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Abstract

We present a systematic and quantitative model of huddling penguins. In this mathematical model, each individual penguin
in the huddle seeks only to reduce its own heat loss. Consequently, penguins on the boundary of the huddle that are most
exposed to the wind move downwind to more sheltered locations along the boundary. In contrast, penguins in the interior
of the huddle neither have the space to move nor experience a significant heat loss, and they therefore remain stationary.
Through these individual movements, the entire huddle experiences a robust cumulative effect that we identify, describe,
and quantify. This mathematical model requires a calculation of the wind flowing around the huddle and of the resulting
temperature distribution. Both of these must be recomputed each time an individual penguin moves since the huddle
shape changes. Using our simulation results, we find that the key parameters affecting the huddle dynamics are the number
of penguins in the huddle, the wind strength, and the amount of uncertainty in the movement of the penguins. Moreover,
we find that the lone assumption of individual penguins minimizing their own heat loss results in all penguins having
approximately equal access to the warmth of the huddle.
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Introduction

Emperor penguins (Aptenodytes forsteri) are known to huddle to

survive long periods of fast in the severe conditions of Antartcic

winters. They are able to form huddles because they are not tied to

a fixed nest. Huddles are discontinuous events that last for

relatively short durations (on the order of a few hours) [1]

corresponding to storm events [2,3]. The number density in a

huddle at a colony may be as high as 10birds=m2 [4,5].

Researchers have observed directly penguins huddling at their

colonies [1,2,5–7], and there is evidence indicating that emperor

penguins also huddle during foraging trips [8].

Emperor penguins huddle to conserve energy, which is

particularly important since they must fast for periods of 105 to

115 days [6]. Emperor penguins benefit from huddles because of

the reduction of body surface area exposed to the cold and owing

to the warm temperature inside the huddle [9]. The ambient

temperature in the huddle is at least 20uC and may reach as high

as 37.5uC [1]. Despite the fact that huddles achieve these high

ambient temperatures, emperor penguins benefit most from the

huddle through the reduction of cold-exposed body surfaces [10].

Measurements of the body temperature of penguins in various

environments and their relation to weather conditions have led to

significant insight into huddle formation. [1,3,7] Huddles occur

more frequently at lower ambient temperatures and in higher

wind speed, but the intensity of the huddle (i.e. the number density

of the huddle) depends on lower ambient temperatures only [3].

Few theoretical models of huddling have been presented. Some

modeling effort has assumed that penguins move from the

windward to the leeward side of the huddle, but without providing

much justification [11]. Canals and Bozinovic [12] modeled

huddle formation in mice (Mus musculus) as a self-organizing

event. In particular, they modeled huddling as a second-order

phase transition triggered by cold temperatures.

An important feature of huddles is that each penguin has

approximately equal opportunity to the warmth of the huddle.

How each penguin obtains this equal access is thought to be the

result of a complex phenomenon in which penguins reorganize

themselves within the huddle [1–3]. Gilbert et al [1] attribute

heterogeneity of the huddle shape to ensuring this equal access,

but without providing details as to how equality is achieved. On

the other hand, Zitterbart et al [13] use ideas from condensed

matter physics to explain how penguins within a huddle reorganize

themselves. An important set of observations regarding penguin

movement within huddles reported by Le Maho [5] is

The huddles are not motionless; movement is extremely slow, but

continuous. The huddle is urged along by the wind, the rear-flank birds

(those most exposed to the wind) advancing slowly along the sides of the

huddle in order to be protected from the wind. Thus, birds that at first

are in the center of the huddle become members of the rear flank and

move, in their turn, up the sidelines.

Further evidence showed that huddles move back and forth

under the influence of the dominant winds [3].

We introduce here a systematic and quantitative mathematical

model for penguin huddles. This mathematical model is aligned

with the qualitative observations by Le Maho stated above.

Moreover, it is consistent with the idea that penguins huddle

tightly to reduce their cold-exposed body surfaces, and increase

the ambient temperature. The key assumption of our mathemat-

ical model is that each individual penguin seeks to reduce its own

heat loss. Thus, a penguin on the boundary of the huddle exposed
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to the wind will move downwind along the huddle boundary. In

contrast, the penguins in the interior of the huddle neither have

space to move nor experience significant heat loss, so they remain

stationary. While penguins inside the huddle have been observed

to make multiple small displacements [13], we consider here that

these motions are small compared to the motion observed on the

edge of the huddle. The accumulation of individual penguin

movements along the boundary leads to coherent and robust

huddle dynamics that we identify, describe, and quantify. In

particular, we find from our simulation results that the number of

penguins in the huddle, the wind strength quantified by the Péclet

number, and the amount of uncertainty in the penguin movement

are the key factors governing the dynamics of a huddle. Our

simulation results show that the features of this model are sufficient

to result in each penguin having equal access to the benefits of the

huddle.

To avoid prohibitively large computations and to allow for

concise analysis, our model does not account for all possible details

and scenarios. Rather, our goal is to provide a simple model, based

on reasonable and well defined assumptions on the geometry of

the huddle and the fluid mechanics of the wind. Our model

recovers important features of actual huddles such as their overall

shape, downwind motion, and an equal distribution of access to

the benefits of the huddle among penguins. We describe the

overall framework of our model in Method, including our

assumptions. In Results and Discussion, we show simulation

results, and identify, describe, and quantify the dynamics of the

huddle. We discuss how these results compare to field observations

and outline how one may extend this mathematical model to

include a number of particular effects in Conclusion.

Methods

In our mathematical model, individual heat preservation is the

goal of each and every penguin in the huddle, irrespective of the

heat preservation of the huddle as a whole. In other words, each

penguin will move or stay stationary to minimize its own heat loss.

This mathematical model therefore requires the determination of

the local rate of heat loss for each penguin in the huddle. This local

rate of heat loss depends on the temperature distribution outside

the huddle which, in turn, depends on the wind flow around the

huddle.

Specifically, we focus on the dynamics of a single huddle, where

all the penguins present are part of the huddle. This huddle is

assumed to be situated on a flat plane, so there are no obstacles

impeding penguin movement. Penguins in this huddle have

uniform size and shape. Our model does not account for all heat

exchanges between penguins and their environments. In partic-

ular, penguins are known to lose a large quantity of heat through

their feet and eyes [14]. In addition, the flow of wind over the top

of the huddle contributes to cooling penguins. However, these heat

loses affect penguins equally, irrespective of their position within a

huddle, and therefore do not have a strong influence on the huddle

dynamics. In contrast, the wind flow around the sides of the

huddle affects penguins differently depending on whether they are

on the edge or near the center of the huddle. For this reason, we

model only the wind flowing on a two dimensional plane around

the area occupied by the huddle. Our procedure to simulate

huddles is as follows:

1. Generate a huddle and determine the huddle boundary.

2. Compute the wind flow around the huddle.

3. Compute the temperature profile around the huddle.

4. Compute the local rate of heat loss for each penguin.

5. Add random variations to the rate of heat loss (optional).

6. Identify the penguin with the highest rate of heat loss (the

‘‘mover’’) and move it to a location on the boundary where

heat loss is minimal.

7. Determine the new huddle boundary.

8. Repeat over the desired number of iterations by going back to

Step 2.

In what follows, we describe in detail each step of this

procedure. Included in this discussion are any simplifying

assumptions, and their justification.

1. Generate a Huddle and Determine the Huddle
Boundary

From observing videos of huddling penguins [13,15], we note

that huddling penguins are packed very tightly, presumably to

minimize cold-body surfaces and maximize the ambient temper-

ature in the huddle. It is well known mathematically that the

densest packing of disks on a flat plane corresponds to having the

center of each disk placed on a hexagonal or honeycomb lattice, so

that each disk is inscribed in a regular hexagon and touches six

neighboring disks. Moreover, direct observations reveal that

huddling penguins generally position themselves on a hexagonal

grid [13]. For these reasons, we assume in our model that penguins

in the huddle stand centered on a hexagonal grid. Moreover, all

points on the hexagonal lattice corresponding to the huddle’s

interior are assumed to be occupied, so that there are no empty

spaces within the huddle. Thus, the huddle boundary is

determined uniquely by connecting the locations of penguins with

fewer than six neighbors. Furthermore, we assume that all

penguins in the huddle have at least two neighbors, in which

case, the area generated by connecting the lattice points on the

huddle boundary is a polygon. We therefore initiate our

simulations by generating a huddle satisfying these conditions,

starting with five penguins and adding penguins at locations

chosen randomly among the eligible positions (adjacent to the

huddle, with two neighbors, and leaving no empty space). Once

the initial huddle is formed, we consider that the number of

penguin within it remains constant.

2. Compute the Wind Flow Around the Huddle
To determine the wind flow around the huddle, we need only to

consider a two dimensional flow around a polygon. Moreover, we

assume that this flow is inviscid and irrotational. These assump-

tions imply that we do not resolve turbulent wind flows, which

would obfuscate the computation of the temperature profile

needed to compute the local rate of heat loss. Rather, we find a

smooth, regular wind flow around the huddle. Nonetheless, the

key relationships in this mathematical model between the wind,

the temperature, and individual heat loss are not compromised by

these assumptions.

Because the wind flow is significantly faster that the movement

of a penguin, we assume that this flow is steady. In other words,

the wind flow does not depend on the time elapsed since a penguin

has relocated, and is only dependent on the huddle shape.

Consequently, we are able to use the mathematics of complex

variables and the physical theory of potential flow to describe the

flow around the huddle.

Let w denote the wind velocity potential, and the wind velocity

itself, ~uu, be the gradient of w: ~uu~+w. We combine the

corresponding streamlines, denoted by y, with w to form the

complex potential, defined as F~wziy with i denoting the

imaginary constant. Because the flow is irrotational, F is an

Modeling Huddling Penguins

PLOS ONE | www.plosone.org 2 November 2012 | Volume 7 | Issue 11 | e50277



analytic function on the flat plane outside the huddle. Since the

huddle boundary is a polygon, we can make use of the Schwarz-

Christoffel transformation, denoted by z~sc(f). The Schwarz-

Christoffel transformation is a conformal mapping from the

outside of a disk, in what we will call the canonical domain

denoted by f, to the outside of a polygon, in what corresponds to

the physical domain, denoted by z [16]. In the context of our

model, the polygon in the physical domain corresponds to the

boundary of the penguin huddle. This transformation is useful

here because in the canonical domain, we are able to compute F

easily via the Joukowsky transform J(f)~U(fz1=f), where U is

the wind speed away from the disk. This transform maps the

portion of the upper half-plane of the canonical domain outside

the unit circle to the upper-half plane corresponding to

Im½J(f)�w0 with Im½:� denoting the imaginary part. In this

transformed domain, the complex potential is known exactly.

Mathematically, the wind flow around the polygon is therefore

given by

~uu(x,y)~+w~+ (Re J sc{1(xziy)
� �� �

)

with Re½:� denoting the real part of a complex valued function and

sc{1(z) is the inverse of the Schwarz-Christoffel transformation.

The key step in this computation is the Schwarz-Christoffel

transformation. Because huddle shapes may be arbitrary polygons,

we are not generally able to compute sc{1(xziy) analytically.

Instead, we use the freely available software package developed by

Driscoll [17] which computes this transformation numerically. We

then obtain a description of the wind flow at any point outside the

huddle. Note that the wind speed, U , only affects the magnitude of

the flow, but does not modify the location of the streamlines.

3. Compute the Temperature Profile Around the Huddle
The temperature far outside the huddle, denoted by T?, is

significantly less than the temperature inside the huddle interior.

The large transition in temperature from outside the huddle to

inside the huddle is most significant near the huddle boundary

where penguins are most exposed to the wind. To model this

situation in our simulations, we assume that the temperature on

the edge of the huddle, Tp, and T? are constants with TpwT?.

This assumption allows us to focus our attention solely on the

temperature profile in the transition region near the huddle

boundary.

Using the wind velocity around the huddle, ~uu, we solve for the

temperature profile obtained from the advection-diffusion equa-

tion. As was the case for the wind flow, we assume that the

temperature profile is steady, meaning that the temperature profile

reaches equilibrium faster than any penguin motion. Consequent-

ly, the spatial distribution of the temperature around the huddle

satisfies the steady advection-diffusion equation

~uu:+T~D+2T ,

where D is the diffusivity of the temperature. This equation is

invariant under conformal mapping provided~uu may be written as

the gradient of a potential function. We can therefore use the

Schwarz-Christoffel mapping once again and solve for the

temperature around a disk in the canonical domain, before

mapping it back around the polygonal huddle boundary. To

simplify the analysis, we non-dimensionalize the equations by

rescaling the velocity by the wind velocity away from the huddle

U , as ~uu’~~uu=U . We rescale the temperature by the temperature

difference between the penguins and the air away form the huddle

T ’~(T{T?)=(Tp{T?), so that 0ƒT ’ƒ1. We also rescale

distances by the size of the huddle L, which corresponds to the

radius of a huddle with the same number of penguins disposed to

fill a disk, as x’~x=L, y’~y=L. Rewriting the equation above in

terms of these new variables, we obtain the non-dimensional

equation

Pe~uu’:+T ’~+2T ’

with Pe~UL=D denoting the Péclet number. This non-dimen-

sional number is proportional to the wind speed U and therefore

captures the effects of varying the strength of the wind. The

boundary conditions we use to solve this equation in the canonical

domain are T~1 on the unit circle, where the penguins

temperature remains effectively constant, and T~0 on a circle

of radius Rw1, away from the huddle.

We compute the temperature distribution exterior to the unit

circle in the canonical domain by discretizing the annulus between

the unit circle and the circle of radius Rw1 using finite differences.

In particular, we discretize the annulus into regions of equal radius

and angular increments. We then replace the differential operators

in the equation with centered, finite difference approximations.

The result leads to a linear system that we solve numerically. Using

the Schwarz-Christoffel mapping, we may then recover the

temperature distribution around the huddle. As an example, we

show in Figure 1 a sample of the temperature profile obtained

around a huddle made up of 100 penguins, choosing Pe~100.

When the flow around the huddle is turbulent, as is likely to be

the case for all but the mildest winds [18], the relevant diffusivity D
is a turbulent diffusivity. For that case, the relevant Péclet number

is therefore a turbulent Péclet number. While this quantity varies

depending on the flow, one may estimate it as being analogous to a

turbulent Reynolds number, ReT , which is based on the diffusivity

of momentum rather than temperature. Because the diffusion in

turbulent flow is due to correlated fluid motions that mix

temperature and momentum in similar manners, the turbulent

Reynolds and Péclet numbers have similar values. The turbulent

Figure 1. Sample of a computed temperature. Temperature
distribution around a huddle of 100 penguins, for Pe~100. Here red
and blue correspond to warmer and cooler temperatures, respectively.
Individual penguins are shown in black, as is the boundary of the
huddle, while the polygonal interior of the huddle is shown in white.
We show an initial configuration where penguins have yet to be
relocated.
doi:10.1371/journal.pone.0050277.g001
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Reynolds number may be estimated as the value where the drag

coefficient becomes effectively constant, which typically occurs for

ReT&100 [19]. In the present study, we therefore limit our

attention to flows with Peƒ1000.

4. Compute the Local Rate of Heat Loss for Each Penguin
Penguins at the huddle boundary experience the most

significant heat loss compared to those within the huddle

interior since the temperature profile changes most abruptly

outside the huddle boundary. We seek to find the penguin on

the huddle’s edge with the largest rate of heat loss. Therefore,

we compute the local rate of heat loss only for penguins on the

huddle boundary.

The local rate of heat loss at a boundary is proportional to the

derivative of the temperature in the direction normal to the

boundary [20]. From our computed temperature profile, we may

approximate the normal derivative along the unit circle (param-

eterized by angle hj ) in the canonical domain using

LT ’
Ln

Dhj
&

T ’(1zDr,hj){T ’(1,hj)

Dr

where Dr is the distance between consecutive points in the radial

direction. To determine the heat loss associated to each penguin

on the boundary, we first define points (xpz1=2,ypz1=2) that are

located halfway between consecutive penguins on the boundary,

respectively labeled as penguins p and pz1. We then find the

preimage of these points along the unit circle as

e
ihpz1=2~sc{1(xpz1=2ziypz1=2). The heat loss associated to

penguin p is then given by

H0(p)~{

ðhpz1=2

hp{1=2

LT ’
Ln

dh:

We approximate H0(p) using the numerically obtained temper-

ature profile obtained as described above to approximate the

normal derivative, which we then integrate numerically. We note

that H0 is always positive, indicating that heat is always lost.

Penguins inside the huddle are assumed to lose only a negligible

amount of heat compared to those on the periphery of the huddle,

and we therefore set H0~0 for penguins that are not on the edge

of the huddle.

5. Add Random Variations (Optional)
The heat loss computation described above is idealized

because everything is assumed to be known with absolute

certainty. To account for variations that can occur in real

huddles, we add uncertainty to this model through a random

perturbation to the heat loss associated to each penguin on the

boundary. We let

m(Pe,N)~
1

N

ð2p

0

LT ’
Ln

dh

denote the average heat loss experienced by penguins disposed

in a disk subject to the same conditions as the model huddle,

with N the number of penguins in the huddle. We introduce

uncertainty in our mathematical model by assigning to each

penguin an effective heat loss that includes a random

component

H(p)~H0(p)zb m zn

where zn is a random number drawn from a uniform distribution

ranging from 20.5 to 0.5, and b is a parameter quantifying the

magnitude of the random component relative to that of the heat

lost to the ambient air. While b remains constant throughout the

iterative process, zn is re-drawn each time a penguin moves and

the heat loss is recomputed. We then use the effective heat loss,

H(p), to determine the dynamics of the huddle.

The parameter b determines the importance of random

variations in the system. The special case b~0 yields a completely

deterministic, and idealized, system. No individual variations are

captured in this case, but the results are perfectly replicable, which

simplifies the analysis. As b increases, the effects of random

variations increase, and the importance of wind-related heat loss

progressively diminishes. For large values of b, say for b§10, the

wind direction would become negligible and model penguins

would perceive a heat loss that is essentially random. It is likely

that the relevant magnitude of b depends on the harshness of the

conditions to which the huddle is subjected. In low winds or

relatively warm temperature, the heat lost by each penguin is not

very large, and penguin behavior is therefore likely to contain

more random variations. On the other hand, in very harsh

conditions, the imperative to minimize heat loss will be much

stronger, and departure from the optimal behavior, in the form of

random variations, are less likely.

6. Identify and Relocate the Mover
Among all penguins located at the huddle boundary, we call the

penguin with the highest effective heat loss rate, corresponding to

the largest value of H(p), the ‘‘mover.’’ The mover vacates its

current position and moves to a new position on the huddle

boundary where the local heat loss rate is minimal. Because the

huddle is situated on a flat plane, the mover can access any

location around the huddle, but it cannot displace other penguins.

This movement results in a generic motion from the windward

side of the huddle to its leeward side.

In particular, the mover is relocated to a new position on the

huddle boundary with at least two neighbors so that the huddle

shape remains a polygon. The first neighbor is chosen as the

penguin with the smallest heat loss rate corresponding to the

smallest value of H(p). The second neighbor is chosen as the

penguin experiencing the least heat loss among penguins adjacent

to the first neighbor and on the huddle’s boundary.

Once the mover has been relocated, we may recompute the

boundary of the huddle by connecting penguins with fewer than

six neighbors. We then iterate the process outlined here by

returning to step 2.

Results and Discussion

Deterministic Case (b~0)
We begin by looking at the progression of a single huddle in the

absence of random perturbations, b~0. Figure 2 shows a huddle

consisting of 100 penguins with R~4 and a Péclet number of 10.

Here the wind blows from left to right. One time step, or iteration,

corresponds to the relocation of a single penguin from where heat

loss is greatest to where it is minimized. Clearly the initial shape

does little to conserve heat as too many individuals are exposed to

the wind.

After only 10 steps, a more streamlined huddle starts to form as

penguins on the windward side begin to relocate to the leeward
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side. Notice that the penguins located in thinner structures are the

first to relocate, causing the initial indentations of the huddle to

smooth out. As penguins continues to relocate, the huddle takes a

somewhat elliptic shape. By the 50th time step, the outline of the

final huddle formation is visible. During this phase, only penguins

on the windward, upper, and lower edges of the huddle relocate.

After 100 time steps, the huddle has reached its final shape, with

flat sides and rounded windward and leeward ends. From here on,

the thickness of the huddle remains constant. The huddle thus

retains its basic structure while slowly traveling downwind.

Moreover, regardless of their original position, every penguin

eventually spends some time exposed to the wind, as layers of

penguins on the windward side peel away and expose previously

sheltered penguins.

We analyzed how the dynamics of the huddle are influenced by

variations in the radius of a circle in the canonical domain where

the temperature is assumed to match the temperature at infinity,

R, the number of penguins N, and the Péclet number, Pe, which

characterizes the importance of inertial effects (wind) relative to

that of diffusive effects (turbulent mixing). We begin by considering

the effects of R, which has no physical significance (unless we

consider an experiment where penguins huddle in a finite wind-

tunnel). We studied the dynamics of huddles using values of R
ranging from 1.5 to 30. For small values of R, the temperature

distribution was nearly uniform around the huddle, resulting in

nearly circular huddles. As R increased, heat loss became

progressively greater in the windward direction. However,

provided R§4, we found virtually no differences in the relative

values of the normal derivative of the temperature along the

huddle boundary. Because the dynamics of the huddle are only

affected by the locations of maximal and minimal heat loss, the

exact value of R, so long as it is greater than or equal to 4, has no

impact on the dynamics of the huddle. This was confirmed by

simulations of huddles of 100 penguins which converged to

identical final configurations for various values of R§4. In the

remainder of this study, we therefore fixed R~4.

The huddle dynamics show a stronger dependence on variations

in the Péclet number. Figure 3 shows the width of a huddle

consisting of 400 penguins for various Péclet numbers. For small

Péclet numbers, when diffusive effects act to render the

temperature distribution nearly uniform, the aspect ratio is close

to one, depicting a more circular huddle. In contrast, for large

Péclet numbers, where only a small leeward region is sheltered

from the wind, the aspect ratio is much larger than one, depicting

a more elongated huddle. As the Péclet number increases, the

wind causes a stronger shift in the heat generated by the huddle.

The wind pushes the heat distribution more narrowly around the

huddle, causing the locations on the upper and lower edges of the

huddle to exhibit more heat loss and thus be less attractive to

relocating penguins. As a result, the huddle formation loses a layer

of thickness and becomes more elongated.

To explain the observed dependence of the huddle thickness on

Pe, we consider the dependence of the thickness of the tail of

warmer air that forms behind the huddle, d, on the Péclet number.

In this tail, the transport of heat by the wind scales, in dimensional

form, as UDT=H, where H is the horizontal dimension of the

huddle and DT~Tp{T?. In steady-state, this transport is

balanced by a diffusive transport, which scales as DDT=d2.

Equating those two expressions, we find that

Figure 2. Time progression of a model huddle. Dynamics of a huddle according to our deterministic model, with parameters N = 100 penguins,
Pe = 10, R = 4. The wind is coming from the left side.
doi:10.1371/journal.pone.0050277.g002

Figure 3. Dependence of the huddle shape on the Péclet
number. Logarithm of the width, W , of model huddles consisting of
N = 400 penguins as a function of the logarithm of the Péclet number
(solid line) in the deterministic model. For comparison, the dashed line

has equation W~20Pe{1=3 .
doi:10.1371/journal.pone.0050277.g003
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Since penguins in our model relocate based on minimizing their

own heat loss, we estimate that the huddle thickness scales in the

same manner as that of the warm downwind region. Applying this

estimate and exploiting the conservation of area of the huddle,

dH*L2, we conclude that the non-dimensional thickness of the

huddle scales as

d

L
*

D

UL

� �1=3

~Pe{1=3

As shown in Figure 3, our results are consistent with this scaling,

which appears as the dashed line, except in the regime where the

huddle thickness is too small, at which point discrete effects are

likely to obscure the dependence of the huddle shape on the Péclet

number.

For a turbulent Péclet number of order 100, as can be expected

in actual conditions, we find that the huddle formed by our model

is fairly elongated, with a length-to-thickness ratio of approxi-

mately 8 (the huddle shown on the right of Figure 3 corresponds to

Pe~100). From observations of videos of huddling penguins [13],

[15], we find that real huddles are more compact, indicating that

the deterministic model does not exactly capture the actual

huddling dynamics. Real huddles are also far less regular,

indicating that random perturbations, which we discuss below,

may play an important role.

We also considered the effect of allowing the number of

penguins, N, to vary (in the deterministic model). Figure 4 shows

the aspect ratio of the huddle for a fixed Péclet number, either

Pe~10 or Pe~100. For small values of N, we see that increasing

the number of penguins lengthens the huddle. Increasing the

number of penguins increases the aspect ratio, as the length of the

huddle grows while the width remains constant. Eventually, the

huddle is sufficiently long for its sides to become well sheltered.

Larger huddles are then thicker and the aspect ratio decreases.

The tolerance for how elongated the huddle formation becomes

before thickening depends on the Péclet number. For Pe~10,

thicker huddles form, whereas for Pe~100, many more penguins

must be present for the huddle to thicken, results that are

consistent with those of Figure 4. We note that because the length

and width of a huddle must increase by integer values, plots of the

aspect ratio are relatively noisy. For small huddles, the change in

the aspect ratio is more dramatic than for larger huddles. If the

number of penguins exceeds 200, we see that the aspect ratio does

not increase anymore and oscillates about a constant. Provided

N§200 and for a fixed value of Pe, the overall shape of the

huddle is then independent of N, except for weak discrete size

effects.

Effects of Random Perturbations
We investigated the effects of varying b, the magnitude of the

random perturbation added to the perceived heat loss of each

penguin. For bw1, we observed very irregular huddles, with

numerous protuberances, while values of b near 0 recovered

results shown in the previous section. Figure 5a shows the aspect

ratio of huddles of N~100 (solid line) and N~300 penguins

(dashed line) as a function of the magnitude of the random

perturbations. As b increases from 0, the huddle takes a shape

similar to that observed in the absence of random variations, but

with occasional random protuberances, which were excluded from

the computation of the aspect ratio shown in Figure 5a. Large b,

for which mobile penguins relocate randomly, result in irregular

but essentially circular huddles, with an aspect ratio of one. Such

huddles still tend to travel downwind, but much more slowly than

in the deterministic case. Somewhat surprisingly, a value of b~1 is

sufficient to form nearly circular huddles. It is also noticeable that

even relatively small perturbations, b&0:25, result in significantly

thicker huddles. We found that huddles formed with Pe~100 and

b~0:25 were comparable to those formed with Pe~10 and b~0.

In addition, the early stages of noisy systems exhibited thicker

huddles on the windward side than on the leeward side, indicating

that the downwind side was more sensitive to random variations.

The deterministic system therefore appears to capture qualita-

tive features of real penguin huddles, but it is also sensitive to

random variations likely to occur through wind variations, uneven

terrain, short-range motions within the huddle, and individual

penguin perceptions. Incorporating even a modest level of random

perturbations, b~0:25, yields huddles whose shape matches

qualitatively with observations. The irregularity of the huddle

observed for large b is consistent with observations of huddles in

mild conditions, while smoother huddle, consistent with those

observed in harsh conditions, are obtained for smaller values of b.

This behavior indicates that the importance of random variations

is likely to decrease as conditions become harsher, down to a level

near b~0:25.

Equal Access to the Warmth of the Huddle
Finally, we investigated how evenly the burden of facing the

wind was shared among penguins, and how sensitive the sharing of

heat was to random perturbations. As a measure of how evenly

heat losses were distributed, we consider the time interval required

for each individual penguin to become the most exposed and

therefore to relocate. In a huddle of N penguins, one would expect

that an even distribution of heat would cause each penguin to

relocate approximately every N time steps. We recorded the

standard deviation of the distribution of waiting times normalized

by the mean waiting time of N . For comparison, if all penguins

Figure 4. Dependence of the huddle shape on the number of
penguins. Aspect ratios of huddles as a function of the number of
penguins forming the huddle for fixed Péclet numbers, Pe~10 (dotted
line) and Pe~100 (solid line) in the deterministic model.
doi:10.1371/journal.pone.0050277.g004
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had an equal probability to relocate at every time step, we should

find a mean normalized waiting time of 1, with a standard

deviation of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(N{1)=N

p
, as the waiting time would then have a

geometric distribution.

Figure 5b shows the standard deviation of the waiting time, sw,

as a function of b for huddles of 40 (solid line) and 300 (dashed

line) penguins. For smaller huddles, in the absence of random

variations, the huddle may enter a cycle which slightly increases

variations in the waiting time. The addition of even a small level of

random variations removes such exact cycles and quickly reduces

the standard deviation of the waiting time. Larger huddles were

less likely to enter into cyclic motion resulting in higher waiting

time variations, and therefore sw is seen to slowly increase

monotonically with b for N~300. Large values of b and N were

difficult to simulate in our model, as empty spaces may form in the

huddle when randomly relocating penguins enclose an open space.

Such empty spaces do not appear for low values of b, as relocating

penguins then move to form as tight a huddle as possible. We note

that the typical standard deviation of the waiting time for low

levels of random variations, sw&0:05, is far lower than what one

would observe if the moving penguin was chosen perfectly

randomly sw~0:987 for N~40 and sw~0:998 for N~300.

Even as b approaches 1, where nearly circular huddles formed,

distribution of heat remains nearly even. This indicates that the

heat loss experienced by all penguins in our model is very narrowly

distributed, and thus very nearly as even as possible, for a wide

range of random perturbations.

Conclusion
By design, the model presented here contains only a minimal

number of assumptions. Our model penguins are subject to heat

loss in windy conditions, and they are simply trying to remain as

warm as possible without resorting to displacing any of their fellow

penguins. Our results were found to be robust to variations in

initial conditions, and to the choice of the location where the

temperature is assumed to match the temperature at infinity (i.e.

the variable R).

By incorporating general observations, such as the hexagonal

packing of huddles, and the usually long-range displacements of

relocating penguins, our model reproduces several key features of

the dynamics of huddles. By including a moderate random

variation level of b~0:25, and using a turbulent Péclet number of

approximately 100, the general shape of our huddles was found to

be qualitatively similar to that of real huddles, as seen in Figure 5a.

Huddles in our model also travel downwind, and their dynamics

result in a relatively equal sharing of the heat loss among penguins.

In addition, the equal heat sharing was found to be robust to

variations in initial conditions and to random perturbations. The

addition of a certain level of random variations was found to be

necessary to obtain realistic looking huddles, both in their overall

aspect ratio, and in their somewhat irregular boundary.

The even sharing of heat loss is of particular interest, as we find

that even by modeling penguins that are only intent on minimizing

their own exposure to the elements, a nearly uniform heat loss

distribution can be achieved for the entire huddle. Our model does

not rule out that individual penguins may at times sacrifice for the

benefit of the huddle as a whole. Rather it emphasizes that such

behavior is not essential to achieving an even distribution of the

heat loss among penguins.

It is worth noting that the huddles obtained via our model for

realistic values of Pe did not correspond to huddles shapes that

would minimize heat loss for the huddle as a whole. In the absence

of random variations, the huddles were too elongated, see Fig. 3,

while random variations made the huddle boundary more

irregular than is optimal, see Fig. 5a. This observation may be

due to the limitations of the model, outlined in the model

description, including the approximations made in estimating the

heat losses. It may also indicate that penguins do not chose their

location solely based on minimizing their own heat loss, but

somehow take into account the benefit of surrounding penguins. It

is also possible that even elongated or irregular huddles provide

sufficient protection from the elements as to allow the survival of

emperor penguins, or that penguins are simply unable to optimize

heat loss for a huddle including hundreds of individuals. The

advantage of our model is its ability to outline clear causal relations

Figure 5. Influence of random variations on huddle shape and heat loss distribution. a) Aspect ratio of huddles of N = 100 (solid line) and
N = 300 (dashed line) penguins for various values of the magnitude of the random perturbation added to the perceived heat loss, b. b) Dependence
of the standard deviation of the normalized waiting time on b. Other parameters are R~4 and Pe~100 for both figures.
doi:10.1371/journal.pone.0050277.g005
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between our assumption that each penguins aims to minimize its

own heat loss and the resulting huddle dynamics. However, this

model by no means captures all the components of the behavior of

huddling penguins.

There are several possible extensions that could make our

model more realistic and that require further investigation. Firstly,

the wind was assumed to remain constant, which is an idealization

that could be relaxed by allowing the wind direction to vary over

time. In addition, the wind velocity, captured by Pe, could also be

made to be time dependent.

Secondly, the manner in which penguins relocate could be

made more realistic by considering that penguins move downwind

along the huddle boundary until they find a position deemed

sufficiently sheltered, rather than find the absolute best available

location. This would require the addition of a new parameter, a

shelter threshold, which would determine at what point penguins

stop looking for a better location. Another aspect that could be

incorporated in future models is the presence of natural obstacles,

such as cracks or icebergs, which could be simulated by preventing

relocating penguins from moving to certain fixed locations. Tthe

criterion used to determine which penguin has to relocate is

currently based on instantaneous exposure rather than cumulative

exposure. Using cumulative heat loss to determine which penguin

relocates may be more appropriate than using instantaneous heat

loss, as it would take into account the duration of the exposure. At

present, our model computes only relative exposure, making an

individual cumulative heat budget impractical. However, if one

were willing to solve the governing equations in a manner that

allows for the cumulative heat loss to be tracked, which would

require significantly more computational effort, then the penguin

that has lost the most heat cumulatively could be chosen as the

‘‘mover’’.

Finally, it is possible to model a huddle in a continuous rather

than discrete fashion, with its boundary ~CC being a curve that

moves over time. Its normal velocity could be proportional the

local heat loss, to which a number C(t) is added to preserve the

total area of the huddle:

d~CC

dt
~ n̂n:+TzC(t)ð Þn̂n

with n̂n the local normal to the interface. Such an approach may be

more amenable to analysis, and emphasizes the similarity between

the dynamics on the windward side and those of melting [21],

though the comparison does not extend to the leeward side, which

behaves in the opposite way to that of freezing material. However,

this approach does not track individual penguins, and may not be

used to determine to what extent heat losses are evenly distributed.
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