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Abstract

Because of technological limitations, the primer and amplification biases in targeted sequencing of 16S rRNA genes have
veiled the true microbial diversity underlying environmental samples. However, the protocol of metagenomic shotgun
sequencing provides 16S rRNA gene fragment data with natural immunity against the biases raised during priming and thus
the potential of uncovering the true structure of microbial community by giving more accurate predictions of operational
taxonomic units (OTUs). Nonetheless, the lack of statistically rigorous comparison between 16S rRNA gene fragments and
other data types makes it difficult to interpret previously reported results using 16S rRNA gene fragments. Therefore, in the
present work, we established a standard analysis pipeline that would help confirm if the differences in the data are true or
are just due to potential technical bias. This pipeline is built by using simulated data to find optimal mapping and OTU
prediction methods. The comparison between simulated datasets revealed a relationship between 16S rRNA gene
fragments and full-length 16S rRNA sequences that a 16S rRNA gene fragment having a length .150 bp provides the same
accuracy as a full-length 16S rRNA sequence using our proposed pipeline, which could serve as a good starting point for
experimental design and making the comparison between 16S rRNA gene fragment-based and targeted 16S rRNA
sequencing-based surveys possible.
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Introduction

Metagenomics is a new area of study which has undergone

rapid developement as our ability to sequence microorganisms in

given environmental samples without culturing them got im-

proved. Consequently, research in this area has provided

important insights into a variety of topics, ranging from the

relationship between bacteria and human health [1,2] to bio-

geochemical activities that occur in the ocean [3]. Alongside the

development of sequencing technology, metagenomic studies have

also benefited from increased data size that allows the generation

of billions of metagenomic shotgun sequences [4] or targeted 16S

rRNA gene sequences directly from an environmental sample [5].

However, this explosion of sequencing data has not yielded greater

insight into microbial diversity, as previously provided by surveys

on a smaller scale, mainly because of errors and bias in the data.

Specifically, artifacts that arise from PCR and sequencing errors

[3,6] might result in overestimation of microbial diversity.

Moreover, the results of targeted 16S rRNA gene sequencing

data surveys are also affected by potential primer bias [7] based on

the use of ‘‘universal primers’’. Computational methods have been

developed to address errors in PCR/sequencing [3,8,9], but

primer bias issue remains largely untouched.

On the other hand, metagenomic shotgun sequencing data is

naturally immune to primer bias. Global Ocean Survey (GOS) is

one of the first and still on-going large-scale research projects using

this type of data [10]. However, the limited availability of known

bacterial genomes makes it difficult to associate sequencing reads

with operational taxonomic units (OTUs), and the highly dynamic

structure of the underlying bacterial genomes [11] introduces extra

complexity to the data analysis. Fortunately, the data explosion

has also made available another new data type, 16S rRNA gene

fragments, which may leverage the advantage of both 16S rRNA

genes and metagenomic shotgun sequencing data. Previous

surveys have shown that targeted 16S rRNA gene sequencing

data tended to overestimate or underestimate the abundance of

some bacteria phyla when compared with 16S rRNA gene

fragments from the metagenome of the same community [2]. This

difference is potentially caused by the primer bias of targeted

sequencing, thus lending support to the use of 16S rRNA gene

fragments from metagenomes. Some researchers have developed

computational methods for analyzing the mean species diversity at

the habitat level (also known as a-diversity) and the differentiation

among habitats (also known as b-diversity) using this type of data

[12,13], while others have taken advantage of the current public

16S rRNA gene databases [14,15,16] to identify OTUs through

database search. Despite the increasingly popular metagenomic

analysis using this new type of data, lack of statistically rigorous

comparison between 16S rRNA gene fragments and other data

types makes it difficult to interpret previously reported results using

16S rRNA gene fragments. For example, it is possible that the

observed difference in the results of the two data types can be

attributed to the different methods used for analyzing targeted 16S

rRNA gene sequencing data and 16S rRNA gene fragments.

Thus, it is of great interest to investigate 16S rRNA gene
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fragments and establish a standard analysis pipeline such that its

comparison with traditional 16S rRNA gene-based surveys will

yield the ‘‘true’’ differences in the data.

Therefore, in this article, we focus on establishing such an

analysis pipeline by conducting data analysis through 16S rRNA

gene databases using simulated data. Since individual variable/

hyper-variable regions of 16S rRNA gene have inconsistent and

more complicated features [17] that introduce further bias to

OTU abundance estimation, which is out of the scope of this

paper, we focus on almost-full-length sequences for targeted-

sequencing. The work can be described in two steps:

We first generated simulated 16S rRNA gene fragments datasets

with various read length and read numbers from a set of known

full-length 16S rRNA gene sequences, thus the underlying

taxonomic profile (the ‘‘ground truth’’) of the generated datasets

are known. Then we mapped these simulated 16S rRNA

fragments to annotated full-length 16S rRNA sequence databases

using BLAST, and used the BLAST mapping results to generate

predicted taxonomic profile for each dataset. By tuning above

mapping procedure and testing different type of methods of

generating OTU predictions using the mapping results, we

decided that nearest-neighbor approach (see Methods) is the

optimal approach in terms of three performance metrics:

sensitivity, specificity and Bray-Curtis dissimilarity.

The second step is to establish a relationship between 16S

rRNA gene fragments and full-length 16S rRNA sequences. To be

more specific, we want to answer the question ‘‘How many 16S

rRNA gene fragments with average length L are able to generate

taxonomic profile prediction consistent with that of Y almost full-

length 16S rRNA sequences when there is no bias in the data?’’ To

answer this question, we first generated a set of simulated full-

length 16S rRNA sequence datasets with various read numbers by

sub-sampling from the set of full-length sequences we used to

generate simulated 16S rRNA gene fragments datasets above.

Then taxonomic profile predictions were generated for both

simulated 16S rRNA gene fragments datasets and simulated full-

length datasets using the previously-determined optimal approach.

By comparing the sensitivity, specificity and Bray-Curtis dissim-

ilarity achieved by these datasets using Mann-Whitney U-test (see

Methods), we are able to draw conclusion that 16S rRNA gene

fragments, with an average read length of at least 150 bp, could

provide the same level of resolution as full-length 16S rRNA gene

sequences in terms of a-diversity, Bray-Curtis dissimilarity,

sensitivity and specificity.

Our established analysis pipeline that can test for ‘‘true

difference’’ between a 16S rRNA gene fragment dataset and

a targeted-sequencing dataset sharing the same underlying

microbial community uses above conclusion reversely: First, we

check if the 16S rRNA gene fragments are .150 bp in length.

Then we perform necessary sub-sampling of the two datasets to

generate similar-sized sub-datasets. Finally we process these sub-

datasets using aforementioned optimal approach and make

comparison between them using a likelihood ratio test (see

Methods). These sub-datasets, according to our analysis, should

generate OTU abundance estimations that are statistically similar

to each other. Thus if statistically significant difference are

detected, it can be concluded that there are bias in the data used.

We used this pipeline to analyze a set of gut data taken from the

Human Microbiome Project [2]. These data included metage-

nomic shotgun sequences, full-length 16S rRNA gene sequences

and sequences from V2 and V6 hypervariable regions of 16S

rRNA gene. We confirmed the statistically significant difference

between the OTU abundance levels estimated from 16S rRNA

gene fragments and those estimated from other data types at

various taxonomic levels, suggesting potential bias in this data. We

also showed that 16S rRNA gene fragments gave high-level

predictions consistent with previous studies. Though GOS also

provides a good data source, considering its relatively low data

coverage (,100 16S fragments per sample), we didn’t use it for

validation purposes.

The C++ program for the OTU analysis using metagenomic

shotgun sequencing data proposed in this study is available at

https://code.google.com/p/shotgun-metagenomics-analysis-

framework/.

Materials and Methods

1.1. Data
Two data types were used in the study: simulated data and real

data.

Two groups of simulated data, as shown in Table 1, were used

in the study. The first group of datasets consisted of a total of 540

simulated 16S rRNA gene fragment datasets with various read

lengths (50–300 bp) and sizes (100–10000 sequences) uniformly

generated by random sampling from 9,773 unique nearly full-

length 16S rRNA gene sequences [2]. The sampling procedure is

done by first choosing a full-length sequence, then randomly

choosing a position on the full-length sequence where the distance

between the position and the end of the sequence is larger than the

current sampling read length. Then this position is used as the

starting point of the next read. For each specific choice of read

length and data size, 10 simulated datasets were generated in order

to study the variation of results. The choice of these parameters

reflected current technology in metagenomic sequencing. As such,

the range of read length covered 50 bp to 150 bp from the

Illumina sequencing platform to 200 bp or longer from the 454

sequencing platform. Although we tested other read lengths

between the numbers chosen, the results did not significantly

improve. The dataset size followed an assumption that the average

coverage was less than 0.16. The second group of datasets

consisted of 5 simulations of full-length 16S rRNA gene sequence

datasets, each with a different data size and 10 replicates. Each

replicate was generated by the random sampling from the original

9773 sequences. The sizes of these datasets were designed to

provide comparable coverage (,0.16) with the simulated 16S

rRNA gene fragment datasets.

The real data consisted of nearly full-length 16S rRNA

sequences, V2 amplicon of 16S rRNA gene, V6 amplicon of

16S rRNA gene, and 454 whole genome shotgun sequencing data

introduced by Turnbaugh et al. [2]. This study used the following

18 samples, all having four data types: TS1, TS2, TS3, TS4, TS5,

TS6, TS7, TS8, TS9, TS19, TS20, TS21, TS28, TS29, TS30,

TS49, TS50 and TS51.

1.2. Mapping
1.2.1. Databases. Two databases were used to map

metagenomic shotgun sequencing data and extract taxonomic

information. The first dataset, referred to as ‘‘raw database’’,

consisted of 1428381 high-quality 16S rRNA gene sequences

annotated in RDP. The second dataset, referred to as ‘‘re-

dundancy-reduced database’’, was built by clustering the 1428381

sequences at 3% distance threshold using a program called uclust

[18] (version 1.1.579 for 64-bit Linux platform) with default

parameters. The final size of the redundancy-reduced database is

252314. The two datasets were then built into BLAST databases.

Sequences were shuffled before construction of the databases since

they were originally grouped sequentially by their RDP taxonomy

OTU Analysis Using Shotgun Sequencing Data
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annotation. The 9773 original full-length sequences were removed

to avoid self-hitting.

1.2.2. Mapping shotgun sequencing data to databases by

BLAST. BLASTN was used to map the data to the databases.

We used very stringent E-value and similarity cut-offs, as shown in

Table 2, so that boundary reads across the 16S gene and other

parts of bacteria genomes could be excluded.

1.3. OTU Prediction
By mapping metagenomic shotgun sequencing data to a large

16S gene database, we are able to extract out reads which are

potential 16S rRNA gene fragments. However, a significant

portion of the 16S rRNA gene fragments will get multiple BLAST

hits in closely related taxonomic groups, even under very stringent

criteria, i.e., similarity cut-off .99% and mapping length .95%,

based on the presence of highly conserved regions in 16S rRNA

genes, which poses difficulty for accurate OTU abundance

estimation. Methods have been proposed to handle multiple hits.

One popular approach, which is used in MEGAN [19], assigns

a read to the Lowest Common Ancestor (LCA) of its mapped

taxonomic groups. In practice, however, this approach fails to

assign most 16S rRNA fragments to the genus-level taxonomic

group. Thus, we propose the following four approaches where we

only consider those BLAST hits with .90% of read length

mapped and .95% similarity for the genus-level OTU analysis.

1) Nearest Neighbor (NN). Each taxonomic group consists

of multiple 16S rRNA gene sequences to which a read may have

multiple hits. The nearest neighbor approach assigns each read to

the taxonomic group with the highest BLAST score, or, if two or

more groups have the same score, to all of those with equal weights

summing up to 1. The abundance of a taxonomic group is the

number of the weights of its reads.

This straightforward method could have many different

variations by giving different definitions for ‘‘nearest neighbor’’.

For example, we may consider a read belongs to a taxonomic

group if its BLAST hit score in this group is some margin better

than hit scores in any other groups. However, preliminary results

showed that using above mentioned method, on average .90% of

the reads can be assigned correctly, and there is no way to

correctly assign the rest 10% by simply looking at their sequence

content since they are 100% identical to many taxonomic groups

at even phylum-level. Thus we used above approach as

a representative of the nearest neighbor approach family.

2) Maximum Likelihood Estimation (MLE). Since prob-

abilistic approach gives chance for a read to be assigned to any

taxonomic group it gets a BLAST hit in, these approaches are

expected to generate results with higher sensitivity. Thus we tested

an MLE method for OTU prediction. The setting we used is

a basic EM algorithm for inferring component abundance of

a mixture model.

The likelihood model is described as follows: Assume that read i,

1# i # n, has k BLAST-hits in taxonomic group j, 1# j # m. For

the m-th hit, let lm be the length of the local alignment reported by

the BLAST, and let sm be the percentage of identities in the local

alignment. Then the likelihood that read i is generated from the

taxonomic group j is

Pij~
1

k

Xk

m~1

smlm

l
ð1Þ

where l is the length of the reference full-length 16S rRNA gene

sequence.

Let pj be the abundance of a taxonomic group j in a sample, and

let Zi = j be the latent variable indicating that read i is assigned to

a specific taxonomic group j. Thus for all the N reads and M

taxonomic groups, the full likelihood function is then:

L~ P
N

i~1

XM

j~1

I(Zi~j)pjPij ð2Þ

Table 1. Summary of Shotgun and Full-length Simulated Datasets.

16S rRNA Gene Fragments Full-length 16S rRNA Sequences

Read Length (bp) 50,65,85,100,150,200 ,1200–1600

Data Size 100, 200, 400, 800, 1000,2000,4000,8000,10000 100,200,400,800,1000

Total Datasets (with 10 replicates) 669610 = 540 165610 = 50

doi:10.1371/journal.pone.0049785.t001

Table 2. E-value and Identity Cut-offs.

Read Length (bp) E-value cut-offs Similarity cut-offs

50 1e–10 90

65 1e–13 90

85 1e–17 90

100 1e–20 90

150 1e–30 90

200 1e–40 90

Full-Length 1e–200 90

doi:10.1371/journal.pone.0049785.t002

Table 3. Comparison between the Complete Database and
the Compressed Database.

Complete Database
Compressed
Database

Bray-Curtis Dissimilarity 0.120514260.064813 0.121308960.065371

Sensitivity 0.62078360.203592 0.60453360.227941

Specificity 0.87716460.019811 0.87932860.020517

Mapping Speed (Base/Sec) 55 6

doi:10.1371/journal.pone.0049785.t003
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A log transformation gives:

L0~e

PN
i~1

PM
j~1

I(Zi~j)( logpjz logPij )

ð3Þ

logL0~
XN

i~1

XM

j~1

I(Zi~j)( logpjz logPij) ð4Þ

In order to get the MLE of {pj}, we impute {I(Zi = j)} in the

above formula with its conditional expectation:

E(I(Zi~j)Ddata)~P(Zi~jDdata) : ~Tij~
pjPij

PM

l~1

plPil

ð5Þ

A simple EM algorithm [20] is used to determine the maximum

likelihood estimate of the abundance of a mixture. For the t-th

iteration,

E-step:

T
(t)
ij ~

p(t)j Pij

PM

l~1

p(t)l Pil

ð6Þ

M-step:

p(tz1)
j ~

1

N

XN

i~1

T
(t)
ij ð7Þ

For most reads in our study, the reported BLAST hits in

different taxonomic groups were not mathematically different in

terms of such parameters as alignment length or percentage of

identities. Therefore, using a different likelihood model, or further

fine tuning the above parameters, would not provide any

significant difference in result.

3) A Greedy Algorithm for the Minimum Set Covering

(MSC) Problem. The third approach belongs to the category of

maximum parsimony. Since this type of approach put more

emphasis on high-abundance OTUs, the results are expected to be

high in specificity.

Figure 1. Comparison of four computational methods for integrating taxonomic information. MLE stands for the maximum likelihood
estimation method, MSC stands for the Minimum Set Covering method, MLE of MCS stands for the MSC method followed by the MLE method, and
NN stands for the nearest neighbor method. Each data point indicates the sensitivity and specificity achieved by one simulated dataset using
corresponding method.
doi:10.1371/journal.pone.0049785.g001
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If we define taxonomic groups (such as different genera) as

‘‘sets’’, s1, s2,…, and reads as ‘‘elements’’, r1, r2,…, then riMsj, or
read ri is covered by group sj, if read ri gets a BLAST hit in the

taxonomic group sj. Using such definition, the objective of the

maximum parsimony becomes finding the smallest number of

taxonomic groups that can cover all the reads, which is exactly the

same as the minimum set covering problem, which is known to be

NP-complete [21]. Since a polynomial-time solution does not exist,

we use a greedy algorithm to determine a covering set. The greedy

algorithm first selects a set covering the maximum number of

uncovered elements and then repeatedly adds a new set which can

cover the maximum number of uncovered elements until every

element is covered by the selected sets. Finally, we select a set of

taxonomic groups (sets) that explains all sequenced reads.

To estimate the abundance of the selected taxonomic groups,

we weight each read by the following rule: if a read hits n selected

groups, it carries 1/n weight in each group. Thus the abundance of

a taxonomic group is estimated as the total weights of its reads.

4) Maximum Likelihood Estimate of Minimum Covering

Set (MLE of MCS). This approach is similar to the aforemen-

tioned greedy algorithm, except that we apply an EM algorithm to

estimate the abundance of the selected taxonomic groups to see if

this approach could take advantage of both MLE and MCS to

generate results with both high sensitivity and specificity.

1.4. Performance Evaluation Metrics of OTU Prediction
Result
Based on their taxonomy in RDP, we consider the abundance

estimation of the original 9773 nearly full-length 16S rRNA gene

sequences to be the ground truth. Several metrics, including Bray-

Curtis dissimilarity, sensitivity and specificity, are used to compare

the ground truth with OTU prediction results of each simulated

dataset. Here, sensitivity is defined as the percentage of the

taxonomic groups in the ground truth found by analyzing the

simulated data. Specificity is defined as the percentage of the

Figure 2. OTU prediction performance evaluation for all simulated datasets. X-axis indicates read number, y-axis indicates value of
corresponding performance metric ((A) for Bray-Curtis dissimilarity, (B) for sensitivity and (C) for specificity), each colored line indicates a different
read-length.
doi:10.1371/journal.pone.0049785.g002
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taxonomic groups estimated from the simulated data which are

also in the ground truth.

1.5. Using Mann-Whitney U-test to Compare Simulated
Datasets
We want to answer the question ‘‘How many 16S rRNA gene

fragments with average length k1 are needed to generate

taxonomic profile prediction consistent with that of Y almost

full-length 16S rRNA sequences when there is no bias in the

data?’’ To address this question, we use the approach described

below.

First, we denote 1) the simulated 16S rRNA gene fragment

dataset with read length k1 and read number n1 as dataset (k1, n1)

and 2) the simulated full-length 16S rRNA gene sequence dataset

with read number n2 as dataset (full, n2) below. Since each such

defined dataset has 10 replicates, we can use the Mann-Whitney

U-test [22] to test the difference between each simulated 16S

rRNA gene fragment dataset and each full-length 16S rRNA gene

sequence dataset measured by the Bray-Curtis dissimilarity,

sensitivity and specificity, using 5% significance level We define

two datasets, i.e., datasets (k1, n1) and dataset (full, n2) to be

equivalent if (1) there is no significant difference between their

performance measures, in terms of sensitivity, specificity, or the

Bray-Curtis dissimilarity, or (2) dataset (k1, n1) gives better

performance than dataset (full, n2), but worse performance than

dataset (full, n3) where n3.n2.

1.6. Comparison of Real Datasets
1.6.1. Likelihood Ratio Test (LRT). Since for real data, we

usually have only one replicate for each sample, thus we are

unable to compare them using Mann-Whitney U-test. Also,

current real 16S rRNA gene fragment data are usually of limited

size, which raise another concern that the observed difference

between the genus-level abundance estimation of 16S rRNA gene

fragments and that of full-length 16S rRNA gene sequences maybe

simply by chance under low coverage. We use a Likelihood Ratio

Test (LRT) to address above concern and determine if the

observed difference between the genus-level abundance estimation

of 16S rRNA gene fragments and that of full-length 16S rRNA

gene sequences is from low coverage (null hypothesis H0) or some

other biases (H1). If we assume that each dataset is a sample from

a multinomial distribution Mult(n, p1, p2, pk…), the maximum

likelihood estimates p91, p92, …, p9k of the cell probabilities p1, p2,

…, pk are then the corresponding genus-level abundance

estimation. Under the null hypothesis, this abundance estimation

is determined by estimating the abundance of different genera

after pooling two datasets together. The test statistic is the log ratio

of the likelihood under the null and the alternative hypotheses:

{2 log
(N1 P

k

i~1
p0i

n1i )(N2 P
k

i~1
p0i

n2i )

(N1 P
k1

i~1
p01i

n1i )(N2 P
k2

i~1
p02i

n2i )

~{2 log
P
k

i~1
p0i

n1izn2i

P
k1

i~1
p01i

n1i P
k2

i~1
p02i

n2i

ð8Þ

where N1 and N2 are the numbers of the 16S rRNA gene

fragments and the full-length 16S rRNA sequences for this sample,

respectively. k1 and k2 are the numbers of detected genera, p91i and

p92i the estimated abundances of the i-th detected genera, and n1i
and n2i the numbers of sequences assigned to the i-th genus,

respectively. p9i is the pooled estimate of the abundance of the i-th

genus. k is the number of genera detected by at least one sample.

This test statistic follows a chi-square distribution with the

degree of freedom equal to k1+k22k+1 asymptotically. A p-value is

Figure 3. A plot showing relationship between 16S rRNA
fragments and full-length 16S rRNA sequences. i.e.: A data point
in subplot (A) at (500, 400, 65 nt) indicates that 500 16S rRNA gene
fragments with average read length 65 nt can achieve similar Bray-
Curtis dissimilarity as 400 full-length 16S rRNA gene sequences.
Subplots are based on Bray-Curtis dissimilarity (A), Sensitivity (B) and
Specificity (C).
doi:10.1371/journal.pone.0049785.g003
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thus calculated correspondingly. If we assume that the two samples

are drawn from the same underlying multinomial distribution and

there is no other factor affecting the sampling process, then the test

will not reject the null hypothesis, even if the coverage is low (small

N1 and N2).

Since the gut microbiome data we used have 18 samples to be

tested simultaneously, the p-value is then corrected using the

Benjamini and Hochberg False Discovery Rate (FDR) [23].

Although the following analysis is for the genus-level only, the test

can be applied to any taxonomic level by simply using the

abundance estimation at the desired taxonomic level.

1.6.2. Wilcoxon signed-rank test [24]. The Wilcoxon

signed-rank test is used to find the genera whose abundance

estimation is significantly different between two different data

types. The abundance estimation of a certain genus for a data type

forms an 18-dimensional vector representing the estimated

abundance levels from the 18 samples. The Wilcoxon signed-rank

test is then performed on each pair of such vectors with

a significance level of 0.05.

1.6.3. Diversity analysis. Mothur [25] software (version

1.22.2) with default parameter settings is used for diversity analysis.

First, the RDP-aligned best hit full-length 16S sequences (de-

termined as described above) for each 16S rRNA gene fragment is

put into a fasta file, while information, which identifies the

sequence from which the sample is generated, is stored in

a separate ‘‘group’’ file. These 2 files are then imported into

mothur for downstream analysis, including the hierarchical

clustering and the rarefaction curve calculation.

1.7. Program Availability
All statistical tests, performance metrics calculation and analysis

procedures are implemented in C++, which is available at https://

code.google.com/p/shotgun-metagenomics-analysis-framework/.

Results

2.1. Test for Optimal Mapping Database
We compared the mapping results using the raw database with

those using the redundancy-reduced database (see Methods). As

shown in Table 3, we measured the mapping speed by how many

bases could be mapped per second on a single Opteron 885,

2.6 GHz CPU when using two different databases. Given the

results, we would recommend using the redundancy-reduced

database since the mapping process is at least several orders of

magnitude faster than using the raw database, while the

performance, in terms of Bray-Curtis dissimilarity, sensitivity and

specificity, is not significantly different (two-sided t-test, p-

value = 0.834, 0.188, 0.066 for three metrics, respectively).

2.2. Test for Optimal OTU Prediction Method
On average, 75.2% simulated reads get BLAST hits with

highest scores in at least 2 different taxonomic groups, suggesting

necessity of exploring different approaches to integrate this

information.

Figure 1 compares the performance of the four computational

methods. Each colored point indicates the sensitivity and

specificity achieved for applying a specific method into one of

the 540 simulated shotgun datasets.

Figure 4. Abundance estimations of major phyla for all four data types in a human gut microbiome.
doi:10.1371/journal.pone.0049785.g004
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Overall, results suggest that the nearest neighbor (NN) method

produces the most accurate results. The maximum likelihood

estimate (MLE) method consistently has the lowest specificity,

while the greedy algorithm (MSC) consistently has the lowest

sensitivity. The MLE of MCS method has better sensitivity than

the MSC method, but with lower specificity. The NN method

achieves the best combination of sensitivity and specificity (the

most upper-right corner of Figure 1). Also, in terms of Bray-Curtis

dissimilarity, the NN method consistently achieves the best

performance, which indicates the most accurate overall abundance

estimation. Although we lose some specificity for datasets with

short read length, the NN approach is the best choice based on the

above results, using current sequencing platforms where read

length usually ranges from 100 to 400. Thus, we choose this

approach in our proposed framework.

2.3. Comparison of Simulated Data to Establish
Relationship between 16S rRNA Gene Fragments and
Full-length 16S rRNA sequences
On average, 99.5% of the simulated 16S rRNA gene fragments

were mapped. For the 10 datasets generated from each

combination of read length and the read number, we calculated

the average Bray-Curtis dissimilarity, sensitivity and specificity

based on the weighted-nearest-neighbor method. Results are

shown in Figure 2.

The result in Figure 2 shows that the read number is the factor

dominating sensitivity, while read length is negligible. Thus, by

carefully choosing mapping criteria, reads as short as 50 bp can

achieve sensitivity similar to the full-length sequences. As such, the

Illumina platforms with their higher throughput will have the best

sensitivity in detecting new taxonomic group. However, in terms of

the Bray-Curtis dissimilarity and specificity, both read length and

the read number play an important role. Together, they give

a better sense about the accuracy of the abundance estimation. As

expected, when read number is high, specificity is low, mainly

because more reads will fall into highly conserved regions of 16S

rRNA genes, and these reads are harder to be correctly assigned.

In addition, when reads are longer, the data tend to have better

immunity to this specificity-diminishing effect. This can be largely

explained by the fact that longer reads are more likely to contain

taxon-specific information and are thus less likely to be assigned

incorrectly.

Although the above results show that the simulated 16S rRNA

gene fragments can produce highly accurate abundance estima-

tion, the conclusion only holds true for the community represented

by the 9773 full-length 16S sequences from which we sampled the

data. As such, both changes in community membership and

structure could affect the above results. For example, based on the

above results and given the limited genus-level diversity for this

specific community, we conclude that a shotgun sample with an

average read length of 200 bp and ,300 reads mapped to a 16S

Figure 5. Rarefaction curve of lean and obese samples. Error bars indicating 95% confidence interval.
doi:10.1371/journal.pone.0049785.g005
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database provides an abundance estimation equivalent to 1000

full-length 16S sequences generated from the same community.

However, this is apparently not true if the community is more

diverse, say, containing 500 genera. Thus, we used a comparative

method to predict the abundance estimation accuracy when using

the 16S rRNA gene fragments.

By comparing the results of the simulated 16S rRNA gene

fragments and full-length samples, we are able to establish

a relationship between them (Figure 3). This relationship was

built by using pair-wise Mann-Whitney U-test to test the

significance (p-value ,0.05) of the difference between Bray-Curtis

dissimilarity, sensitivity and specificity of full-length and shotgun

samples (see Methods). From these results, we concluded that n

16S rRNA gene fragments would achieve the same level of

accuracy as n full-length 16S rRNA sequences when read length is

$150 bp. In other words, it is highly likely that a read from a 16S

rRNA gene $150 bp in length would contain enough information

to characterize the whole 16S rRNA gene. Under these conditions,

either 454 or pair-end Illumina may be the best sequencing

platforms since either can achieve a read length .150 bp and

thus, according to our conclusion, n 16S rRNA fragments data

from these two platforms would achieve the same level of accuracy

as n full length 16S rRNA sequences.

2.4. Use the Proposed Pipeline to Compare Real Data for
Potential Bias in Data Generation
By using our proposed analysis pipeline, we studied the human

gut microbiome data introduced by Turnbaugh et al. [2]. There

were 18 samples which had all four data types (WGS, full-length

16S, V2 region and V6 region) and were thus used for our

comparative study. The phylum-level abundance estimations for

all four data types are shown in Figure 4.

According to the result from simulated data shown in Figure 3,

the shotgun data (.200 bp, 4066105 16S rRNA gene fragments)

should have a level of accuracy similar to the full-length data

(314631 full-length 16S rRNA sequences). However, the Bray-

Curtis dissimilarity between the two data is highly significant,

using the two-sided t-test with p-value ,1025. This could result

from potential technical bias in 16S rRNA gene sequencing.

Therefore, we used an LRT (see Methods) to confirm whether the

observed difference between the genus-level abundance estimation

of the 16S rRNA gene fragments and full-length 16S rRNA

sequences is significant or not. After correcting for multiple testing,

15/18 results showed that the difference were significant (FDR

,0.05, with an average FDR of 0.00076). For samples TS1, TS8

and TS9, the test gives FDR values of 0.06, 0.05 and 0.16,

respectively, which are not significant at the level of 0.05.

However, the overall results have showed there were potential

biases during data generation that resulted in the difference

between the abundance estimation of the 16S rRNA gene

fragments and full-length 16S rRNA gene sequences for this gut

microbiome data. After comparing the sequencing protocols of the

two data, we tend to believe that the most likely source of bias

occurred during priming. Thus, the observed difference between

the two data may reflect the effect of primer bias in targeted

sequencing on abundance estimation. These results are also

consistent with the original study where the significant difference

among the full-length, V2, V6 and 16S rRNA gene fragment data

was reported [2].

It was also claimed in the original survey that the full-length and

V6 data tended to show a depletion of Bacteroidetes, while the V2

and 16S rRNA gene fragment data tended to show a relative

depletion of Firmicutes when compared with the full-length and

V6 data. In order to prove this more rigorously, we used the

Wilcoxon signed-rank test to test the significance (p-value ,0.05)

of the difference between the abundance estimation of each genus

in the 16S rRNA gene fragments, full-length, V2 and V6 data.

The results suggested that the abundance estimation of the 13

genera supported by the 16S rRNA gene fragment data was

significantly different from the other three data types. Among

them, three genera belonged to the phylum Bacteroidetes. Nine

genera belonged to the phylum Firmicutes. We also found one

genus that belonged to the phylum Actinobacteria.

The above analysis suggests that the abundance estimation

using the 16S rRNA gene fragments would be significantly

different from that of the other data types based on technical bias,

possibly primer bias. For the human gut microbiome, the

difference mainly resides in the phylum Bacteroidetes in which

the abundance estimated from the 16S rRNA gene fragments is

higher and the phylum Firmicutes in which the abundance

estimated from the 16S rRNA gene fragments is lower. These

results suggest that primer bias could result in highly skewed

abundance estimation thus lending support to the usage of 16S

rRNA gene fragment data. We may also conclude that results of

previous targeted 16S rRNA sequencing-based surveys should be

treated cautiously.

Furthermore, for validation purposes, we used 16S rRNA gene

fragment data to reproduce another previous conclusion reached

by using only the V6 data in the original publication [2],

indicating that the diversity of the gut microbiome in the lean

population is higher than that in the obese population (see

Methods). The result is shown in Figure 5 and suggests that even if

abundance estimation is highly biased, the overall high-level

conclusions reached using targeted 16S rRNA sequencing data

may still hold true due to the higher robustness of b-diversity
analysis [17].

Discussion

16S rRNA gene fragments did not gain popularity in the past

mainly because of the availability issue (low coverage). However,

the recent data explosion has finally made 16S rRNA gene

fragments a topic worth investigating. The protocol of shotgun

sequencing provides 16S rRNA gene fragment data natural

immunity against the bias raised during priming and thus the

potential of uncovering the true structure of microbial community.

Our established analysis framework could serve as a good starting

point for experimental design and making the comparison

between 16S rRNA gene fragment-based and targeted 16S rRNA

sequencing-based surveys possible. With further development of

computational methods [12,13] and databases [14,15,16], we

believe this new data type may improve our understanding about

the diversity of various microorganism communities.

An important direction for future studies is benchmarking by

repeating some previous studies using 16S rRNA gene fragment

data for potential difference in conclusions. Although we have

shown that some high-level conclusions from targeted sequencing-

based surveys may hold true, there is no guarantee such

conclusions would never be affected by bias in abundance

estimation.
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