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Abstract

Zinc-binding proteins are the most abundant metalloproteins in the Protein Data Bank where the zinc ions usually have
catalytic, regulatory or structural roles critical for the function of the protein. Accurate prediction of zinc-binding sites is not
only useful for the inference of protein function but also important for the prediction of 3D structure. Here, we present a
new integrative framework that combines multiple sequence and structural properties and graph-theoretic network
features, followed by an efficient feature selection to improve prediction of zinc-binding sites. We investigate what
information can be retrieved from the sequence, structure and network levels that is relevant to zinc-binding site prediction.
We perform a two-step feature selection using random forest to remove redundant features and quantify the relative
importance of the retrieved features. Benchmarking on a high-quality structural dataset containing 1,103 protein chains and
484 zinc-binding residues, our method achieved .80% recall at a precision of 75% for the zinc-binding residues Cys, His, Glu
and Asp on 5-fold cross-validation tests, which is a 10%-28% higher recall at the 75% equal precision compared to
SitePredict and zincfinder at residue level using the same dataset. The independent test also indicates that our method has
achieved recall of 0.790 and 0.759 at residue and protein levels, respectively, which is a performance better than the other
two methods. Moreover, AUC (the Area Under the Curve) and AURPC (the Area Under the Recall-Precision Curve) by our
method are also respectively better than those of the other two methods. Our method can not only be applied to large-
scale identification of zinc-binding sites when structural information of the target is available, but also give valuable insights
into important features arising from different levels that collectively characterize the zinc-binding sites. The scripts and
datasets are available at http://protein.cau.edu.cn/zincidentifier/.
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Introduction

Metalloproteins are proteins that can bind metal ions in order to

fulfill the catalytic or structural requirement. Approximately one-

quarter to one-third of all proteins require metal ions to carry out

their functions [1,2]. Zinc is the most abundant metal ion in the

Protein Data Bank (PDB) database [3,4], playing a wide range of

functional roles in eukaryotic organisms [5]. It is estimated that

about 40% of the zinc-binding proteins in the human proteome

are transcription factors; the remaining 60% are primarily

enzymes as well as other proteins including those involved in ion

transport [6]. Due to the important structural and functional roles,

the presence and location of the zinc-binding sites can provide

important clues regarding the function of the protein [7].

Therefore, accurate prediction of zinc-binding sites is useful not

only for the inference of protein function but also for the

prediction of 3D structures of proteins that contain zinc ions,

thereby providing an important assistance in facilitating protein

functional annotation efforts.

A plethora of computational approaches have been proposed to

address the task of predicting metal (e.g. zinc) binding sites. Many

research groups attempt to accomplish this by using complex

machine learning methods to train prediction models based on the

primary sequences of the target proteins. For example, Lin et al. [8]

previously employed a neural network approach to predict the

metal binding residues based on the biochemical and biophysical
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features derived from sequence. In another study, Lin et al. [9]

developed a support vector machine (SVM)-based method with

improved classification performance that used sequence-derived

physicochemical properties to predict 10 metal-binding classes and

identify all metal binding proteins. Their results showed that

several residue properties play more prominent roles than other

properties for the prediction of the zinc binding sites, including

hydrophobicity, solvent accessibility, polarity and composition.

Menchetti et al. [10] trained SVM classifiers to identify all Cys and

His (CHs) that coordinate with zinc in the target proteins. More

specifically, they described the zinc-binding site using the sequence

motif [CH] x(0–7) [CH] (x(0–7) denotes a subsequence with a

length from 0 to 7 residues) which underlies the correlation

between the nearby residues. Their method achieved 60%

precision at 60% recall for predicting zinc-binding Cys and His

based on 5-fold cross-validation tests. In a follow-up study by the

same group [11], the sequence motif of zinc-binding sites was

integrated into two predictors to predict the zinc-binding sites and

annotate metal-binding site proteins at the proteome level. Their

method achieved an AUC (area under the ROC curve) of 0.890

and an AURPC (area under the Recall-Precision curve) of 0.500

for predicting zinc-binding sites using 5-fold cross-validation tests

based on 2,428 protein chains. Shu et al. [12] recently combined

SVM-based and homology-based predictions to identify zinc-

binding sites by focusing on four residue types- Cys, His, Glu and

Asp (CHED). Their results showed that CHs could be more

readily predicted compared to EDs. Lippi et al. [13] developed a

web server to predict the metal-binding sites and disulfide bridges

from sequence. Andreini et al. [14] reported a sequence-based

method for prediction of metalloproteome. More recently,

Passerini et al. proposed a new graph-based algorithm to predict

the transition-metal-binding sites coordinated by Cys and His from

sequence alone [15].

The increasing availability of high-quality structures deposited

in PDB, makes it possible to fully explore the important structural

information to accurately predict metal-binding sites, especially

zinc-binding sites. In this regard, Sodhi et al. [16] developed a

MetSite method using a variety of structural features to predict the

metal-binding residues in low-resolution structural models. The

Fold-X program, originally developed by Schymkowitz et al., used

empirical force field to predict the metal binding sites and binding

affinities for the metal ions by analyzing the protein structures

[17]. Goyal and Mande [18] reported a method focusing on the

geometrical constraints for the prediction of zinc binding sites. The

CHED method can be used to predict transition metal-binding

sites from apo protein structures [4]. The FEATURE method

[19,20] applies a Bayesian classifier to recognize zinc-binding sites

using a variety of physical and chemical properties that represent

the microenvironment in six concentric spherical shells around the

central points of zinc. Bordner developed a computational method

called SitePredict that trained a Random Forest (RF) classifier

using the backbone structure information to predict the metal ions

and small molecules based on diverse residue properties, including

spatial clustering of residue type, median-relative solvent accessible

surface area and evolutionary conservation [7]. More recently, a

new structure-based approach TEMSP was reported, which uses

only the main chain structure of the target protein for the

prediction of zinc-binding proteins [21].

Although there has been some progress for developing methods

for predicting zinc-binding sites, the precision and recall of most

available methods are relative low. With the rapidly increasing

number of high-quality structures generated by structural

genomics projects and deposited in PDB, it remains an important

and pressing task to develop more accurate prediction methods

that can be able to reliably identify zinc-binding or any other types

of metal-binding sites, which will aid in and complement to

functional annotation efforts. In particular, it is possible to develop

more accurate predictors of zinc-binding sites by taking advantage

of powerful machine learning algorithms, informative feature

extraction and selection methods based on high-quality structural

benchmark datasets. In this study, we propose an improved,

generic framework based on the RF algorithm for identifying zinc-

binding sites in proteins by focusing on four types of residues Cys,

His, Glu and Asp (CHED) of the target proteins. Our approach

takes zinc-binding residues that play catalytic or structural roles as

positive samples, and the remaining as negative samples. It

integrates four major types of the most important features selected

by a two-step feature selection procedure, including sequence-

based, structure-based, graph-theoretic network and other features

into the RF classifier. We investigate to what extent each selected

feature is relevant to zinc-binding site prediction by removing the

feature from the feature set and examining the performance of the

resulting models. We further show that this novel computational

framework achieves an improved overall performance on a high-

quality benchmark dataset and is capable of more accurately

predicting zinc-binding residues compared to two other state-of-

the-art predictors zincfinder and SitePredict.

Methods

Overview of our methodology
An overview of our methodology is depicted in Fig. 1. As can be

seen, there are four major stages: dataset construction, feature

extraction, feature selection and zinc-binding prediction. At the

first stage of dataset construction, all the four major types of zinc-

binding residues, i.e. CHEDs are selected from the target proteins

in the curated benchmark dataset. In the second stage, these

CHEDs are further encoded into feature vectors which are

represented based on a local window of residues centered at each

selected CHED by making use of four generic categories of

features: sequence, 3D structure, network and other features. In

the third stage, we perform extensive feature selection to

characterize the most important and contributive features that

are relevant to the prediction by recursively training RF classifiers

and examining their prediction accuracy. The classifiers are

trained based on diverse residue- and protein-based features. In

the final stage, we optimize the RF-based classifiers using the

selected important features and apply the trained classifiers to

predict zinc-binding residues and compare the performance of our

method with the other two methods.

Dataset
The benchmark dataset used in this study was derived from a

protein dataset that was previously prepared by Passerini et al.

[22]. This dataset contains 2,727 protein chains with zero HSSP,

i.e. no pair of proteins had HSSP value.0 by running UniqueProt

[23]. The HSSP value measures the pairwise sequence similarity

between the two sequences by taking into account both sequence

identity and sequence length [23]. We extracted proteins with a

resolution better than 2.5 Å, which resulted in a final reduced

dataset of 1,103 chains.

We finally selected a total of 49,631 CHEDs from the 1,103

chains. Among them, 144 chains bind to at least one zinc ion (See

Table 1 for statistics), 79% of which are Zn3 or Zn4 binding

chains (defined as ‘‘Znx’’, where ‘‘x’’ denotes the number of amino

acid residues bound to zinc ions). The total number of residues

binding to zinc is 484. Among these residues, more than 86% of

the selected Cys, His, Glu and Asp residues bind to Zn3 or Zn4.

Recognition of Zinc-Binding Sites in Proteins
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Residues are considered as binding to zinc if the distance between

the atoms of the residue and zinc [24] is within a threshold of 3 Å.

There are totally 223 zinc atoms binding to the selected 144

chains, as shown in Table 1.

Zinc ions of zinc metalloproteins are significant for their

catalytic and structural functions. Zinc ions that bind to four

residues (defined as ‘‘Zn4’’) are considered as structural zinc,

which maintain the stability of the protein but are not involved in

any biochemical reaction. Zinc ions bind to three residues (defined

as ‘‘Zn3’’) are generally catalytic zinc, which bind to molecules and

may be involved in a reaction. Except for Zn3 and Zn4, other zinc

ions require cooperation with other metal ions in order to fulfill the

function, usually linking with side chain atoms or water molecules.

These zinc ions are called co-catalytic zinc (Co-catalytic Zn) [12].

Apart from the above zinc types, some zinc ions only bind to one

or two residues; they are located on the surface of the zinc

metalloproteins and lack the biological function. In this study, we

only focused on the functional zinc ions (i.e. Zn3, Zn4 and Co-

catalytic Zn which have catalytic or structural roles [25,26]). In

summary, CHEDs binding to these zinc ions are positive samples

Figure 1. Overview of our methodology. There are four major stages: dataset construction, feature extraction, feature selection and zinc binding
prediction.
doi:10.1371/journal.pone.0049716.g001

Table 1. Statistics of four zinc-binding residue types (CHED)
grouped based on the type of zinc ions.

C H E D Total Atoms Chains

Zn1 1 10 10 9 30 30 19

Zn2 3 32 26 15 76 42 36

Zn3 17 66 24 23 130 44 35

Zn4 91 120 46 29 286 82 64

Co-catalytic Zn 22 34 10 12 68 25 14

Functional zinc 130 220 80 54 484 151 113

Znx, where ‘‘x’’ denotes the number of residues that bind to zinc ions. ‘‘x’’ = 1, 2,
3 and 4, respectively; Co-catalytic Zn: zinc ions bind to other metal ions which
coordinate with side chain atoms or water molecules; Functional zinc: Zn3, Zn4
and Co-catalytic Zn ions.
doi:10.1371/journal.pone.0049716.t001
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(484 residues, 130 C, 220 H, 80 E and 54 D) (Table 1), the

remaining selected CHEDs are negative samples (49,147 residues).

We also generated an independent test set. We randomly

divided the 484 positive samples into six parts, one of which was

used as the independent test set while the remaining five parts

were merged together and used as the benchmark dataset which

was used for feature selection and 5-fold cross-validation test

purposes. The negative samples were randomly selected with the

negative to positive ratio of 6:1 for both benchmark training and

independent test datasets. Note that the independent test dataset

was never used during the model training and feature selection

process; the prediction model was trained based on the benchmark

dataset and then applied to the independent test dataset for its

performance evaluation.

Moreover, an apo protein structure dataset was produced

according to the holo structures included in the current datasets,

using the same strategy as described by Ebert and Altman [4].

More specifically, we first searched the PDB database by detecting

the apo protein structures that do not contain zinc and share 95%

or more sequence identity with the holo structures. We then

identified the residues in the apo structures that correspond to

those binding zinc in the holo form. Finally, we obtained a set of

31 apo/holo structures containing 96 zinc-binding residues. For

evaluating the prediction performance on the apo protein

structure set, the ratio of negative to positive was also set as 6:1.

The curated benchmark dataset, independent test dataset and apo

protein dataset are available at http://protein.cau.edu.cn/

zincidentifier/.

Feature extraction
We select and extract a variety of features that describe different

sequence, structure and network microenvironments which might

be of importance for zinc-binding site prediction and which are

used in combination as input to the RF-based classifiers. Features

used in our framework comprise of four generic types: sequence,

structure, network and other features (listed in Table 2). In

particular, although solvent exposure features are generally

considered as structural properties, this particular feature type is

important for improving the prediction performance of zinc-

binding residues. Also, we find several solvent exposure features

useful for the prediction which were mostly understudied in

previous work, which is discussed in the following sections.

Therefore, we consider the solvent exposure feature as an

additional feature type and would like to investigate its ability to

improve upon the prediction versus other structure features.

1. Sequence features. A wide range of sequence features are

used which make a significant improvement for the prediction.

These include: (i) position-specific scoring matrices (PSSMs)

from PSI-BLAST [27] using a default E-value cutoff with three

iterations; (ii) native disorder predicted by DISOPRED2 [28];

(iii) protein aggregation properties generated by TANGO [29];

(iv) sequence length; (v) CHED residue percentage in the

protein chain; (vi) conservation score directly derived from the

PSSM. The conservation score is defined as:

Scorei~{
X20

j~1

pi,j log 2pi,j

where pi,j is the frequency of amino acid j at position i. It was

extracted from the PSSM generated by PSI-BLAST.

1. A combination of these sequence or sequence-derived features

has been shown to be able to further improve the prediction

performance in our recent work [30–33].

2. Structure features. DSSP [34] is used to extract a series of

structure features, including the secondary structure, solvent-

accessible surface area (SASA), hydrogen bonds and protein

backbone torsion angles (PHI and PSI angles). HBPLUS [35] is

used to calculate the number of hydrogen bonds. NACCESS is

also used to generate the respective solvent accessibility of the

side chain, main chain, non-polar and polar region [36].

3. Network features. Graph-theoretic approach derived from

the residue-residue contact graphs is becoming a useful method

for unraveling the modular network organization of protein

structure and predicting the protein function given the

structure information [37–39]. If the spatial coordinate

distance of the corresponding Ca atoms of two residues is

within a cutoff distance threshold, the two residues are defined

as being in contact. Residue-residue contact graphs were

constructed using the spatial coordinates of protein structures,

with a cutoff distance of 6.5 Å between the Ca atoms of two

residues in the structure. We use the JUNG library (available at

http://jung.sourceforge.net/) to calculate the network proper-

ties that represent the local microenvironment of residues,

including clustering coefficient, degree, density, eccentricity,

betweenness, closeness and status.

4. Other features. New solvent exposure features are also used

in our study. They provide an important description of the

local spatial environments of the residue of interest, providing

useful information that is complementary to the traditional

solvent exposure measures, such as solvent accessibility and

accessible surface area [40–42]. We find that these features are

particularly important for the prediction and thus discuss their

relevance by considering them as a separate feature type from

other structure features. These include the number of Cb atoms

in the lower Half-Sphere (HSEBD), residue depth (RD), the

coordination number (CN), the number of Ca atoms in the

upper Half-Sphere (HSEAU), the number of Cb atoms in the

upper Half-Sphere (HSEBU), the number of Ca atoms in the

lower Half-Sphere (HSEAD) and atom depth of a residue’s Ca

atom (RDa). The hsexpo program in the Biopython package is

used to calculate these solvent exposure features [43].

We use a sliding window approach with a size of 9 residues to

extract all sorts of different features and take as input to train the

RF models. Each residue is represented by Vn (n = 1, 2, 3, …, 9,

denoting the position of the residue in such window; the centered

residue is denoted as V5). Similarly, the elements in the PSSM

(with a dimension of 9620 = 180) are denoted as V1, V2, …,

V180, respectively.

Feature selection
Due to the nature of having a large number of heterogeneous

and possibly redundant features in many data mining tasks, feature

selection techniques play an increasingly important role in

bioinformatics applications [44]. Thus, a great deal of attention

is being paid to application of these techniques that can potentially

improve the prediction accuracy of machine learning classifiers,

for example, in the prediction of protein folds [45], catalytic

residues [46], protein crystallization [47], helix-helix interaction in

membrane proteins [48] and disulfide connectivity [49]. In our

study, we used a two-step feature selection method based on RF

[50] to identify most informative and contributive features for the

prediction of the zinc-binding sites. In the first step, the mean

decrease Gini index (MDGI) was used to generate the optimal

Recognition of Zinc-Binding Sites in Proteins
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feature candidates (OFCs), which was calculated by the RF

package implemented in R [51]. MDGI describes the importance

of an individual vector element for correctly classifying a residue as

zinc-binding or non-zinc binding. The mean MDGI Z-Score of

each vector element is calculated by the following equation:

MDGI Z{Score~(xi{�xx)=s

where xi is the mean MDGI of the i-th feature, �xx is the mean of all

MDGI values of all vector elements of the feature x, and s is the

standard deviation (SD). We obtained the optimal feature

candidates (OFCs) by selecting the features from the top 70

MDGI Z-Scores features.

The second step is a stepwise feature selection based on the RF

classifier. To evaluate the prediction performance of the classifiers,

5-fold cross-validation tests were performed, where the whole

benchmark dataset was randomly split into five subsets. In each

validation step, one subset was left out as the testing set, while the

remaining four subsets formed the reduced training set. The RF

model was trained on this reduced training set and subsequently

validated by testing it on the left out subset. This procedure was

repeated five times, each time leaving out a different subset of the

samples such that in the end each subset was in turn left out

exactly once. The final performance was calculated by averaging

over the five subsets. In the first round of the stepwise feature

selection, we trained the RF model with the 70 optimal selected

feature candidates. Then in the next round, one feature would be

removed from the set of the optimal feature candidates. If the

resulting RF classifier achieved a higher score (score = AUC*re-

call*precision, which can be considered as a balanced score

incorporating the three measures AUC, recall and precision), this

feature would be removed. In particular, this score was averaged

over 100 times to obtain a stable value, hence the order in which

features were removed in each round was almost certain. This

combined score was used to evaluate the performance of the RF

classifier because it is useful for comprehensively monitoring the

changes of all of the three measures. The stepwise feature selection

procedure continued until this score no longer increased. This

procedure allows the most important and informative features to

be systematically identified.

Random forest-based classifier
In this study, we formulate the prediction task of zinc-binding

sites as a binary classification problem and solve it using a machine

learning approach-random forest (RF), where the zinc-binding

residue is labeled with 1 and non-zinc binding residue is labeled

with 21. RF is an ensemble tree-structured classifier [51]. A

typical RF extends many classification trees; each tree generates a

classification, and the tree ‘‘votes’’ for one of the two classes

(positive or negative). To classify and predict whether a residue is

zinc-binding or not, the physicochemical properties and the

microenvironment of the selected residue are represented by a

feature vector and encoded into the RF-based predictor to classify

this vector as either positive (zinc-binding) or negative (non-zinc

binding). The random forest classifier selects the classification as

the final prediction that has the the largest number of votes

(among all the trees in the forest). An advantage of RF is that it is

particularly suitable for dealing with a large dataset with high-

dimensional and noisy input features. In addition, as RF does not

require time-consuming optimization process, the classifier train-

ing and prediction by RF are generally much faster than many

other algorithms such as SVM. Due to these advantages, RF has

been extensively applied in many classification and regression tasks

and demonstrated satisfactory performance, for example, in

predicting residue-residue contacts [52], helix-helix interaction in

membrane proteins [48], DNA-binding residues [53] and protein

interaction sites [54]. We use the randomForest R package [51] for

the implementation of the RF algorithm.

Performance Evaluation
We use four performance measures, namely, Recall (REC),

Precision (PRE), the Area Under the Curve (AUC) and the Area

Under the Recall-Precision Curve (AURPC) to evaluate the

prediction performance of the methods. In our study, the dataset is

heavily imbalanced with the negative to positive ratio of 100:1. For

this highly imbalanced dataset, use of the Accuracy measure, i.e.

the proportion of true prediction results (true positives+true

negatives) in the dataset, is not appropriate, since all-positive or

all-negative classifiers can also achieve a very good classification

rate. Therefore, we consider using alternative metrics such as

AUC and AURPC for a comprehensive evaluation of the models’

performance. AUC is the area under the receiver-operating

characteristic (ROC) curve, which is a plot of true positive rate

(TPR) against false positive rate (FPR). AURPC is also used in our

work to evaluate the performance, which is regarded as a good

alternative to AUC if there is a large skew in the class distribution

[55].

The Precision is defined as:

PRE~
TR

TPzFP

The Recall (TPR) is defined as:

REC~
TP

TPzFN

The Specificity is defined as:

SPE~
TN

TNzFP

The FPR is defined as:

Table 2. Four generic feature types used in this study,
including sequence, structure, network and other features.

Feature type Annotation

Sequence PSSM (PSI-BLAST [27])

DISOPRED score [28]

Protein aggregation properties (TANGO [29])

Sequence length

CHED percentage in the chain

Conservation score

Structure DSSP [34]

Number of H-bonds (HBPLUS [35])

Solvent accessibility (NACCESS [36])

B-factor

Network Graph-theoretic network feature

Other features Solvent exposure (biopython [43])

doi:10.1371/journal.pone.0049716.t002

Recognition of Zinc-Binding Sites in Proteins

PLOS ONE | www.plosone.org 5 November 2012 | Volume 7 | Issue 11 | e49716



FPR~
FP

FPzTN

where TP is the number of true positives, TN is the number of true

negatives, FP is the number of false positives and FN is the number

of false negatives, respectively.

Results and Discussion

Two-step feature selection by random forest
By means of reducing the high dimensionality of feature vectors,

feature selection can be effectively used to select the most

informative features and generate a more succinct feature subset

from the initial feature set with a large number of noisy and

redundant features, which can allow us to significantly improve the

prediction performance of machine learning-based classifiers [44].

To give insights into the feature characteristics and select the most

contributive features for the prediction, we performed a two-step

feature selection. The first step was to select the optimal feature

candidates, while the second step was a stepwise feature selection

to generate the final list of optimal features which would be used to

train the best model.

In the first step of feature selection, we used the MDGI score to

generate the initial OFCs based on a RF classifier. As a result, the

top 70 features ranked were selected as the initial OFCs (Fig. 2). As

can be seen, PSSM had the highest mean MDGI Z-Score, solvent

accessibility feature calculated by NACCESS and solvent exposure

feature also had larger Z-Scores. Meanwhile, some important

features such as CHED_residue_percentage, chain length and

network_closen_cent were ranked with a lower score. The

percentage of each of the four types of features, as shown in the

pie chart in Fig. 2, indicates that most of the contributive features

in our method were predominantly derived from sequence

information.

At the second step, a stepwise feature selection method was used

(see the ‘‘Feature Selection’’ section). If the removal of a feature led

to a higher prediction score of AUC*Recall*Precision, such

feature would be deleted from the feature set. By iteratively

removing the redundant and less informative features from the

initial optimal feature candidate set, it is expected that the

prediction performance could be gradually improved during this

process. This two-step feature selection that combined random

forest MDGI Z-Score ranking and a stepwise selection, provides a

realistic approach for selecting an optimal subset of more

important features within a reasonable computational time

compared with other intensive feature selections [56]. In this

work, this feature selection procedure assessed a total of 878

features in 9 h and 70 features in 290 h (56 rounds), respectively,

on a 2*4 Xeon Intel X5650 processor Linux server (Ubuntu

10.10). Consequently, we obtained a more compact and useful

feature subset that improved prediction of the RF classifiers with

the application of this two-step feature selection method.

Feature importance and contribution
Finally, 14 features were selected by our two-step feature

selection method. The nomenclature of the selected features is

specified as follows: PSSM_5_H and PSSM_5_C denote the

PSSM feature in the respective positions of 9 (the ‘‘H’’ column in

the PSSM) and 5 (the ‘‘C’’ column in the PSSM) of the centered

residue (i.e. 5th position in the local window); Conservation_-

score_V5 describes the conservation score of the centered residue

(Conservation feature corresponds to a 9-dimensional vector with

9 residues in the local window); All_polar_abs_V5 describes the

absolute solvent accessibility of the all-polar side chain of the

centered residue, which was calculated by NACCESS; ChainCH-

ED_H_(P) denotes the percentage of His (H) in the CHEDs of the

protein chain; ChainCHED_D_(P) and ChainCHED_E_(P) have

similar meanings as ChainCHED_H_(P); Ex_CN_V5 and

Figure 2. Ranking of the optimal feature candidates (OFCs) based on the MDGI Z-Scores. The bar represents the MDGI Z-Scores of the
corresponding feature group. We group the features into four types: sequence, structure, network and other features, which are represented by
purple, red, blue and green bars, respectively. The percentage of each of the four types of features is shown in the pie chart. The labeled features in
the graph are the 14 final features selected by the two-step feature selection method.
doi:10.1371/journal.pone.0049716.g002
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Hbplus_V5 belong to the new solvent exposure feature type and

describe the coordination number (CN) and the number of H-

bonds of the centered residue, respectively; Chain_E_sum and

Chain_CHED_sum denote the numbers of Glu (E) and CHED in

the chain, respectively; chain_length represents the number of all

residues in the chain; Net_closen_cent_V9 denotes the closeness

centrality of the 9th residue in the local window. In particular,

inclusion of Net_closen_cent_V9 in the final feature set means that

the network closeness property of neighboring residues of the

centered residue in the residue-contact graph also plays an

important role for prediction of zinc binding sites. The boxplots

for the 14 final selected features are given in Fig. 3. It can be seen

that while some feature values of the positives contrast sharply to

their negative counterparts including All_polar_abs_V5,

Chain_CHED_sum, Chain_E_sum, chain_length, Ex_CN_V5,

other feature values did not show any obvious distinction between

the positives and negatives (including chain_residue_H(P),

Hbplus_V5, Net_closen_cent_V9, PSSM_5_C and PSSM_5_H),

Figure 3. Boxplot of the 14 final features selected by a two-step feature selection that collectively made a significant contribution
to zinc-binding residue prediction. Green and red boxes denote zinc-binding and non-zinc binding residues, respectively. The horizontal line in
each box indicates the mean value of a corresponding feature. For each feature name in the x axis, po: positive samples (zinc-binding residues); ne:
negative samples (non-binding residues).
doi:10.1371/journal.pone.0049716.g003
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yet they collectively made a significant contribution to the

performance of the final best RF model.

It is interesting to note that almost a majority of selected features

were derived from sequence information rather than structure.

Among the final 14 features selected by our two-step feature

selection method, indeed 10 of them were derived from sequence

information. In contrast, there were only two selected structure

features. The possible reasons might be: (1) It has been well

established that certain sequence features are important for

predicting zinc-binding sites, such as the evolutionary information

contained in the PSSM matrix and conservation score, which are

well known features making an important contribution to the

prediction performance; (2) Most initial features used in our study

are derived from sequence information. For example, 70 features

were selected and retained after the first step feature selection

according to Z-Score, 47% of which are sequence features and

most of which have relatively high Z-Scores (see Fig. 2). Therefore,

it is expected that a large portion of the selected features after the

second step feature selection would be derived from sequences; (3)

The selected 10 sequence features have a good complementarity

with other selected feature types, such as the structure and network

features, thereby making a collective contribution to improved

prediction of zinc-binding sites.

We further went on to elucidate the importance and contribu-

tion of the 14 final selected features at both residue and protein

levels. We examined the influence of each of the 14 features on the

prediction performance by iteratively removing each from the final

feature set and consequently calculating the corresponding REC,

PRE, AUC and AURPC of the resultant RF classifiers. The results

are presented in Table 3. PSSMs and conservation score have

been found useful for the prediction in previous studies [12]. In

this study, they also made a great contribution to the prediction

performance, especially the PSSM_5_C feature. The importance

of this feature is reflected by the fact that there would be a large

decrease in 7 out of 8 performance measures when we used the

rest of 13 features to train the RF model. In the absence of the

PSSM_5_C feature, the performance of the trained models

considerably deteriorated, as reflected by the REC, AUC and

AURPC at both residue and protein levels (at residue level: REC

decreased from 0.804 to 0.760, AUC from 0.960 to 0.954 and

AURPC from 0.832 to 0.815; at protein level: REC decreased

from 0.748 to 0.703, AUC from 0.966 to 0.960, AURPC from

0.825 to 0.808). These correspond to the first and second largest

performance decrease, which indicates the importance of the

inclusion of this feature for zinc-binding site prediction of our

method.

Moreover, the percentage of Glu (E) and Asp (D) in CHEDs of

the protein chain also made a considerable contribution to the

performance improvement, which is reflected by the changes of

AURPC at both residue and protein levels by comparing the

resulting performances in the presence and absence of the given

features. About 96% of zinc binding residues were CHEDs in our

dataset. Compared to Glu and Asp, Cys and His had higher

percentages of residues that bind zinc. The percentage of Glu and

Asp were only 16.5% and 11.2% in the positive CHEDs, whereas

in the negative CHEDs, 41.2% and 35.7% were Glu and Asp,

respectively. In other words, a protein chain is more likely to bind

zinc ions if it has a lower percentage of EDs and a higher

percentage of CHs. Accordingly, it is expected that the percentage

of Glu and Asp in CHEDs of the chain is a useful feature for zinc-

binding site prediction.

As can be seen from Table 3, there are two structure features

selected in the final feature set. They are All_polar_abs_V5

(calculated by NACCESS) and Hbplus_V5 (calculated by

HBPLUS), which define the absolute solvent accessibility of the

all-polar side chain and the number of hydrogen bonds of the

centered residue, respectively. After removal of the two features

from the feature set, PRE of the resulting RF classifiers decreased

from 0.750 to 0.714 in the case of Hbplus_V5 and to 0.715 in the

case of All_polar_abs_V5, respectively. These correspond to the

first and second largest decrease of PRE, demonstrating the

importance of these two features for the prediction. In addition,

Table 3. Influence of the removal of 14 individual optimal features on the prediction performance, as evaluated by REC, PRE, AUC
and AURPC.

MDGI Z-
Score Residue level Protein level

REC PRE AUC AURPC REC PRE AUC AURPC

All 14 features 0.804 0.750 0.960 0.832 0.748 0.750 0.966 0.825

PSSM_5_H 12.098 0.754 0.733 0.955 0.817 0.748 0.769 0.955 0.817

Conservation_score_V5 10.527 0.769 0.745 0.956 0.828 0.775 0.748 0.965 0.831

All_polar_abs_V5 4.892 0.792 0.715 0.959 0.829 0.766 0.744 0.964 0.832

PSSM_5_C 3.836 0.760 0.748 0.954 0.815 0.703 0.709 0.960 0.808

ChainCHED_H_(P) 3.481 0.782 0.739 0.957 0.827 0.730 0.730 0.966 0.830

ChainCHED_D_(P) 2.533 0.789 0.738 0.959 0.822 0.739 0.683 0.964 0.812

Ex_CN_V5 2.451 0.806 0.732 0.958 0.824 0.730 0.730 0.965 0.814

Hbplus_V5 1.882 0.792 0.714 0.957 0.826 0.766 0.746 0.963 0.820

ChainCHED_E_(P) 1.661 0.799 0.740 0.958 0.820 0.748 0.728 0.964 0.806

Chain_E_sum 0.959 0.801 0.744 0.958 0.826 0.703 0.716 0.964 0.819

Chain_CHED_sum 0.812 0.804 0.750 0.958 0.828 0.739 0.732 0.966 0.823

Chain_residue_H_(P) 0.611 0.794 0.744 0.958 0.828 0.748 0.741 0.966 0.824

Chain_length 0.602 0.794 0.741 0.958 0.825 0.766 0.726 0.965 0.820

Net_Closen_Cent_V9 0.537 0.803 0.745 0.960 0.830 0.766 0.702 0.965 0.831

doi:10.1371/journal.pone.0049716.t003
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there are two other features Ex_CN_V5 and Net_Closen_CentV9

in the final feature set. The former is a descriptor of solvent

exposure of the centered residue in terms of the residue

coordination number (CN), while the latter is a network feature

which describes the mean geodesic distance from the centered

residue to the neighboring node within the residue contact graph

of the protein. We can see from Table 3 that Ex_CN_V5 makes a

good contribution to AURPC and PRE at both residue and

protein levels. However, there is not obvious decrease after the

removal of the selected network feature Net_closen_cent_V9. It is

well known that closeness centrality indicates a degree of residue

centrality in the protein 3D structure. This feature has been

previously found useful for predicting functionally important

residues, including enzyme catalytic sites which are generally

centrally placed in the structure [57]. However, in this study, we

find that closeness centrality is not an informative feature for

predicting zinc-binding sites. As zinc ions in the zinc-binding

proteins are often located at the side of the structure and play

Figure 4. Recall-Precision and ROC curves displaying the performance of the three methods at both residue (A and B) and protein
levels (C and D): our method (red line), SitePredict (black line) and zincfinder (green line) when applied to the 5-fold cross-
validation benchmark dataset in this study.
doi:10.1371/journal.pone.0049716.g004
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structural roles (for example, zinc in zinc finger proteins helps

stabilize and coordinate the alpha-helix and two beta-strands

necessary for the stabilization of the structure and interaction with

DNA, RNA and other molecules), the closeness centrality is not an

effective feature for predicting zinc-binding sites. Yet, this feature

may be useful for balancing the performance and contribute to the

prediction when used in combination with other important

features, which is the case when classifying the positives at other

thresholds (data not shown).

Comparison with other methods
We further compared our method with other previously

developed methods. The performance of each of the compared

methods was summarized using the AURPC, AUC, REC and

PRE measures at both residue and protein levels (A true positive at

the residue level was defined as a zinc-binding residue that was

correctly predicted, while a true positive at the protein level was

defined as a zinc-binding protein for which at least one zinc-

binding residue was correctly predicted). In particular, for the sake

of the comparison, we compared different methods at the fixed

PRE. In addition we plotted the ROC and Recall-Precision curves

to show the performance of each method (Fig. 4). ROC curves

were plotted using the ‘‘ROCR’’ package [58] at the two levels.

Recall-Precision curve is a measure of the overall quality of the

prediction and is often used as an alternative complement to ROC

curves especially when analyzing datasets with a large imbalance

in the class distribution [59] by incorporating both the Recall and

Precision measures. The AURPC was calculated using the method

of Davis and Goadrich [55]. Although most zinc-binding site

prediction studies predominantly evaluate the performance using

AURPC, we employed both AUC and AURPC to comprehen-

sively evaluate the performance of different methods in this study.

There exist several methods that have demonstrated good

performance for predicting zinc-binding residues [7,11,12].

However, due to the unavailability of webserver or standalone

software, some methods could not be directly compared to our

method. Moreover certain methods can only be applied to predict

zinc-binding proteins [21] and are not capable of predicting zinc-

binding residues, while others predict the spatial position of zinc-

binding or metal-binding sites [19] rather than zinc-binding

residues. In addition, as our benchmark dataset was derived from

the previous dataset on which Shu et al.’s method was built, we

cannot compare with that method either. Therefore, we compared

the predictive performance of our method with another two state-

of-the-art methods that focused on prediction of zinc-binding

residues, namely, SitePredict [7] and zincfinder [11]. The

prediction performance of the three methods is shown in Table 4.

SitePredict is a structure-based method that also uses the RF

algorithm to predict zinc-binding sites [7]. The RF classifiers of

SitePredict were trained on diverse residue-based site properties

comprising of spatial clustering of residue types and evolutionary

conservation. We tested the performance of SitePredict by

submitting our 5-fold cross-validation (benchmark) dataset to its

online webserver. At the residue level, SitePredict generated 252

TP, 84 FP and 151 FN predictions, which corresponds to a REC

of 0.625 at the fixed PRE of 0.750. In contrast, our method

produced 324, 108 and 79 for TP, FP and FN predictions in the 5-

fold cross-validation tests, corresponding to a REC of 0.804 and a

PRE of 0.750, respectively. Although our method predicted more

FPs than SitePredict, the REC of our method is significantly better

than that of SitePredict (0.804 versus 0.625), which means that our

method is more accurate in predicting the positive samples (zinc-

binding residues) than SitePredict. Meanwhile, AUC was also

improved from 0.923 to 0.960, implying that our method

outperformed SitePredict. We also compared our method with

SitePredict using AURPC. From Fig. 4A, we can see that the

Table 4. Performance comparison between our method, zincfinder and SitePredict on the 5-fold cross-validation benchmark dataset.

Method Residue level Protein level

REC PRE SPE AUC AURPC REC PRE SPE AUC AURPC

zincfinder 0.728 0.750 0.961 0.890 0.785 0.801 0.750 0.966 0.934 0.841

SitePredict 0.625 0.750 0.966 0.923 0.738 0.649 0.750 0.973 0.923 0.726

Our method 0.804 0.750 0.957 0.960 0.832 0.748 0.750 0.968 0.966 0.825

Sequencea 0.752 0.750 0.959 0.956 0.825 0.733 0.750 0.969 0.963 0.821

The performance was evaluated using REC, PRE, SPE, AUC and AURPC measures.
aPrediction performance of the RF model using the 10 selected sequence features only.
doi:10.1371/journal.pone.0049716.t004

Table 5. Performance comparison between our method, zincfinder and SitePredict on the independent test dataset.

Method Residue level Protein level

REC PRE SPE AUC AURPC REC PRE SPE AUC AURPC

Zincfinder 0.725 0.750 0.961 0.861 0.781 0.717 0.750 0.966 0.884 0.789

SitePredict 0.691 0.750 0.976 0.916 0.770 0.574 0.750 0.972 0.917 0.749

Our method 0.790 0.750 0.958 0.955 0.829 0.759 0.750 0.964 0.969 0.830

Sequence 0.753 0.750 0.960 0.934 0.823 0.763 0750 0.961 0.950 0.826

Apoa 0.719 0.750 0.958 0.953 0.713 0.742 0.750 0.973 0.970 0.762

The performance was evaluated using REC, PRE, SPE, AUC and AURPC measures.
aPrediction performance of the RF model on the apo protein structure dataset containing 31 apo structures.
doi:10.1371/journal.pone.0049716.t005
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Recall-Precision curve of our method is consistently higher than

that of SitePredict, with AURPC increased from 0.738 to 0.832.

At the protein level, we also observe a similar tendency that the

performance of our method is better than that of SitePredict, with

REC, AUC and AURPC increased from 0.649, 0.923 and 0.726

to 0.748, 0.966 and 0.825, respectively, suggesting that our

method provides a better classification performance for recogniz-

ing zinc-binding sites than SitePredict.

Zincfinder is a sequence-based tool for zinc-binding site

prediction using SVMs [11]. Zincfinder was applied to our

benchmark set and generated 288 TP, 96 FP and 108 FN

predictions, respectively at the residue level, with a REC of 0.728

at the equal PRE of 0.750. Compared to zincfinder, REC of our

method was increased to 0.804. Zincfinder achieved AUC and

AURPC which were respectively worse than those of our method

at the residue level, but it attained a higher AURPC at the protein

level (0.825 versus 0.841, Table 4). While our method was

outperformed by zincfinder at the protein level (reflected by the

REC and AURPC), it achieved a predictive power comparable to,

if not better than, zincfinder with lower REC and AURPC at the

protein level, but with higher REC and AURPC at the residue

level as well as higher AUC at both levels.

Figure 5. Recall-Precision and ROC curves displaying the performance of the three methods at both residue (A and B) and protein levels (C
and D): our method (red line), SitePredict (black line) and zincfinder (green line) when applied to the independent test set in this study.
doi:10.1371/journal.pone.0049716.g005
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We also compared our method with these two methods on the

independent test set. The performance is shown in Table 5. We

can see that the REC, AURPC and AUC of our method are

respectively better than those of the other two methods at both

residue and protein levels. In addition we plotted the Recall-

Precision and ROC curves at the two levels in Fig. 5. The Recall-

Precision and ROC curves have a similar tendency as those on the

benchmark set at the two levels. Overall, these results suggest that

our method has outperformed SitePredict and zincfinder on this

independent test set.

Considering that zincfinder used only sequence features and our

method also had a majority of selected features derived from

sequence information, we also trained our model using the 10

selected sequence features only, applied it to make the prediction,

and compared the results with zincfinder (See Table 4 and Table 5,

respectively). It can be seen that our method is able to provide a

competitive and in some cases better performance than zincfinder

in terms of Recall, AUC and AURPC at both residue and protein

levels based on the benchmark and independent datasets. This

suggests that our method that only used the sequence features has

also outperformed zincfinder. Overall, the results indicate that

zincfinder has a better ability to predict more TPs at the protein

level while our method is more accurate and displays a greater

predictive power at the residue level. In addition, it is noteworthy

that there is an overlap of more than 60% of protein chains in our

training set and the benchmark dataset of zincfinder, which may

explain why the sequence-based tool zincfinder was better than the

other structure-based tool SitePredict and why our method was

outperformed by zincfinder at the protein level. Altogether, our

method provides a competitive performance compared to the

other two state-of-the-art methods on the 5-fold cross-validation

benchmark dataset.

Predictions for the apo protein structures
Next, we examined how well our method performs on the apo

protein structures, the prediction of which is more relevant for the

actual use of our approach. We thus evaluated the performance of

our approach based on the generated apo protein structure dataset

(See Dataset section). The performance is shown in Table 5. As

can be seen, our method achieved the Recall of 0.719 and 0.742 at

a corresponding Precision of 0.750 at the respective residue and

protein levels on this apo structure dataset. The AUC is 0.953 and

0.970, AURPC is 0.713 and 0.762 at the two levels. Despite the

limited size of the apo structure dataset, these results indicates that

our method is less sensitive to the structural rearrangements due to

the binding of zinc ion, and that our method can be used to

identify the zinc-binding sites in the apo protein structures.

Predictions for the four types of zinc-binding residues
As discussed above, there are four major types of residues that

bind to zinc- Cys, His, Glu and Asp (CHED). Table 6 shows a

comparison of the predictive performances of the three different

tools for predicting these types on the training set. Cys and His

were predicted with higher accuracy than Glu and Asp. For

example, the REC values of Cys and His are 0.909 and 0.891 at

an equal PRE of 0.750, respectively, which are much higher than

those of Glu and Asp, which only had REC values of 0.319 and

0.656, respectively. A similar tendency was observed for AURPC.

On the other hand, we note that AUCs of Glu and Asp are higher

than those of Cys and His. This is mainly because Cys and His

have a higher percentage in positive samples (zinc-binding

residues) while Glu and Asp have a higher percentage in negative

samples (non-binding residues). The proportions of zinc binding

residues of CHED are C: 26.9%, H: 45.5%, E: 16.5% and D:

11.2%. In contrast, the proportions of all CHED samples are C:

10.9%, H: 19.7%, E: 36.1% and D: 33.3%. Hence, the larger

percentage of Glu and Asp in negative examples resulted in much

more FP predictions than those of Cys and His, leading to a lower

PRE. It is also why AURPC was decreased (Fig. 6A) with the

decrease of REC. REC indicates the prediction performance of

positive samples, which does not necessarily reflect the predictive

performance of negative samples. From this perspective, AUC can

be considered as a balanced measure of the overall quality of the

prediction as it incorporates both SEN (the same as REC) and SPE

(which is TN/(TN+FP)) measures. A higher ROC curve of Glu

and Asp indicates a better accuracy of negative samples (Fig. 6B).

Therefore, AUC is also an important performance measure of our

method, playing a crucial rule that is complementary to AURPC.

For the sake of comparison, we also list the predictive performance

of CHED by another two methods SitePredict and zincfinder in

Table 6. We can see that there are straight lines in some of the

precision-recall and ROC curves for zincfinder, for example, the

ROC curves of ASP, this is mainly because that for 83.3% of

negative samples of Asp (D) residues, the predicted value of

zincfinder is 0. Similarly, 89.7% of negative samples of Glu (E)

residues were predicted as 0, thus there were no data for zincfinder

with FPR.0.103 and as a result there was a straight line in its

ROC curve.

Conclusion

We have developed a powerful computational framework that

combines a variety of sequence, structure, graph-theoretic network

and other features of residues to improve prediction of zinc-

binding sites, which relies on a two-step RF algorithm to retrieve

and select the most useful and contributive features to train the

prediction models. Using this integrative framework, we investi-

gated what information can be retrieved from the different types of

residue microenvironments that is relevant to the prediction of

zinc-binding sites. By focusing on four major types of residues:

Cys, His, Glu and Asp, it achieved 80% recall at 75% precision in

5-fold cross-validation tests on the benchmark dataset containing

1,103 high-quality structures and 484 zinc-binding residues. We

found that Cys and His were generally better predicted with

Table 6. Predictive performance of the four types of zinc-
binding residues (CHED) of our method, SitePredict and
zincfinder on the 5-fold cross-validation benchmark dataset.

Method Residue type REC PRE AUC AURPC

Our method C 0.909 0.750 0.941 0.885

H 0.891 0.750 0.933 0.877

E 0.319 0.750 0.950 0.600

D 0.656 0.750 0.944 0.739

SitePredict C 0.919 0.750 0.938 0.874

H 0.782 0.750 0.890 0.824

E 0.100 0.750 0.852 0.299

D 0.578 0.750 0.915 0.694

zincfinder C 0.914 0.750 0.921 0.920

H 0.833 0.750 0.917 0.876

E 0.319 0.750 0.721 0.409

D 0.453 0.750 0.780 0.557

doi:10.1371/journal.pone.0049716.t006
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respective recalls of 91% and 89%, which were much higher than

those of Glu and Asp. We also performed independent test and the

results showed that our method provided a higher REC, AUC and

AURPC than SitePredict and zincfinder at both residue and

protein levels. Benchmarking experiments showed that our

method has outperformed the two other state-of-the-art methods

at the corresponding 75% precision on both benchmark and

independent test datasets. In summary, the performance improve-

ment of our method may be attributed to three important

ingredients: (i) construction of a high-quality non-redundant

structural benchmark dataset; (ii) integration of a variety of

features including sequence, structure, graph-theoretic network

and other features and inclusion of novel features that collectively

make a good contribution to the performance; (iii) a two-step

feature selection method to remove the overlapping and redun-

dant features. In addition, this framework is generally applicable to

many other classification problems in structural bioinformatics and

can be readily extended to solve the prediction task of other types

of metal-binding or ligand-binding sites. We believe that it can be

an effective tool for accurately identifying zinc-binding sites with

the increasing availability of high-quality structure data.

Acknowledgments

We would like to thank the three anonymous reviewers for their

constructive comments, which have significantly improved the presentation

of this paper.

Author Contributions

Conceived and designed the experiments: ZZ JS. Performed the

experiments: CZ MW. Analyzed the data: CZ MW. Contributed

reagents/materials/analysis tools: KT TA. Wrote the paper: CZ JS.

References

1. Holm RH, Kennepohl P, Solomon EI (1996) Structural and Functional Aspects

of Metal Sites in Biology. Chem Rev 96: 2239–2314.

2. Matthews JM, Loughlin FE, Mackay JP (2008) Designed metal-binding sites in

biomolecular and bioinorganic interactions. Curr Opin Struct Biol 18: 484–490.

3. Bernstein FC, Koetzle TF, Williams GJ, Meyer EF, Brice MD, et al. (1977) The

Protein Data Bank: a computer-based archival file for macromolecular

structures. J Mol Biol 112: 535–542.

4. Babor M, Gerzon S, Raveh B, Sobolev V, Edelman M (2008) Prediction of

transition metal-binding sites from apo protein structures. Proteins 70: 208–217.

5. Coleman JE (1992) Zinc proteins: enzymes, storage proteins, transcription

factors, and replication proteins. Annu Rev Biochem 61: 897–946.

6. Andreini C, Banci L, Bertini I, Rosato A (2006) Counting the zinc-proteins
encoded in the human genome. J Proteome Res 5: 196–201.

7. Bordner AJ (2008) Predicting small ligand binding sites in proteins using
backbone structure. Bioinformatics 24: 2865–2871.

8. Lin CT, Lin KL, Yang CH, Chung IF, Huang CD, et al. (2005) Protein metal

binding residue prediction based on neural networks. Int J Neural Syst 15: 71–
84.

9. Lin HH, Han LY, Zhang HL, Zheng CJ, Xie B, et al. (2006) Prediction of the
functional class of metal-binding proteins from sequence derived physicochem-

ical properties by support vector machine approach. BMC Bioinformatics 7:

S13.

10. Menchetti S, Passerini A, Frasconi P, Andreini C, Rosato A (2006) Improving

prediction of zinc binding sites by modeling the linkage between residues close in
sequence. Research in Computational Molecular Biology, Proceedings 3909:

309–320.

11. Passerini A, Andreini C, Menchetti S, Rosato A, Frasconi P (2007) Predicting
zinc binding at the proteome level. BMC Bioinformatics 8: 39.

12. Shu N, Zhou TP, Hovmoller S (2008) Prediction of zinc-binding sites in proteins
from sequence. Bioinformatics 24: 775–782.

13. Lippi M, Passerini A, Punta M, Rost B, Frasconi P (2008) MetalDetector: a web

server for predicting metal-binding sites and disulfide bridges in proteins from
sequence. Bioinformatics 24: 2094–2095.

14. Andreini C, Bertini I, Rosato A (2009) Metalloproteomes: a bioinformatic
approach. Acc Chem Res 42: 1471–1479.

15. Passerini A, Lippi M, Frasconi P (2012) Predicting Metal-Binding Sites from

Protein Sequence. Ieee-Acm Transactions on Computational Biology and
Bioinformatics 9: 203–213.

16. Sodhi JS, Bryson K, McGuffin LJ, Ward JJ, Wernisch L, et al. (2004) Predicting
metal-binding site residues in low-resolution structural models. J Mol Biol 342:

307–320.

17. Schymkowitz JWH, Rousseau F, Martins IC, Stricher F, Serrano L, et al. (2005)
Prediction of water and metal binding sites and their affinities by using the Fold-

X force field. Proc Natl Acad Sci U S A 102: 10147–10152.

18. Goyal K, Mande SC (2008) Exploiting 3D structural templates for detection of

metal-binding sites in protein structures. Proteins-Structure Function and
Bioinformatics 70: 1206–1218.

19. Ebert JC, Altman RB (2008) Robust recognition of zinc binding sites in proteins.

Protein Science 17: 54–65.

20. Wu S, Liu T, Altman RB (2010) Identification of recurring protein structure

microenvironments and discovery of novel functional sites around CYS residues.
BMC Struct Biol 10: 4.

21. Zhao W, Xu M, Liang Z, Ding B, Niu LW, et al. (2011) Structure-based de novo

prediction of zinc-binding sites in proteins of unknown function. Bioinformatics

27: 1262–1268.

22. Passerini A, Punta M, Ceroni A, Rost B, Frasconi P (2006) Identifying cysteines

and histidines in transition-metal-binding sites using support vector machines

and neural networks. Proteins-Structure Function and Bioinformatics 65: 305–

316.

23. Mika S, Rost B (2003) UniqueProt: creating representative protein sequence sets.

Nucleic Acids Research 31: 3789–3791.

24. Harding MM (2004) The architecture of metal coordination groups in proteins.

Acta Crystallographica Section D-Biological Crystallography 60: 849–859.

25. Vallee BL, Auld DS (1992) Functional Zinc-Binding Motifs in Enzymes and

DNA-Binding Proteins. Faraday Discussions 93: 47–65.

26. Auld DS (2001) Zinc coordination sphere in biochemical zinc sites. Biometals 14:

271–313.

27. Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, et al. (1997)

Gapped BLAST and PSI-BLAST: a new generation of protein database search

programs. Nucleic Acids Research 25: 3389–3402.

28. Ward JJ, Sodhi JS, McGuffin LJ, Buxton BF, Jones DT (2004) Prediction and

functional analysis of native disorder in proteins from the three kingdoms of life.

J Mol Biol 337: 635–645.

29. Fernandez-Escamilla AM, Rousseau F, Schymkowitz J, Serrano L (2004)

Prediction of sequence-dependent and mutational effects on the aggregation of

peptides and proteins. Nature Biotechnology 22: 1302–1306.

30. Song J, Yuan Z, Tan H, Huber T, Burrage K (2007) Predicting disulfide

connectivity from protein sequence using multiple sequence feature vectors and

secondary structure. Bioinformatics 23: 3147–3154.

31. Song J, Tan H, Shen HB, Mahmood K, Boyd SE, et al. (2010) Cascleave:

towards more accurate prediction of caspase substrate cleavage sites. Bioinfor-

matics 26: 752–760.

32. Song J, Tan H, Wang M, Webb GI, Akutsu T (2012) TANGLE: two-level

support vector regression approach for protein backbone torsion angle

prediction from primary sequences. PLoS One 7: e30361.

33. Wang M, Zhao XM, Takemoto K, Xu H, Li Y, et al. (2012) FunSAV:

predicting the functional effect of single amino acid variants using a two-stage

random forest model. PLoS One: e43847.

34. Kabsch W, Sander C (1983) Dictionary of Protein Secondary Structure -

Pattern-Recognition of Hydrogen-Bonded and Geometrical Features. Biopoly-

mers 22: 2577–2637.

35. Mcdonald IK, Thornton JM (1994) Satisfying Hydrogen-Bonding Potential in

Proteins. J Mol Biol 238: 777–793.

36. Hubbard SJ, Thornton JM (1993) ‘NACCESS’. Computer Program: Depart-

ment Biochemistry and Molecular Biology, University College, London.

37. Li Y, Li G, Wen Z, Yin H, Hu M, et al. (2011) Novel feature for catalytic protein

residues reflecting interactions with other residues. PLoS One 6: e16932.

38. Li Y, Wen Z, Xiao J, Yin H, Yu L, et al. (2011) Predicting disease-associated

substitution of a single amino acid by analyzing residue interactions. BMC

Bioinformatics 12: 14.

39. Maetschke SR, Yuan Z (2009) Exploiting structural and topological information

to improve prediction of RNA-protein binding sites. BMC Bioinformatics 10:

341.

Figure 6. Recall-Precision and ROC curves displaying the performance of the three methods for predicting four types of zinc-
binding residues CHED when applied to the 5-fold cross-validation benchmark dataset. (A) and (B): Recall-Precision and ROC curves for
our method; (C) and (D): Recall-Precision and ROC curves for SitePredict; (E) and (F): Recall-Precision and ROC curves for zincfinder, respectively. Cys
(C), black line; His (H), red line; E (Glu), green line; D (Asp), blue line.
doi:10.1371/journal.pone.0049716.g006

Recognition of Zinc-Binding Sites in Proteins

PLOS ONE | www.plosone.org 14 November 2012 | Volume 7 | Issue 11 | e49716



40. Chakravarty S, Varadarajan R (1999) Residue depth: a novel parameter for the

analysis of protein structure and stability. Structure 7: 723–732.
41. Song J, Tan H, Takemoto K, Akutsu T (2008) HSEpred: predict half-sphere

exposure from protein sequences. Bioinformatics 24: 1489–1497.

42. Song J, Tan H, Mahmood K, Law RH, Buckle AM, et al. (2009) Prodepth:
predict residue depth by support vector regression approach from protein

sequences only. PLoS One 4: e7072.
43. Hamelryck T (2005) An amino acid has two sides: A new 2D measure provides a

different view of solvent exposure. Proteins 59: 38–48.

44. Saeys Y, Inza I, Larranaga P (2007) A review of feature selection techniques in
bioinformatics. Bioinformatics 23: 2507–2517.

45. Chen K, Kurgan L (2007) PFRES: protein fold classification by using
evolutionary information and predicted secondary structure. Bioinformatics

23: 2843–2850.
46. Zhang T, Zhang H, Chen K, Shen S, Ruan J, et al. (2008) Accurate sequence-

based prediction of catalytic residues. Bioinformatics 24: 2329–2338.

47. Mizianty MJ, Kurgan L (2011) Sequence-based prediction of protein
crystallization, purification and production propensity. Bioinformatics 27: i24–

i33.
48. Wang XF, Chen Z, Wang C, Yan RX, Zhang ZD, et al. (2011) Predicting

Residue-Residue Contacts and Helix-Helix Interactions in Transmembrane

Proteins Using an Integrative Feature-Based Random Forest Approach. PLoS
One 6: e26767.

49. Zhu L, Yang J, Song J, Chou KC, Shen HB (2010) Improving the accuracy of
predicting disulfide connectivity by feature selection. J Comput Chem 31: 1478–

1485.

50. Breiman L (2001) Random forests. Machine Learning 45: 5–32.

51. Liaw A, Watthew M (2002) Classification and Regression by randomForest.

R news 2: 18–22.

52. Li YQ, Fang YP, Fang JW (2011) Predicting residue-residue contacts using

random forest models. Bioinformatics 27: 3379–3384.

53. Wu JS, Liu HD, Duan XY, Ding Y, Wu HT, et al. (2009) Prediction of DNA-

binding residues in proteins from amino acid sequences using a random forest

model with a hybrid feature. Bioinformatics 25: 30–35.

54. Chen XW, Jeong JC (2009) Sequence-based prediction of protein interaction

sites with an integrative method. Bioinformatics 25: 585–591.

55. Davis J, Goadrich M (2006) The relationship between Precision-Recall and

ROC Curves. In Proceedings of the 23rd international conference on Machine

learning ACM Press, Pittsburgh, Pennsylvania.

56. Ebina T, Toh H, Kuroda Y (2011) DROP: an SVM domain linker predictor

trained with optimal features selected by random forest. Bioinformatics 27: 487–

494.

57. Chea E, Livesay DR (2007) How accurate and statistically robust are catalytic

site predictions based on closeness centrality? BMC Bioinformatics 8: 153.

58. Sing T, Sander O, Beerenwinkel N, Lengauer T (2005) ROCR: visualizing

classifier performance in R. Bioinformatics 21: 3940–3941.

59. Zhang JP, Bloedorn E, Rosen L, Venese D (2004) Learning rules from highly

unbalanced data sets. Fourth Ieee International Conference on Data Mining,

Proceedings: 571–574.

Recognition of Zinc-Binding Sites in Proteins

PLOS ONE | www.plosone.org 15 November 2012 | Volume 7 | Issue 11 | e49716


