trial, and 80 trials were collected

for each subject. Mean responses of third, fourth and fifth volumes

in each trial were used, whereas the other volumns were discarded

because of the delay of BOLD response.

Preprocessing consisted of head motion correction, slice timing

correction, coregistration between functional scans and structural

scan, normalization to a MINI standard brain, data masking to

exclude nonbrain voxels, time series detrending and normalization

of time series to a zero mean and a unit variance.

To reduce the amount of computation and remove noise, initial

voxel selection was performed using a correlation method. Cross-

correlation was performed voxel by voxel between BOLD

responses and stimulus function, the top 2,500 voxels with

correlation coefficient values larger than 0.15 were selected for

later processing.

Results

We demonstrated the effectiveness of our analysis method and

illustrated its application through three experiments. The first

experiment contained two simulations based on toy data. The

second was an orientation preference experiment in the monkey

visual cortex using an intrinsic signal optical imaging technique.

The third was an fMRI experiment for face recognition in the

human brain.

Experiment 1: Simulations
There were two simulations conducted in this experiment. In

the first simulation, we showed that when the data were sufficient,

two patterns could be estimated by directly using the weights with

signs determined by sparse representation or SVM, and that the

signs of these weights were associated with two classes. In the

second simulation, we illustrated our approach and showed that

the two patterns could be localized when the data were

insufficient. We also used a linear SVM instead of sparse

representation for weight determination in our SPL algorithm

and obtained comparable results.

First, we present the results of the first simulation based on

equation (3). We solved the optimization problem in equation (3)

for 500 times and obtained 500 weight vectors with signs. For each

time, only the noise vectors v
(j)
1 and v

(j)
2 , j~1, � � � 10 were

regenerated from a Gaussian distribution with zero mean and

variance 1. Using the 500 weight vectors with signs, we calculated

an average weight vector, as shown in Figure 3 (A). Figure 3 (A)

indicates that the patterns p1 and p2 can be localized using the

average weight vector, and that the signs of the average weights

are associated with the two patterns. Note that the first (last) 25

entries of p1 (p2) were 1 and the other entries were 0. We also used

a linear SVM instead of sparse representation method to obtain

another average weight vector as shown in Figure 3 (B), and the

result was similar to Figure 3 (A).

In the following, we presented the results of the second

simulation. We regenerated the data for 5 times (corresponding

to 5 subjects in a real world experiment) and performed our SPL

algorithm with a permutation test at the group level (see Methods
and Materials). Using the data regenerated in each time, we

obtained two probability density functions. Two average proba-

bility density functions across all the 5 times, which corresponded

to the two patterns respectively, are shown in Figure 4 (A) and (B).

Based on the permutation test of 100 permutations at the group

level, we found two thresholds with a significance level of 0.001.

For each of the two average probability density functions, we

selected those variables with probability values larger than its

corresponding threshold and obtained a predicted pattern. The

prediction accuracy rates were 99.7% and 100% for the two

patterns p1 and p2 respectively. For each pattern, the prediction

accuracy rate was calculated as (1-r)100%, where r was the ratio of

wrongly selected features among all the 300 features. The

effectiveness of our SPL algorithm was thus demonstrated.

Figure 4 (A) and (B) show the result of prediction.

We also used a linear SVM instead of sparse representation for

determining the weights in our SPL algorithm and repeated the

above procedure. The results are shown in Figure 4 (C) and (D).

The prediction accuracy rates were 97.7% and 98.7% for the two

patterns p1 and p2 respectively. Therefore, the performance of

sparse representation was comparable to that of SVM for weight

determination in our SPL algorithm.

Furthermore, we considered the classification performance

based on the selected informative variables. Specifically, the above

100 data vectors with labels were used as training data. Then, an

independent test set in which 50 vectors contained the pattern p1

and the other 50 vectors contained the pattern p2 was generated.

For each data vector in the training data set and the test data set,

we kept those entries corresponding to all of the selected

informative variables and removed the others to construct a

feature vector. Using the feature vectors with labels in the training

data set, we trained an SVM classifier and then predicted the

labels of the test data. The classification accuracies were 82% and

75% for the sparse representation-based SPL algorithm and SVM-

based SPL algorithm respectively.

Figure 3. Results for the first simulation in Experiment 1. A: The
average of 500 weight vectors obtained by sparse representation. B:
The average of 500 weight vectors obtained by SVM.
doi:10.1371/journal.pone.0050332.g003
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Note that we localized the informative features with a high

accuracy but the classification accuracy based on these informative

features was relatively lower. This difference may be explained as

below. First, feature selection based on the training data with

labels plays an important role in classification. In order to achieve

a high classification accuracy, only these features that contain

strong discrimination information between the two categories are

selected. In other words, not all of the informative features are

selected for classification in general. However, in many real

applications, e.g. neuroimaging and novelty detection/fault

diagnosis, it is important to find all informative features, no

matter how weak they are. We thus proposed the SPL algorithm to

localize all the informative features in this study. Here, it was not

an optimal way to use all of the localized informative features for

classification and thus the accuracies might be lower. Second, the

noise level was quite high in the simulated data sets. If the SNR

was sufficiently large, we could still obtain a high classification

accuracy using all of the localized informative features as shown

below.

Here the parameter N0 (the number of features selected in each

iteration) in our SPL algorithm was set as 2. To check the

robustness of our algorithm to this parameter, we set N0 as 4 and

repeated the above process. The prediction accuracy rates were

99.7% and 100% for the two patterns p1 and p2 respectively.

When N0 was set as 4, the average number of iterations was 6 in

each fold of cross-validation, and totally there were about 600

iterations (5 subjects times 20 folds times 6 iterations). It took about

39 seconds to perform these iterations using the personal

computer with dual Intel Core i5 CPU (2.67 GHz). Furthermore,

it took about 3765 seconds to run our SPL algorithm with 100

permutations at the group level. We also checked the other settings

for this parameter (N0~3,5,6) and obtained similar results. Thus

our algorithm is robust to different settings of the parameter N0.

To evaluate the robustness of our SPL algorithm to different

noise level, we generated eight data sets at different tSNR values.

We applied our algorithm to these data sets and obtained

accuracies for localizing the two patterns and calculated ROC

curves. For each noise level, we also generated an independent test

set in which 50 vectors contained the pattern p1 and the other 50

vectors contained the pattern p2, and predicted the labels of the

independent test data based on the selected informative variables.

Figure 5 shows the accuracy curve for localizing the informative

variables (A), 8 ROC curves (B), and classification accuracy curves

for the independent test data with different tSNR values (C). From

Figure 5 (A), we can see that when tSNR.210 dB, we could

obtain satisfactory accuracy for localizing the two patterns.

For comparison, we applied a SVM to the above data set

containing 100 data vectors and obtained a 300 dimensional

weight vector. For each variable, we also calculated the correlation

coefficient between the 100 dimensional data vector corresponding

to this variable and the label vector. We could localize the two

patterns p1 and p2 using the weight vector or these correlation

coefficients. Figure 6 shows 4 ROC curves obtained by our sparse

representation-based SPL algorithm (black curve with stars),

SVM-based SPL algorithm (red curve with circles), SVM method

(blue curve with triangles) and correlation method (green curve

with diamonds). From Figure 6, we can see that sparse

representation-based SPL algorithm and SVM-based SPL algo-

rithm have comparable performance in localizing the informative

patterns, which are better than SVM method and correlation

method.

Figure 4. Results of our SPL algorithm with a permutation test at the group level in the second simulation of Experiment 1. A and B:
with sparse representation-based weight determination; C and D: with SVM-based weight determination. Left: for the first pattern. Right: for the
second pattern. In each subplot, there are an average probability density function with stars (circled or non-circled) indicating probability values, and
a horizontal dash-dotted red line representing a threshold (significance level: 0.001). Stars higher than the threshold correspond to the indices of
nonzeros of a predicted pattern. Those stars with circles represent the indices of the nonzeros of the true pattern.
doi:10.1371/journal.pone.0050332.g004
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Experiment 2: Optical imaging data analysis
Cells in animal early visual areas are sensitive to edge

orientations and form repeated representations known as hyper-

columns [22,23]. Using optical imaging, these fine structures have

been revealed in both the cat and monkey primary visual cortex

[24,25]. Here, we applied our SPL algorithm on an optical

imaging data set that was collected from a Macaque monkey and

determined if these columnar structures could be shown by our

analysis method. We used 40 trials of horizontal and 40 trials of

vertical axis-of-motion. We used a leave-one-out method, whereby

there were a total of 80 folds of cross-validation. In each fold of

cross-validation, we performed a recursive feature search, and 200

pixels were obtained in each iteration (100 pixels for horizontal

and 100 pixels for vertical axis-of-motion).

After we finished all 80 folds of cross-validation, we counted the

frequency of a pixel selected across all 80 folds and obtained two

probability maps for each of the two sets of selected pixels

respectively. By projecting back these pixels with probability values

on a 2-dimensional map, we then calculated the difference

between the two probability maps (horizontal probability map

minus vertical probability map) and smoothed the difference map

with a 2-D Gaussian mask (zero mean, unit variances 1 and zero

covariances). The difference between the two probability maps,

reflecting the class information, is shown in Figure 7 (B). For

comparison, as shown in Figure 7 (A), we also obtained a

differential map between these two conditions using an established

method in optical imaging data analysis (the so-called differential

mapping method), which allowed us to perform a subtraction of

the mean maps between these two conditions.

Figure 7 shows that the dark and bright blobs in Figure 7 (B)

matched those in Figure 7 (A). This demonstrates the effectiveness

of our approach in searching for two classes of patterns.

Furthermore, Figure 7 (C) shows that the decoding accuracy rates

decrease with the iterations in each fold of cross-validation.

Experiment 3: fMRI data analysis
Human faces share many common features. The overlap of

features makes it difficult to discriminate between different

semantic categories related to faces (e.g., old and young, male

and female) using fMRI signals [26]. And these semantic

categories were hard to be detected using the standard univariate

GLM analysis method [3,16,17,18]. Here, we applied our

algorithm to an fMRI data set to distinguish subcategories of

Figure 5. Results of our SPL algorithm at different noise levels. A: accuracy curve for localizing informative features obtained by the sparse
representation-based SPL algorithm with different noise levels. B: 8 ROC curves corresponding to 8 noise levels respectively. C: accuracy curve for
predicting the labels of the independent test sets generated at different noise levels.
doi:10.1371/journal.pone.0050332.g005

Figure 6. Four ROC curves obtained by our sparse represen-
tation-based SPL algorithm (black curve with stars), SVM-
based SPL algorithm (red curve with circles), SVM method
(blue curve with triangles) and correlation method (green
curve with diamonds).
doi:10.1371/journal.pone.0050332.g006
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faces (i.e., old and young people) and to find two class-related

brain patterns. We applied the GLM-SPM method to this fMRI

data set and found no significant difference between the two

conditions corresponding to the two classes of faces respectively.

Nine subjects attended this experiment. The visual stimuli of this

experiment were 80 grayscale pictures of Chinese faces at two

different age levels (40 old and 40 young people). During the

experiment, the subjects were instructed to make a covert semantic

categorization (old vs. young) based on the presented face pictures.

For each subject, we used a leave-one-trial-out method to carry

out 80 folds of cross-validation. In each fold of cross-validation, we

performed a recursive feature search, and 50 voxels were obtained

in each iteration (25 voxels for ‘‘old people’’ and the other 25

voxels for ‘‘young people’’). We then obtained two probability-

maps corresponding to the two age categories respectively.

Figure 8 depicts the average decoding accuracy curve across all

the 9 subjects. The first accuracy was obtained using SVM

classifier based on all of the 2,500 voxels initially selected by

correlation coefficients, and the i-th accuracy (i§2) was obtained

with the data updated in the (i{1)-th iteration (i.e., the top 25

voxels with the highest positive weights and the top 25 voxels with

the smallest negative weights were removed in the (i{1)-th
iteration).

For each subject, we obtained two probability maps with respect

to the voxels. Two average probability maps across all the 9

subjects were then calculated. Furthermore, we performed a

permutation test of 100 permutations at the group level (see

Methods and Materials) and determined two thresholds with

the significance level of a~0:05. For each average probability

map, we selected those voxels with probability values higher than

its corresponding threshold and cluster sizes larger than 10 for

multiple comparison correction, and thus obtained two sets of

features corresponding to the ‘‘old people’’ (1506 voxels) and

‘‘young people’’ (1011 voxels) stimulus conditions, respectively.

The clusters formed by the two sets of voxels and their

corresponding brain areas are illustrated in Figure 9 and in

Appendix S2.

Facial appearance changes with age [27,28]. For example, there

are changes in shape, which mainly occur through growth or

weight gain or loss, and changes in the surface texture and

coloration of skin and hair. Human vision appears to be sensitive

to these subtle differences when determining the age of a face [29].

However, it is still not clear how these subtle differences and the

related age information of faces are processed in the brain. In this

study, we found distributed extrastriate areas, and most impor-

tantly, both the fusiform gyrus and the superior temporal sulcus,

which are known as part of core system in face perception, were

involved in the age information processing. These results clearly

demonstrate that our approach can be applied to localize brain

discriminative patterns related to fine perceptual differences

between stimulus conditions.

Discussion

In neuroimaging studies, the number of variables/features

ranges from tens to hundreds of thousands. In comparison, only a

small amount of these features are engaged in certain stimulus

conditions or brain states. Furthermore, there are a limited

number of trials (examples) for each stimulus condition and it is

known that too many variables may lead to overfitting in pattern

classification [30]. Therefore, feature selection is a necessary and

challenging process when applying MVPA approaches. The

feature selection procedure first aims to improve classification

accuracy. Once it has been established that class information is

present in a dataset, the next step is to determine where in the

brain the discriminating information resides, which is known as

Figure 7. The three subplots are shown for the two classes, i.e., horizontal axis-of-motion stimuli and vertical axis-of-motion
stimuli. A: a difference map between the two stimulus conditions. B: the reconstructed condition difference map between the two stimulus
conditions using our approach. C: the iterative curve of decoding accuracy rates in Experiment 2.
doi:10.1371/journal.pone.0050332.g007

Figure 8. Iterative curve of average decoding accuracy rates
across all the 9 subjects in Experiment 3.
doi:10.1371/journal.pone.0050332.g008
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the pattern localization process and is useful for understanding

neural information coding [3,11,31].

In this study, we proposed a sparse representation-based

method for searching for informative features. Sparse representa-

tion is a promising method for feature selection and has recently

received lots of attention [31,32,33,34]. Sparse representation-

based feature selection can minimize overfitting in classification by

automatically removing irrelevant voxels [31], since the weights of

feature candidates in sparse representation are sparse (i.e. most of

the weights are zero).

To improve the reliability for feature selection, we implemented

a cross-validation procedure as suggested by several earlier studies

[1,31,35]. It has been shown that the overlap between the set of

voxels selected in all folds versus the set selected in an individual

fold is fairly small, between 1/10 and 1/3 is typical for many fMRI

datasets [36]. To improve the overlap between the features

obtained in different folds, we introduced a recursive iterative

elimination method [35,37] for feature selection in each fold. In

contrast to the recursive feature elimination method in the forward

direction [1,35], we used a backward elimination strategy because

our main interest was to find all of the informative features existing

in the dataset. Specifically, in each iteration, we first performed

sparse representation and then removed the portion of the features

with the highest absolute weight values. The remaining features

entered into the next iteration. This procedure ran until the

decoding accuracy of each iteration dropped to a threshold close

to the chance level. We believe that the backward iterative

elimination method provides a reasonable solution for selecting all

of the informative features in our sparse based algorithm because

of the following reason. In each iteration, the features with the

highest absolute weight values are supposed to be informative.

However, among those features with low weights, informative

features may still exist. This is mainly because in a sparse

representation, only a small number of informative features are

used. While a feature is given a high weight, its correlated features

tend to be given low weights. During the procedure of iterative

elimination, the features with highest weights in an iteration are

removed, those remaining informative features may be highlighted

and extracted in the next iteration.

Neuroimaging data contain a large number of uninformative/

noisy features that carry no useful information about the stimulus

conditions. These uninformative features may be selected during

each fold of the cross-validation. For instance, after the strong

informative features are removed from the data set after several

early iterations, weak informative features, as well as irrelevant

features/noise, can be picked up under lower decoding accuracy

conditions. Statistical tests are required to remove these uninfor-

mative features. Suppose that all of the informative features can be

extracted in each fold, informative features that truly contribute to

the discrimination should then frequently be picked up during the

cross-validation. Therefore, the contribution of an informative

feature can be measured as the frequency of its appearance across

all folds. To remove the irrelevant features, we used a nonpara-

metric test at the individual subject level in this study. The same

idea has been used previously to generate discrimination maps

[4,14,38]. With the assumption that the brain patterns should be

the same between different subjects, we also applied another

nonparametric permutation test across subjects to further remove

Figure 9. Voxels selected by our method with a significance level of 0.05 (corrected with cluster size 10) in Experiment 3. The red
clusters corresponded to the ‘‘old people’’ stimulus condition, and the blue clusters corresponded to the ‘‘young people’’ stimulus condition.
doi:10.1371/journal.pone.0050332.g009
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irrelevant features. This nonparametric permutation test was

similar to other group analysis methods developed for the MVPA

approach [4,14] because all of them are based on the random

effects analysis [39].

The effectiveness of the above approach for selecting high

percentage of the informative features as well as removing the

irrelevant features was clearly demonstrated in our data analysis in

Examples 1 and 2. For instance, in the optical imaging data

analysis, it is known that vertical and horizontal orientations are

represented as hypercolumns in the monkey primary visual cortex

[24,25], and that nearby pixels have similar orientation prefer-

ences. In addition, these fine structures (,1 millimeter) are

repeatedly represented across the cortex. As shown in Figure 7,

these highly correlated features that are represented on the cortex

(i.e., patches) could be extracted using our algorithm. Note this

grouping effect was achieved by the iterative selection and removal

in our procedure, which differed from other methods by setting a

certain regularization on the classifier [33].

Besides locating these informative features in the brain, we

further specified the correspondence between the groups of

informative features and stimulus conditions. For instance, the

ventral and dorsal visual pathway in the brain can be selectively

activated by face and spatial information stimuli respectively

[14,40,41,42,43]. Several studies have attempted to specify the

brain activation patterns for certain stimulus conditions

[2,14,31,44]. Generally, a weight vector is determined to be

orthogonal to the direction along which the training examples of

both classes differ most. Given two classes, task 1 and task 2, with

the labels +1 and 21, respectively, a positive weight means that

these features/voxels present higher activity during task 1 than

during task 2, and a negative weight means lower activity during

task 1 than during task 2 [2,14]. The absolute magnitude of each

entry of the weight vector determines the importance of its

corresponding feature in discriminating the brain states. These

positive/negative weights can be thresholded so that the most

important features for discriminating between cognitive states are

selected. The threshold can be determined using nonparametric

statistical tests, such as permutation tests. One common assump-

tion in these studies is that the signs of weights (at least for those

with large absolute values) are associated with two classes of

stimuli/brain states. In this study, we also used the assumption that

the sign of a weight gives class information. In the two simulations,

we could estimate the two patterns (representing two classes of

data) with high accuracy. In addition, in the optical imaging data

analysis, we could see that the two sets of informative pixels (dark

blobs and bright blobs) obtained by our algorithm were consistent

with those obtained by the classic difference method. Furthermore,

in Appendix S1, we presented theoretical proof for several

simplified models. However, for more complex sparse represen-

tation models with high dimensionality, strictly proving the

assumption remains an open problem.

Conclusions

The multivariate pattern analysis approach is sensitive to subtle

differences caused by different stimulus conditions/mental states

and has been used to decode stimulus/task-related information in

functional brain imaging data. In this paper, we proposed a sparse

representation-based MVPA algorithm combined with a permu-

tation test at the individual subject level or group level for feature

selection in brain imaging data analysis. Two informative patterns,

which correspond to two experimental conditions/brain states,

respectively, were obtained. Through a recursive feature elimina-

tion procedure, most of the informative features were selected.

Using the two nonparametric permutation tests, irrelevant features

were significantly reduced. Applications of our methods on three

experiments were presented. Specifically, data analysis results

based on the toy data set and the optical imaging data set

demonstrated the effectiveness of our approach, while the analysis

results for an fMRI data set illustrated its application. Future work

may include the extension of our algorithm to multiclass problems

as well as applications in data analysis from other neuroimaging

studies (e.g. neuroimaging data, medical image data).
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