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Abstract

Mammalian 14-3-3 protein scaffolds include seven conserved isoforms that bind numerous phosphorylated protein partners
and regulate many cellular processes. Some 14-3-3-isoforms, notably c, have elevated affinity for membranes, which might
contribute to modulate the subcellular localization of the partners and substantiate the importance of investigating
molecular mechanisms of membrane interaction. By applying surface plasmon resonance we here show that the binding to
phospholipid bilayers is stimulated when 14-3-3c is complexed with its partner, a peptide corresponding to the Ser19-
phosphorylated N-terminal region of tyrosine hydroxylase. Moreover, membrane interaction is dependent on salts of
kosmotropic ions, which also stabilize 14-3-3c. Electrostatic analysis of available crystal structures of c and of the non-
membrane-binding f-isoform, complemented with molecular dynamics simulations, indicate that the electrostatic potential
distribution of phosphopeptide-bound 14-3-3c is optimal for interaction with the membrane through amphipathic helices
at the N-terminal dimerization region. In addition, His158, and especially His195, both specific to 14-3-3c and located at the
convex lateral side, appeared to be pivotal for the ligand induced membrane interaction, as corroborated by site-directed
mutagenesis. The participation of these histidine residues might be associated to their increased protonation upon
membrane binding. Overall, these results reveal membrane-targeting motifs and give insights on mechanisms that furnish
the 14-3-3c scaffold with the capacity for tuned shuffling from soluble to membrane-bound states.
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Introduction

The 14-3-3 protein family is ubiquitously expressed in all

eukaryotic cells and consists of seven isoforms in human, i.e. b, e,
g, c, t (also called h), f and s [1,2,3]. The 14-3-3 proteins are

dimeric in their native state, with cuplike shaped monomers of

,30 kDa with nine anti-parallel helices. These isoforms are highly

conserved in sequence and structure both within the protein family

in humans and across species, with highest conservation in the

inner, concave surface, which is also the phosphopeptide-binding

pocket [3,4] (Figure S1). The 14-3-3s are scaffold proteins that

primarily bind Ser/Thr phosphorylated peptides and proteins, but

they also bind some non-phosphorylated motifs, such as WLDLE

[5], as well as specific proteins such as SelW, which seems to

regulate 14-3-3 in a redox-based mechanism [6,7]. With more

than 200 binding partners, 14-3-3 proteins are involved in nearly

all important cellular processes, such as transcription, regulation of

the cell cycle and metabolism, intracellular trafficking and

targeting, cytoskeletal structure and apoptosis [8,9,10]. Hence,

the physiological relevance and increased interest of these proteins

as biomarkers and therapeutic targets is substantiated [11,12].

As modulators of the subcellular location, the 14-3-3 proteins

appear to play an important role in the promotion of cell surface

expression of membrane proteins, notably by mechanisms that

involve binding at specific signal motifs at the partner proteins

[13,14]. However, a possible contribution of 14-3-3 proteins to

membrane targeting through direct interaction with the phospho-

lipid bilayers has not been elucidated. 14-3-3 isoforms are actually

found in the cytoplasm and often enhance phosphorylation-

dependent cytoplasmic and/or intranuclear localization of their

partners, as is the case for lipin-1 in adipocytes [15], BAD [16],

and Skp2 [17]. However, there seems to be a certain 14-3-3

isoform specificity with respect to membrane affinity

[18,19,20,21]. Thus, 14-3-3c and to a lesser extent 14-3-3e are

mostly localized in the cytoplasm, but the two isoforms also show

affinity for natural chromaffin granule membranes and negatively

charged phospholipid bilayers [20,21,22]. Moreover, 14-3-3c
colocalizes with the muscle-specific receptor tyrosine kinase at

neuromuscular postsynaptic membranes [23]. We have recently

shown that membrane binding most probably involves residues in

an area different from the phosphopeptide-binding pocket of 14-3-

3c, and that the protein binds to membranes through peripheral
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interaction [21,24]. Thus, the membrane interaction of 14-3-3c
resembles that of amphitropic proteins, which shuttle between a

soluble state and a peripheral membrane-associated state in a

controlled manner, and play important roles in transport, cell

signaling, compartmentalization and cytoskeletal organization

[25,26,27]. There are a number of systems where membrane

interaction has been shown to be mediated by specific modular

membrane-targeting domains [28] and different regulatory

switches have been revealed as mechanisms for peripheral

membrane-interaction in proteins, such as modulation of mem-

brane lipid composition and/or modification of the protein by

phosphorylation, myristoylation or prenylation, among others

[27]. There are, however, a number of peripheral proteins where

post-translational functional groups or specific domains are not

implicated in the membrane interaction, which has been shown to

be dependent on intrinsic properties of the polypeptide sequence

and often involve helical anchors [26]. Little is known on the

membrane-binding mechanism for 14-3-3c, but it seems clear that

the interaction does not require myristoyl or other lipid-related

targeting-motifs [21].

In this work, we have investigated the membrane-interacting

motifs of 14-3-3c, aiming to contribute to the understanding of the

binding mechanism at the molecular level. The influence of the

ligand was first investigated using a Ser19-phosphorylated 43-

residue-long polypeptide, i.e. THp-(1-43), corresponding to the N-

terminal region of the isoform 1 of human tyrosine hydroxylase

(TH). TH is the rate-limiting enzyme in the synthesis of

catecholamines, and an established binding partner of 14-3-3

proteins [29]. Like Ser19-phosphorylated TH, the THp-(1-43)

peptide is a high-affinity ligand of 14-3-3 proteins [21]. The

interaction of 14-3-3c with membranes was studied by surface

plasmon resonance (SPR) using liposomes of defined phospholipid

composition. These experiments have shown that the phospho-

peptide stimulates the binding, and that salt is a necessary

requirement for membrane interaction. By circular dichroism

(CD) and differential scanning fluorimetry (DSF) it has also been

demonstrated that salts of kosmotrope anions from the Hofmeister

series (citrate32, SO4
22, HPO4

22 and Cl2) bind 14-3-3c and

enhance the thermal stability of the protein. Molecular dynamics

(MD) simulations and pH-dependent electrostatic analyses of 14-3-

3c and 14-3-3f, the latter used as a non-membrane binding

counterpart, further support that phosphopeptide-bound 14-3-3c
might adopt an optimal charge distribution for interaction with the

bilayer through the convex side of the N-terminal dimerization

region of the protein. The lateral area surrounding His158 and

His195 might also contribute with favorable longer-range electro-

static interactions in the consolidation and stabilization of

membrane binding, and the involvement of these histidine residues

in the association was proved by site-directed mutagenesis. Our

results contribute to elucidate motifs and molecular mechanisms of

membrane binding for 14-3-3c. The peripheral membrane

interaction of this protein seems modulated by conformational

and electrostatic changes effected by phosphorylated ligand

binding.

Materials and Methods

Materials
The peptides TH-(1-43), i.e. MPTPDATTPQAKGFRRAV-

SELDAKQAEAIMSPRFIGRRQSLIE, and its Ser19-phosphor-

ylated counterpart THp-(1-43), i.e. MPTPDATTPQAKGFR-

RAVS(PO3)ELDAKQAEAIMSPRFIGRRQSLIE, were

synthesized by CPC Scientific (San Jose, CA, USA) at approx.

90% purity, as seen by mass spectroscopy. The phospholipids

phosphatidylcholine (PC) from egg yolk lecithin (95% PC) and

porcine brain phosphatidylserine (PBPS) were purchased from

Avanti Polar Lipids, Inc. (Alabaster, AL, USA). The absence of

fatty acid oxidation in the mixtures was kindly verified by Sonnic

Meier as reported [21]. Degassed and filtered ready to use HBS-P

(10 mM Hepes, pH 7.4, 150 mM NaCl, 0.005% surfactant P20)

and HBS-N (10 mM Na-Hepes, pH 7.4, 150 mM NaCl) buffers,

as well as CM5 and L1 sensor chips were purchased from Biacore

AB (GE Healthcare Bio-Sciences Ltd, Piscataway, NJ, USA).

Site-directed mutagenesis
The missense mutations Y117F, H158F, H164E and H195S were

introduced into 14-3-3c cDNA using QuikChangeH site-directed

mutagenesis kit from StratageneH (La Jolla, CA, USA). Mutagenesis

was carried out using the following primers (from Sigma-Aldrich, St.

Louis, MO, USA): Y117F forward, 59-GCAGCGAGACC-

CAGTTTGAGAGCAAAGTGTTC and reverse, 59-GAACACTT

TGCTCTCAAACTGGGTCTCGCTGC; H158F forward, 59-

GGCCTACAGCGAAGCCTTTGAGATCAGCAAAGAGC and

reverse, 59-GCTCTTTGCTGATCTCAAAGGCTTCGCTGTAG

GCC; H164E forward, 59-CGAGATCAGCAAAGAGGAAATG-

CAGCCCACCCACC and reverse, 59-GGTGGGTGGGCTGCA

TTTCCTCTTTGCTGATCTCG; H195S forward, 59-GAG-

CAAGCGTGCAGCTTGGCCAAGACC and reverse, 59-GGT

CTTGGCCAAGCTGCACGCTTGCTC. For the double mutant

H158F/H195S the plasmid with the H195S mutation was subjected

to mutagenesis with the H158F forward/reverse primers. The

selected positive clones were verified by sequencing.

Expression and purification of proteins, dialysis and
buffer exchange

Wild-type (wt) and mutant human 14-3-3c and 14-3-3f were

expressed in E. coli (BL-21, codon+) as glutathione S-transferase

fusion proteins, purified on glutathione-Sepharose 4B (GE

Healthcare Bio-Sciences Ltd). Cleavage of the GST-14-3-3 fusion

protein by thrombin and further purification of the isolated 14-3-3

proteins was performed as reported [21]. The purified proteins, in

50 mM Na-phosphate, pH 7.4, 150 mM NaCl, 1 mM dithiothre-

itol, 1 mM EDTA, were up-concentrated with filters of 30 kDa

cut-off (Amicon ultracentrifugal filters, Millipore) and stored in

liquid nitrogen until use. The dialysis of purified 14-3-3c and 14-3-

3f and buffer exchange to phosphate-free buffer, customarily

10 mM Na-Hepes, pH 7.4, was performed overnight at 4uC in

Slide-A-LyzerH Dialysis Cassettes from Pierce Chemical Company

(Thermo Fisher Scientific Inc., Rockford, IL, USA) of molecular

weight cut-off of 10 000. Buffer was changed twice during the

process. The phosphate-free dialyzed proteins were referred to as

d14-3-3c and d14-3-3f.

Preparation of liposomes
The procedures used for lipid handling and for preparation and

characterization of large unilamellar vesicles (LUVs; from here

referred to as liposomes) have recently been described in detail

[21,30]. Freshly made liposomes of neutral PC or of a combination

of PC and negatively charged PBPS (PC:PBPS; 1:1) and with a size

distribution of 105625 nm were used [21].

Surface plasmon resonance (SPR)
The SPR analyses were carried out with the Biacore 3000

biosensor (Biacore AB) at 25uC using the sensor chip CM5 with

HBS-P as running buffer for monitoring the interaction of THp-

(1-43) with 14-3-3 proteins, and sensor chip L1 with HBS-N buffer

for the interaction of the 14-3-3 proteins with liposomes, essentially

Membrane Binding of 14-3-3c
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as described in [21], except as otherwise indicated. For the analysis

of the effect of kosmotropic salts on the interaction of THp-(1-43)

with 14-3-3c, wt-d14-3-3c was diluted in 10 mM sodium acetate,

pH 4.5, and immobilized covalently to the hydrophilic carbox-

ymethylated dextran matrix of CM5 by the standard primary

amine coupling reaction, as described by the manufacturer,

resulting in depositions of about 5 000 response units (RU). A

reference surface was subjected to the same procedure but without

protein. A stable base line was obtained in the cell with

immobilized protein by a continuous flow (50 ml/min) of HBS-P

as running buffer for about 1 h. The THp-(1-43) peptide was

diluted to the indicated concentration with 10 mM Na-Hepes,

pH 7.4, 0.005% P20, and the indicated salt additions, and injected

over the immobilized d14-3-3c in a volume of 100 ml for 3 min at

a flow rate of 20 ml/min. For the analysis of membrane binding,

liposomes made of either PC or PC:PBPS were diluted with

10 mM Na-Hepes, pH 7.4, with the indicated salts, and injected

at a flow rate of 10 ml/min, resulting in depositions of 4 000–6 000

RU. The protein samples were prepared at the indicated

conditions, and injected over the immobilized liposomes at a flow

rate of 10 ml/min. The sensor chip surface was regenerated by

injecting isopropanol:50 mM NaOH (40:60, v/v) and running

buffer. The BIAevaluation program, version 3.2 (Biacore AB) was

used for analysis of the sensorgrams.

Circular dichroism (CD)
Far-UV CD measurements were performed with a Jasco J-810

spectropolarimeter equipped with a PTC-348WI Peltier element

for temperature control at 25uC using a quartz cell with a path

length of 1 mm. CD spectra of d14-3-3c and 14-3-3c, prepared in

the indicated buffers and conditions and customarily at a

concentration of 7 mM subunit, were acquired in the 200–

260 nm range at a scan rate of 100 nm/min. 4 scans were

averaged in each spectrum. Buffer scans were carried out at the

same conditions and subtracted.

Differential scanning fluorimetry (DSF)
We monitored the thermal denaturation in the presence of the

extrinsic fluorescent dye SYPRO Orange (Sigma Aldrich, St

Louis, MO, USA) using a LightCycler 480 Real-Time PCR

System from Roche Applied Science (F. Hoffmann–La Roche

Ltd., Basel, Switzerland). 14-3-3c was prepared at a concentration

of 7 mM subunit, customarily in 20 mM Na-Hepes, pH 7.4. 56
SYPRO Orange was added to the samples, and titrations either

with the peptides TH-(1-43) and THp-(1-43) or sodium salts of

kosmotropic ions (citrate32, SO4
22, HPO4

22 and Cl2) was

performed by adding increasing amounts of stock solutions of

either 0.21 mM peptide or 1 M kosmotropic salt, pH 7.4, in a

total sample volume of 50 ml. Thermal denaturation was

monitored by following the increase in SYPRO Orange fluores-

cence associated with the protein unfolding (lex = 465 nm,

lem = 610 nm) from 20 to 95uC at a scan rate of 2uC/min with

data pitch of 0.2uC.

The effect of the ligand on the midpoint melting temperature

(Tm) was analyzed as described by Cooper and McAuley-Hecht

[31], using the equation

DTm=Tm~(nRTm0=DH0) ln 1z L½ �=Kdð Þ, ð1Þ

where DH0 is the enthalpy of the transition, Tm0 is the midpoint

temperature in the absence of ligand, DTm ( = Tm2Tm0) is the shift

in transition temperature of the protein brought about by the

presence of ligand (L), Kd is the intrinsic dissociation constant, n is

the number of ligand binding sites and R is the gas constant.

31Phosphate-NMR
Spectra of non-dialyzed 14-3-3c prepared in 10 mM citric

acid/Na-citrate buffer, pH 7.3 were acquired at 25uC on a

500 MHz DRX Bruker instrument using a receiver gain of

5 160.6 and accumulating 32 000 transients. The sample had a

14-3-3c dimer concentration of 0.7 mM, and 5% D2O was

included in the solvent. The data was exponentially multiplied

using a line broadening of 30 Hz prior to Fourier transformation.

A reference sample containing only the citric acid/Na-citrate

buffer was measured at identical conditions to detect and control

for buffer phosphate contaminants.

Molecular dynamics (MD) simulations
All-atom MD simulations of 14-3-3c were performed both with

and without bound phosphopeptide RAIpSLP, designated holo

and apo 14-3-3c, respectively. The atomic dimeric models were

prepared from the high-resolution crystal structures of 14-3-3c
(PDB 2B05, chains B+C) [4]. All atomic models were prepared

with Amber 10 [32] and the corresponding Amber99SB forcefield

[33,34]. Protonation states of side chains in the protein and

protein-peptide complex were assigned based on the 3D-structure

using the well established software PROPKA (see [35] for details)

and PDB2PQR at pH 7.0 [36]. Accordingly, the His residues

obtained the following protonation states: His158 at N-delta,

His164 at N-delta, His195 at N-delta and His169 at N-epsilon. For

each of the simulations, the system was implicitly neutralized using

neutralizing plasma, implemented in Amber10, and the protein was

solvated in a periodic truncated octahedron box with TIP3 water

molecules [37], providing 16 Å of water between the protein

surface and the periodic box edge. The solute was minimized for

10 000 steps, followed by 10 000 steps of minimization of the

whole system. The protein was then heated to 100 K with weak

restraints for 100 ps, and to 300 K for 200 ps. Equilibration with

constant pressure and temperature (NPT) of the system was

performed for 2 ns prior to the production run in order to ensure

correct density. The production runs lasted for 100 ns and were

performed with constant volume and energy (NVE) with a 1 fs

time step, using SHAKE constraints on hydrogen-heavy atom

bonds. MD simulations of 14-3-3f were prepared from PDB 2O02

(chains A+B) [38] with and without bound phosphopeptide

(RAIpSLP), designated 14-3-3f holo and apo, respectively.

Simulations were carried out using the same force field and

protocol as described for 14-3-3c for a production phase of 80 ns.

An atomic model of the 14-3-3c H158F/H195S variant was

prepared by manually mutating the corresponding residues in 14-

3-3c. The mutated structure was subsequently minimized for

2 000 steps while holding the non-mutated residues fixed.

Following the same equilibration protocol as described for wt-

14-3-3c, the mutated structure was issued to an extra 500 ps

simulation with weak restraints on non-mutated residues. An 80 ns

long MD simulation of the double mutant H158F/H195S (with

bound phosphopeptide (RAIpSLP)) was carried out using the same

force field and protocol as described for 14-3-3c.

Calculations of electrostatic surface potential
Calculation of the electrostatic potential was carried out with

the Adaptive Poisson-Boltzmann Solver (APBS) software [39]. The

potential on the solvent accessible surface was visualized in

PyMOL, v. 1.4 PyMOL (Schrödinger, LLC, New York, NY,

USA). Structures for electrostatic potential calculation were

collected after minimization, 50 ns and 80 ns from the respective

Membrane Binding of 14-3-3c
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MD simulations, and also after 100 ns for 14-3-3c. All collected

structures from the MD simulations were issued to 500 steps of

minimization, and the bound phosphopeptide was removed prior

to the calculation of the electrostatic potential. The protonation

states were kept to those assigned to the X-ray structures (see

above), except when assessing the pH dependency of the

electrostatic potential. For the latter, protonation states were

assigned according to pKa estimates using PROPKA and

PDB2PQR at pH 5.5, 6.0, 6.5, and 7.0. Charges and radii were

assigned using the Amber99SB force field [33,34]. Electrostatic

surface potentials were calculated by solving the linearized

Poisson-Boltzmann equation at 310 K employing a dielectric

constant of 2.0 and 78.0 for the solute and solvent, respectively.

Results

The binding of 14-3-3c to negatively charged
membranes; effect of ligand and kosmotropic salts

The membrane-binding ability of 14-3-3c was studied by SPR

using L1 sensor chips coated with liposomes made of both

zwitterionic PC and negatively charged PC:PBPS (1:1) mixtures.

As previously shown [21,24], purified recombinant 14-3-3c
effectively bound to liposomes made of PC:PBPS, a composition

which seems to properly mimic the charge and fatty acyl

composition of synaptic membranes [21], but did not bind to

PC-liposomes (Figure 1A). Upon incubation of 14-3-3c with a 2-

fold concentration of phosphorylated THp-(1-43) peptide corre-

sponding to the 14-3-3-interacting domain of TH – conditions at

which most THp-(1-43) is bound to 14-3-3c, with no binding of

the peptide itself to the membrane [21] – a higher binding extent is

obtained at equal concentration of 14-3-3c (Figure 1A). Moreover,

the affinity of the complex is higher than that of the protein alone

(Figure 1B).

In view of the stimulating effect of the ligand on the membrane-

binding, we performed an exhaustive dialysis of 14-3-3c in 10 mM

Na-Hepes, pH 7.4, resulting in dialyzed 14-3-3c (i.e. d14-3-3c).

When membrane-binding was analyzed in the same buffer added

150 mM NaCl, we could not detect any binding of d14-3-3c to

PC:PBPS-liposomes (Figure 1C). In order to elucidate why binding

is abolished upon dialysis, we first investigated the effect of

phosphate, and observed that membrane-binding is in fact

recovered upon incubation of d14-3-3c with 50 mM Na-

phosphate, pH 7.4 (Figure 1C).

The last steps of purification of 14-3-3c are performed in

50 mM Na-phosphate, pH 7.4, 150 mM NaCl, a buffer in which

the protein was stable, with no tendency to aggregate. Phosphate-

NMR investigation of the non-dialyzed protein strongly supported

the presence of protein-bound inorganic phosphate in the purified

protein sample even after exhaustive up-concentration and

dilution in the NMR buffer (Figure S2). The presence of

phosphate in 14-3-3c samples as isolated might explain their

membrane-binding ability (Figure 1A) [21]. It has previously been

shown that sulphate ions bind at the phosphoserine binding pocket

of 14-3-3 at crystallization conditions [40] which might indicate

that the phosphate-induced binding of 14-3-3c to the membranes

could be the result of a specific binding of phosphate uniquely at

the phosphopeptide binding site. This explanation does not,

however, seem plausible since d14-3-3c, in the absence of salt, did

not bind to liposomes regardless of the presence of THp-(1-43) and

despite the fact that d14-3-3 proteins bind THp-(1-43) with high

affinity at 0 mM salt (Kd,0.22 mM by SPR (data not shown) and

Kd,0.19 mM by DSF (see below)). On the other hand, it is well

established that phosphate and other kosmotropic salts stabilize

proteins as well as protein-membrane interactions, mainly by

Figure 1. Effect of phosphopeptide ligand and kosmotropic salts
on the binding of 14-3-3c to negatively charged membranes. A)
Representative sensorgrams for the binding of 14-3-3c as purified (10 mM
subunit) prepared in HBS-N buffer (10 mM Na-Hepes, pH 7.4, 150 mM NaCl)
to liposomes made of PC:PBPS (????????), or PC (– – –), and for the binding of
14-3-3c (10 mM subunit) with THp-(1-43) (20 mM) in HBS-N buffer to
liposomes made of PC:PBPS (–??–??–) or PC (_______). B) The dependence of
SPR responses (difference of RUs for binding to liposomes of PC:PBPS and
PC) on the subunit concentration of 14-3-3c, alone (N) or with 2-fold
concentration of THp-(1-43) (#). The binding isotherms were fitted using a
single-rectangle, two-parameter equation providing S0.5 values of
2.060.2 mM for the protein alone and 1.260.2 mM for the protein-
phosphopeptide complex. C) Sensorgram for the binding to liposomes of
PC:PBPS of d14-3-3c (extensively dialyzed in 10 mM Na-Hepes, pH 7.4) and
further diluted in HBS-N buffer, alone (_______) or with a 2-fold concentration
of THp-(1-43) (–??–??–) (running buffer HBS-N in both cases), and with 50 mM
Na-phosphate, pH 7.4 (running buffer HBS-N with 50 mM Na-phosphate)
(????????) or 50 mM Na-sulphate, pH 7.4 (running buffer HBS-N with 50 mM
Na-sulphate) (– – –).
doi:10.1371/journal.pone.0049671.g001
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enhancing hydrophobic interactions and/or screening charged

residues [41,42,43]. In fact, at pH 7.4 both Na-sulfate (at 50 mM)

(Figure 1C) and Na-chloride (at .200 mM) (data not shown) also

triggered the binding of d14-3-3c to PC:PBPS-liposomes.

Stabilization of d14-3-3c by phosphopeptide and
kosmotropic salts, as seen by CD and fluorescence

Putative conformational effects of the phosphopeptide THp-(1-

43) on 14-3-3c were then investigated. The CD spectrum of 14-3-

3c exhibits minima at 208 and 222 nm (Figure S3A), consistent

with the crystal structure of all 14-3-3 proteins, where each subunit

is formed by nine antiparallel a-helices (Figure S1). Processing the

spectra with the CDNN software [44] provided a 6862% a-helix

content, which agrees well with the high helical content (77%)

calculated by DSSP [45] on the crystal structure (PDB 2B05). The

extensively dialyzed d14-3-3c displays a similar spectrum (Figure

S3A), which is not affected by addition of the peptides TH-(1-43)

and THp-(1-43), up to 30 mM, or of Na-phosphate, up to

160 mM. However, both THp-(1-43) and Na-phosphate largely

enhanced the thermal stability of d14-3-3c (Figure S3B and data

not shown). A more detailed analysis of the concentration

dependency was performed by DSF, which allows measurements

with higher concentrations of peptides and salts. Titration with

TH-(1-43) had a minor effect on the Tm of d14-3-3c, while binding

of THp-(1-43) certainly increased the Tm in a concentration-

dependent manner. Fitting of the data to equation 1 provided a

Kd,0.1960.04 mM (Figure 2A, B). Likewise, d14-3-3c was

stabilized by Na-phosphate and other sodium salts of kosmotropic

ions, but at higher concentration ranges than THp-(1-43)

(Figure 2C, D), similar to those required for the protein-membrane

interactions (Figure 1C). The concentration dependency of the

Tm-increase for each salt, i.e. Na-citrate.Na-phosphate<Na-

sulphate.Na-chloride, resembles the Hofmeister series order

[41,46].

Structural and electrostatic analysis; molecular dynamics
(MD) simulations

To get insights into the structural basis for the interaction of 14-

3-3c with membranes, we first analyzed the structural differences

between 14-3-3c and another 14-3-3 isoform that does not bind to

membranes at neutral pH, i.e. 14-3-3f [19,20,21,24]. Analysis of

the electrostatic surface potential of the crystal structures of these

two isoforms (PDB 2B05 for holo-14-3-3c and PDB 2O02 for

holo-14-3-3f), at pH 7.0, revealed features that might be related to

the specific membrane-binding capability of 14-3-3c. We observed

a stronger positive electrostatic potential in helices A and B and

part of helix D in the structure of the c-isoform (Figure 3A) than in

the f-isoform (Figure 3B). These helices form the N-terminal

dimerization region from each subunit [47] (Figure S1), and might

be important to interact with the negatively charged membrane in

an initial electrostatic phase. The area surrounding the dimeriza-

tion region, and towards the laterals of the convex side, presents a

negative surface potential in both isoforms, in agreement with the

acidic character of all the members of the 14-3-3 protein family

(Figure 3C–F).

With respect to the enhancement of membrane binding induced

by the phosphopeptide (Figure 1B), it is not straightforward to

elucidate the mechanistic details of this stimulation, since only the

phosphopeptide-bound holo-structure of 14-3-3c has been solved

by X-ray crystallography [4,47] (Figure S1). However, both apo-

and holo-structures have been obtained for other isoforms

[2,4,47], providing templates to interpret possible ligand-induced

conformational changes. We thus probed the conformational

dynamics and the effects of ligand binding by performing MD

simulations for 14-3-3c and 14-3-3f, both when bound to the

phosphopeptides and when the phosphopeptide was deleted from

the initial structure (then referred to as apo-14-3-3c or apo-14-3-

3f). All systems were stable along the 80 ns-long MD simulations,

which was extended to 100 ns for 14-3-3c (Figure 4A). However,

apo-14-3-3c shows larger structural fluctuation mainly in the

helix-connecting loops and the C-terminal helices (Figures 4A, B

and Figure S4; see also PDB File S1 and PDB File S2, for MD-

simulated (100 ns) holo- and apo-14-3-3c, respectively), in

correlation with the lower stability of the apo- compared with

the holo-form, as observed by DSF (Figure 2A). Furthermore, the

apo-simulation exhibits an increased deviation from the initial

structure (Figure 4A), adopting a more open conformation with

respect to the central cavity (Figure 4C). This resembles the

opening observed in the crystal structures of apo-14-3-3b (PDB

2BQ0; subunit B) when compared with the holo-form (PDB 2C23)

[4]. Accordingly, the RMSD value for simulated apo-14-3-3c vs.

apo-14-3-3b decreases from 2.8 Å to 1.5 Å along the MD

simulation, while the holo-14-3-3c simulation samples the

conformational space close to the initial holo X-ray structure

(Figure 4A). Moreover, the MD simulated ligand-bound holo-14-

3-3c shows slightly larger protrusion of the helices A, B and D

towards the convex side (downwards in Figure 4C) than the apo-

structure. Many of these conformational features are also observed

in the corresponding holo- and apo-simulations of 14-3-3f (80 ns

long). Interestingly, the MD simulated apo-14-3-3c shows a

weaker positive electrostatic potential in the dimerization region

than both the crystal structure of holo-14-3-3c (Figure 3A) and the

MD simulated holo-structure (Figures 4E, F), while the MD-

simulated structures of both apo- and holo-14-3-3f (80 ns long)

reveal a more stable potential throughout the simulation (Figure

S5). Moreover, the two positive patches in the dimerization

domain gradually become fainter along the apo-simulation of 14-

3-3c (Figure 5S).

The observed differences in surface electrostatic potential for

the crystal structures of 14-3-3c- and f-isoforms, as well as along

the MD simulations of the apo- and holo-forms of 14-3-3c, might

be related to a c-specific spatial redistribution of charges upon

ligand binding. There are many solvent-exposed acidic residues on

the convex surface of 14-3-3c which might have a role to

discriminate and tune the positively charged dimerization area in

the initial stages of binding. Moreover, most of the acidic residues,

as well as most of the basic residues, are conserved between the c
and either the f or other non-membrane binding 14-3-3 isoforms,

e.g. g [21] (Figure S1). Nevertheless, we identified a few non-

conserved, 14-3-3c-specific ionizable residues, i.e. three non-

conserved histidine residues His158, His164 and His195 (Figure

S1), in addition to Lys152. These residues are all located in the

convex side and outside the N-terminal dimerization region.

His158 and His195, but not His164 or Lys152, experienced

conformational changes along the simulation toward the apo-

form, since they are located in two helices that approach each

other in the ligand-bound state (Figure 4C, D).

Site-directed mutagenesis of residues of 14-3-3c
predicted to be involved in membrane association

In order to experimentally probe if non-conserved ionizable

residues are crucial for membrane binding, we performed site-

directed mutagenesis and investigated the membrane binding

ability of the mutants. Histidine residues have been associated with

pH-dependent modulations of protein-protein [48,49] and pro-

tein-membrane interactions [50,51]. Initially, we restricted our

choice to histidines, since their imidazole side chain is prone to
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change of charge at physiologically relevant pH-values upon

perturbations in their local environments. The predicted pKa

values in the holo-14-3-3c structure were 4.8 for His158, and 6.8

and 6.4 for His164 and His195, respectively, indicating that the

two latter residues can get protonated following small pH shifts

towards the acidic range. We mutated these three histidine

residues to the corresponding substitutions in human 14-3-3f
(Figure S1), and prepared H158F-, H164E- and H195S-14-3-3c.

We also prepared the mutant Y117F, since the non-conserved

Tyr117 p-stacks with His164 (Figure 4D) and might modulate the

pKa-value of the histidine, as described in other systems [52]. The

four mutants were purified at similar yields as wt-14-3-3c and also

showed similar affinity for binding the phosphopeptide THp-(1-43)

as wt (Figure 2A and data not shown). Moreover, H164E and

Y117F showed a similar binding response to PC:PBPS liposomes

as wt-14-3-3c in the presence of phosphate. On the other hand,

the membrane binding ability of the H158F and H195S mutants,

notably the latter, experienced a large decrease (Figure 5A).

Finally, we prepared the double mutant H158F/H195S-14-3-3c,

which was essentially devoid of membrane-binding ability

(Figure 5A).

In order to further investigate in which way His195 and His158

might contribute to the membrane binding of the c-isoform we

first prepared the structural model of the H158F/H195S-14-3-3c
double mutant in the phosphopeptide-bound (holo) state, and run

an 80 ns MD simulation. The structural dynamics of this protein

variant along MD did, as expected, not deviate significantly from

the holo-14-3-3c simulation. Moreover, at the end of the

simulation, and at pH 7.0, the surface electrostatic potential

around the dimerization domain was very similar between the wt

and the mutant (Figure S5). We then performed a comparative pH

dependent electrostatic analysis between the final MD simulated

holo-structures of 14-3-3c, 14-3-3f and H158F/H195S-14-3-3c in

order to probe if an increased protonation of His158 and His195

might play a role in the membrane-binding process. Previous

studies have shown that the protein would orient tangential to the

membrane through the convex side, without significant penetra-

tion in the bilayer [24]. Thus, according to the pH gradient at the

surface of a negatively charged membrane [53], the convex side of

the protein is expected to experience a decrease in local pH from

the bulk pH 7.0 to around 5.5–6.0. We therefore analyzed the pH

dependent surface electrostatic potential at pH 7.0, 6.5, 6.0 and

5.5, in the simulated structures (Figure 6; see also Figure S6 for

more detailed analyses). Upon pH reduction an increasing cationic

patch appears in wt-14-3-3c around His158 and His195, but not

in 14-3-3f or H158F/H195S-14-3-3c (Figure 6). At pH 6.0, the

protonation is complete for His195 (Figure S6), and at this pH a

large increase in membrane binding was also measured by SPR for

wt-14-3-c (Figure 5B).

Discussion

14-3-3c as a peripheral protein
Peripheral proteins interact with membranes using a number of

strategies, e.g. specific lipid-targeting domains [28] or covalent

lipid anchors (e.g. myristoyl or prenyl) that embed in the

Figure 2. The binding of phosphopeptide ligand and kosmotropic salts to 14-3-3c by differential scanning fluorimetry (DSF). A) DSF-
monitored thermal denaturation of d14-3-3c, with increasing concentration of Ser19-phosphorylated THp-(1-43) (_______) and TH-(1-43) (– – –). B)
Concentration dependency of the Tm changes calculated by DSF for THp-(1-43). Fitting of the data to the equation 1 (see Materials and Methods) [31]
(continuous line) provided a Kd,0.1960.04 mM. C) DSF-monitored thermal denaturation of d14-3-3c, with increasing concentrations of Na-
phosphate. D) Concentration dependency of the Tm changes calculated by DSF for Na-citrate (– – –), Na-sulphate (–?–?–), Na-phosphate (_______) and
Na-chloride (????????). For all panels, d14-3-3c (10 mM) subunit was prepared in 10 mM Na-Hepes, pH 7.4, 150 mM NaCl, and increasing concentrations
of peptides from a solution of 0.21 mM (A, B) or kosmotropic salts from a solution 1 M, pH 7.4 (C, D) were added.
doi:10.1371/journal.pone.0049671.g002
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membrane [54,55]. There is also a large number of proteins that

are recruited to the membrane through changes in their

conformation and surface electrostatic potential, often involving

amphipathic helices in the interacting interfaces [26,27]. Periph-

eral proteins reversibly modulate membrane interaction through

reorganization of the lipid composition of the membrane and/or –

in the case of proteins using lipid anchors – by reverting the

posttranslational modification or through conformational changes

that hide the lipid tag. In this respect, the effect of ligand binding

such as Ca2+ or nucleotides (e.g. GTP) on the modulation of

membrane binding is well established [56,57]. In this work we

show that the ability of 14-3-3c to interact with lipid bilayers is

enhanced in the presence of the phosphopeptide ligand. More-

over, binding does not involve lipid tags. Instead, membrane

binding appears to involve specific motifs, mainly amphipathic

helices at the N-terminal dimerization area and two histidine

residues at the convex lateral sides.

Our results indicate that the initial electrostatic interaction of

14-3-3c with the membrane through the N-terminal dimerization

domain would be favored by binding of the phosphopeptide

ligand, a binding that increases the cationic character of the

dimerization area. The involvement of the N-terminal region is in

agreement with results obtained with 14-3-3e by Jones et al., who

through truncation mutagenesis, proteolysis and immunodetection

also concluded that the 12 kDa-N-terminal region (corresponding

to helices A to D) is implicated in membrane interaction [22]. 14-

3-3e is the other isoform in addition to c, that shows significant

binding to membranes [19,20,22], and it is interesting that 14-3-3e
has an arginine residue in the position corresponding to His195 in

14-3-3c (Figure S1).

In a further consolidating stage, the interaction with the

membrane might be stabilized through hydrophobic interactions

involving residues from the N-terminal amphipathic helices and

longer-range electrostatic interactions involving cationic patches

around the c-specific histidine residues, which become protonated

at pH 6.0 (see below).

The proposed two-step process for membrane-binding of 14-3-

3c is in agreement with binding mechanisms put forward for

peripheral and amphitropic proteins devoid of specific tags or

lipidic modifications, where initial electrostatic forces localize the

protein to the membrane and, subsequently, specific hydrophobic

interactions and additional electrostatic forces consolidate mem-

brane-association [21,58,59] (see Figure S7 for a model on the

predicted orientation of the protein prior to membrane interac-

tion). The binding of peripheral proteins often involves charged

side-chains at amphipathic helices that can establish both initial

electrostatic and hydrophobic interactions with membranes

[58,60]. Such helices often modulate membrane physical proper-

ties [61,62], and are optimal structural candidates for reversible

binding to membranes [27,63]. Helices A, B and D (Figure S1) of

14-3-3c are amphipathic and could mediate the initial electrostatic

interaction of the holo-protein and, by a further rotation, also

readily intercalate their hydrophobic area in the bilayer, a process

that would be favored in the presence of salts.

The effect of kosmotropic salts on the interaction of 14-3-
3c with the membrane

Kosmotropic salts induce stabilizing conformational changes in

proteins [64,65,66] and also bind and affect the structure and

stability of the lipid bilayer [67]. Direct ion-macromolecule

interactions, rather than their effect on the bulk water structure,

are largely responsible for these effects [46]. Moreover, kosmo-

tropic salts stabilize protein-membrane complexes and have been

found to induce the active conformation in membrane-bound

receptors [43], most probably by increasing the interfacial tension

between protein and solvent and strengthening the hydrophobic

effect [46]. Salts may in fact participate in protein-membrane

interactions through screening of (unfavorable) charged residues

[41,43]. Our results show that salts do not induce large

conformational changes, but stabilize 14-3-3c, resembling the

effect of the phosphopeptide THp-(1-43) (Figure 2). On the other

hand, the binding of the phosphopeptide favors membrane

interaction of 14-3-3c, but it is not sufficient to provide a

measurable binding in a salt free solution, while the salts are

essential in this respect. The absolute requirement for salt might

thus be related to both steps in the proposed membrane binding

mode; initial electrostatic interaction, requiring the participation of

counterpart ions screening the acidic surrounding of the cationic

surface of the A, B and D amphipathic helices, and the consolidation

of the interaction through among other hydrophobic residues in the

same helices [46]. This sequence of steps is common for protein-

membrane interactions involving amphipathic helices [26,63].

Histidine residues in electrostatics and membrane
interaction of 14-3-3c

Histidine residues have been associated with pH-dependent

modulations of protein-protein [48,49] and protein-membrane

Figure 3. Representation of electrostatic surface potentials. The
electrostatic potentials are calculated on the X-ray structures of 14-3-3c
(PDB 2B05) (A, C, E) and 14-3-3f (PDB 2O02) (B, D, F). The electrostatic
potentials are visualized on the solvent accessible surface in panel A–D
with values colored from blue to red (from +2 kT/e to 22 kT/e). Panels
E and F show the iso-contours of the electrostatic potential (+1 kT/e to
21 kT/e). The area with stronger positive electrostatic potential in 14-3-
3c (A) compared with 14-3-3f (B) corresponds to residues in helices A, B
and D in the dimerization region that involves the N-terminal from each
subunit (Figure S1). Positive areas are predicted to contact the
membrane in an initial phase driven by the electrostatics, while the
negative areas on the convex side of the protein are possibly involved
in tuning the orientation of the positive dimerization region towards
the membrane. The bound phosphopeptides were omitted prior to the
calculations of the electrostatic potentials.
doi:10.1371/journal.pone.0049671.g003
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interactions [50,51]. In such instances histidines function as

sensors or switches that protonate as the pH drops (e.g. in the

vicinity of a negatively charged membrane [53]), affecting the

intermolecular interactions electrostatically. In most cases, the low-

pH histidine sensors are either located in the interaction area

[50,68] or modulate this area upon protonation [48]. Residues

His158 and His195, proven here by site-directed mutagenesis to

be involved in membrane interaction of 14-3-3c, do not appear to

be located in the main interaction area (Figure S7). Rather,

His158 and His195 might be involved in an electrostatic switch

that operates at neutral-acidic pH following the initial interaction

of the protein with the membrane through the cationic dimeriza-

tion region. Thus, concomitant to the expected decrease in pH in

the vicinity of the negatively charge membrane, these histidine

residues will increase their protonation, providing additional

electrostatic anchors. Unit-charge interactions are long-range (up

to a few nm); therefore, the residues do not need to touch the

bilayer to contribute to a stable complex. Electrostatic switches

may also contribute to the binding by initiating longer range net

electrostatic attraction and a reorganization of the protein

Figure 4. MD simulations of phosphopeptide-bound (holo-14-3-3c) and ligand-free (apo-14-3-3) structures. A) Structural deviation
from the initial X-ray structure (PDB 2B05) along the simulation time (100 ns) for phosphopeptide (RAIpSLP)-free apo (green and red lines, one line for
each monomer A and B) and phosphopeptide-bound holo (blue and black lines for each monomer); RMSD, root mean square deviation. B) Positional
fluctuations (root mean square fluctuations (RMSF)) along the holo (black bars) and apo (blue lines) 14-3-3c. Helices are indicated schematically as
black stripes. C) Backbone ribbon overlay representation of the dimeric structures obtained at the end of the MD simulations (100 ns) of holo (blue)
and apo (green) 14-3-3c. The inset (D) shows the residues mutated in this study (Tyr117, His158, His164 and His195) in stick representation, and the
averaged distance between His158 and His195 at the end of the simulations. E, F) Representation of surface electrostatic potentials, calculated on the
solvent accessible surface of the MD simulated structures of holo (E) and apo (F) 14-3-3c, colored from blue to red (from +2 kT/e to 22 kT/e).
doi:10.1371/journal.pone.0049671.g004
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structure leading to further charge relocation and binding to the

membrane [26].

In conclusion, we here show that the interaction of 14-3-3c with

the membrane is favored by binding of phosphorylated-ligand and

is dependent on the presence of salts. Amphipathic helices at the

cationic N-terminal dimerization region and c-isoform specific

histidine residues appear to be membrane-targeting motifs. Whilst

a detailed mechanistic binding model must await the structural

elucidation of 14-3-3c bound to the membrane, our findings

contribute to understand the peripheral membrane-binding of the

c-isoform, and suggest a possible role of this regulatory protein in

the modulation of the subcellular distribution of its partners. In

this context our interest is centered on TH, an enzyme very

abundant in dopaminergic neurons and chromaffin cells of the

adrenal medulla. TH is essentially soluble and cytoplasmic, but a

fraction is also found as membrane-bound in its neuroendocrine

locations, mainly at synaptic vesicles and secretory chromaffin

granules [69,70,71].

Supporting Information

Figure S1 The structure of 14-3-3c and sequence
diversity in the 14-3-3 family. Top) The structure of 14-3-

3c with a phosphoserine (pSer, in red) peptide (RAIpSLP) bound

in the concave cavity of each subunit. The dimeric structure of the

protein (PDB 2B05) is shown in backbone ribbon (subunit A) and

surface representation (subunit B). Down) Sequence alignment (by

ClustalW) of all seven human 14-3-3 isoforms, including a-helices

A-I. Conserved residues are shown in green and histidine residues

that in 14-3-3c have switched from neutral or negative charged

residues (i.e. His158, His164 and His195) are indicated in red.

(TIF)

Figure S2 31Phosphate-NMR. Spectra of non-dialyzed 14-3-

3c prepared in 10 mM citric acid/Na-citrate buffer, pH 7.3 (red

trace). The sample had a 14-3-3 dimer concentration of 0.7 mM,

and 5% D2O was added to the sample. 31P NMR was performed

at 25uC on a 500 MHz DRX Bruker instrument using a receiver

gain of 5 160.6 and accumulating 32 000 transients. The data was

exponentially multiplied using a line broadening of 30 Hz prior to

Fourier transformation. A reference sample containing only the

citric acid/Na-citrate buffer was measured at identical conditions

(black trace). The sample containing 14-3-3c has a broad 31P

signal non-attributable to buffer contaminants and that is

consistent with a population of phosphates bound to the protein.

(TIF)

Figure S3 Circular dichroism (CD) of 14-3-3c and d14-3-
3c; effect of Na-phosphate. A) Far-UV CD spectrum of 14-3-3c
(7 mM subunit) in 50 mM Na-phosphate, pH 7.4, 150 mM NaCl

(black line), d14-3-3c, after dialysis in 10 mM Na-Hepes, pH 7.4 (blue

line) and d14-3-3c in the presence of 159 mM Na-phosphate (red line).

B) CD-monitored thermal denaturation of d14-3-3c, with increasing

concentration of Na-phosphate up to 159 mM. The protein was

prepared initially in 10 mM Na-Hepes, pH 7.4, 150 mM NaCl, at

Figure 5. Effect of mutation of specific histidine residues and of
pH on the binding of 14-3-3c to liposomes of PC:PBPS (1:1)
measured by surface plasmon resonance (SPR). A) Representative
sensorgrams for the binding of H158F- (????????), H195S- (–??–??–) and
H158F/H195S- (– – –), comparative to wt-14-3-3c (_______). The sensor-
grams for H164E- and Y117F-14-3-3c were similar to that of wt-14-3-3c.
The protein samples were prepared in 100 mM Na-phosphate, pH 7.4. B)
Representative sensorgrams for the binding of wt-14-3-3c as isolated, and
diluted in either 100 mM Na-phosphate, pH 6.0 (_______), 100 mM Na-
phosphate, pH 7.0 (????????), or 100 mM Tris-HCl, pH 8.0 (– – –). For both
(A) and (B), liposomes were immobilized on the sensor chip at 4000–

000 RU, and each protein was applied at ,50 mM subunit and injected
at 25uC. The sample preparation buffers were used as running buffer.
doi:10.1371/journal.pone.0049671.g005

Figure 6. pH dependency of the electrostatic potential at the
convex lateral side. The electrostatic potential is shown at pH values
7.0, 6.5, and 6.0 (column wise), for 14-3-3c (A), 14-3-3f (B), and H158F/
H195S-14-3-3c (C).
doi:10.1371/journal.pone.0049671.g006
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10 mM subunit; increasing concentrations of phosphate were added

(from a stock solution of 1 M phosphate, pH 7.4).

(TIF)

Figure S4 Comparison of positional fluctuations. The

upper panel shows the theoretical positional fluctuations obtained

from molecular dynamics simulations along 14-3-3c-holo (black

bars) and 14-3-3c-apo (red lines); same as main Figure 4B. Helices

are indicated schematically as black stripes. The lower panel shows

the experimentally obtained beta factors (PDB 2B05).

(TIF)

Figure S5 Electrostatic potential of 14-3-3 along molec-
ular dynamics (MD) simulations. The electrostatic potential

of representative snapshots obtained from the MD simulations of

14-3-3c (rows 1–2), 14-3-3f (rows 3–4), and H158F/H195S-14-3-

3c (row 5) are visualized on the solvent accessible, convex surface,

oriented to visualize the dimerization domain. Values are

represented with a color range spanning from red (negative,

+2 kT/e) to blue (positive; +2 kT/e) through white (neutral). N/A,

not applicable.

(TIF)

Figure S6 pH dependency of the electrostatic potential
at the convex side. The electrostatic potential is shown at pH

values 7.0, 6.5, 6.0 and 5.5 (column wise) for 14-3-3c (A), 14-3-3f
(B), and H158F/H195S-14-3-3c (C).

(TIF)

Figure S7 Model of the predicted orientation of ligand-
bound 14-3-3c for optimal interaction with negatively

charged membranes. The protein has a positive surface

electrostatic potential at the N-terminal dimerization region

especially in the presence of bound phosphopeptide (Figure 4),

which gives the acidic protein adequate properties for membrane

interaction and subsequent intercalation through amphipathic

helices A, B and D. The proximity to the membrane also induces

the appearance of cationic patches around His158 and His195,

aiding to stabilize the membrane bound conformation.

(TIF)

PDB File S1 Dimeric structure obtained at the end of the MD

simulation (100 ns) of holo-14-3-3c. See main text for details.

(PDB)

PDB File S2 Dimeric structure obtained at the end of the MD

simulations (100 ns) of apo-14-3-3c. See main text for details.

(PDB)
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