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Abstract

Species distribution models (SDMs) are widespread in ecology and conservation biology, but their accuracy can be lowered
by non-environmental (noisy) absences that are common in species occurrence data. Here we propose an iterative
ensemble modelling (IEM) method to deal with noisy absences and hence improve the predictive reliability of ensemble
modelling of species distributions. In the IEM approach, outputs of a classical ensemble model (EM) were used to update
the raw occurrence data. The revised data was then used as input for a new EM run. This process was iterated until the
predictions stabilized. The outputs of the iterative method were compared to those of the classical EM using virtual species.
The IEM process tended to converge rapidly. It increased the consensus between predictions provided by the different
methods as well as between those provided by different learning data sets. Comparing IEM and EM showed that for high
levels of non-environmental absences, iterations significantly increased prediction reliability measured by the Kappa and
TSS indices, as well as the percentage of well-predicted sites. Compared to EM, IEM also reduced biases in estimates of
species prevalence. Compared to the classical EM method, IEM improves the reliability of species predictions. It particularly
deals with noisy absences that are replaced in the data matrices by simulated presences during the iterative modelling
process. IEM thus constitutes a promising way to increase the accuracy of EM predictions of difficult-to-detect species, as
well as of species that are not in equilibrium with their environment.
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Introduction

The ability to predict species distributions is a prerequisite to

anticipate environmental changes and to set up sound conserva-

tion priorities. There are basically two types of species distribution

models (SDMs): mechanistic (or process-based) models that are

based on physiological and ecological characteristics of the species

and correlative (or niche-based) models that build predictions on

the basis of observed species-environment relationships [1].

Mechanistic models require a detailed knowledge of the species

considered and are therefore used to predict the distribution of

well-known species (e.g., of high conservation or economic value)

[reviewed in 2]. In contrast, correlative SDMs are based on the

generalization of observed species-environment relationships, and

can hence be applied to a large number of species [e.g., 3,4].

Presence-absence data are the most commonly used to feed

SDMs as such data are often available over larger areas than

species abundances. Although the presence of a species is factual,

absence can have a multiple meaning. Lobo et al. [5] listed three

distinct types of absences: environmental absences (the environ-

mental conditions do not allow the presence of the species),

contingent absences (the environmental conditions are favorable

but other factors such as biotic interactions, barriers to dispersion

or local extinction are responsible for the absence of the species)

and methodological absences (the species is present but not

detected). Unlike environmental absences, contingent and meth-

odological absences are noisy absences known to reduce the

reliability of SDMs predictions of the potential niche of the

considered species, i.e. the range of environmental conditions

where the species can be present [6]. Indeed, although contingent

absences are informative to define the realized niche (i.e. the

environmental conditions where the species is really present) they

drive SDMs to an underprediction of the potential niche of the

species. Moreover methodological absences are always uninfor-

mative and blur both potential and realized niche predictions. In

the context of applied ecology, prevention plans against invasion

as well as threatened species conservation plans often require the

identification of the potential niche of the species to predict how

their niche could become extended (for invasives) or reduced (for

threatened species) under various scenarios. In such a potential

niche prediction context, both methodological and contingent

absences are considered as noisy absences.

To account for potential sampling errors and distinguish

between non-detection and true absences, binomial likelihood

models have been used to estimate changes in range boundaries

under recent climate change [7,8] and to correct site-occupancy

models for imperfect detection [9]. Although these models are

efficient, they are designed to be computed using species

abundance data or the detection/non-detection pattern at sites
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surveyed at least twice [9]. In the same way, Galien et al. [10]

proposed to combine global- and regional-scale data to deal with

non-environmental absences and improve the accuracy of SDM

prediction of the potential distribution of invasive species.

However, this design is only applicable when both large and

small scale data are available, which is not the case for most

species.

Presence-only SDMs offer another alternative to the problem of

absence uncertainty, as they only consider the presence of the

species to determine its niche [11,12]. Their performance however

remains lower than presence-absence SDMs [13] and they

frequently overestimate potential distributions compared with

presence–absence models [14].

In order to use presence-absence models when no reliable

absence data are available, the use of ‘‘pseudo-absences’’, i.e. of

environmental conditions available in the studied area and

assumed to be absence points, has also been suggested [14].

‘‘Pseudo-absences’’ can be simulated through various strategies

(e.g. pseudo-absence selection from low suitability areas predicted

by a presence only model [15]; pseudo-absence weighted using the

outputs of a model built at a larger scale [10], pseudo-absence

selection as sites distant from presence sites, but it remains unclear

how those strategies affect the models [14–18], so the use of

randomly generated pseudo-absences is often encouraged

[13,18,19]. Such random selection of absences can however

reduce model accuracy, leading to an overestimation of the actual

range of the species through the selection of uninformative

absences, as well as an underestimation of the range through the

selection of non-environmental absences (Lobo 2010). In addition,

both presence-only models and presence-absence models built

using pseudo-absence neglect the ecological information contained

in the environmental absence data, making presence-absence

models built using true absences more accurate [13].

A wide range of correlative models using presence-absence data

have been developed since the nineteen eighties. They are based

on various statistical techniques ranging from regression (e.g.

multiple linear regression, generalized additive models) to classi-

fication (e.g. classification and regression trees, linear discriminant

analysis) and machine learning (e.g. artificial neural networks,

boosted trees). These techniques have been shown to vary

considerably in both performance and spatial predictions of

species distributions, and despite an abundant literature on

method comparisons, no consensus has emerged as to the most

suitable statistical method [20–23]. In view of this variability

between predictions of SDMs, the recommendation is thus to

simultaneously apply a wide range of statistical methods, all built

using the same environmental data, and to produce a consensual

response that synthesizes individual model outputs, giving rise to

ensemble modelling ([ensemble modelling, EM, 24,25]). EMs have

increasingly been used these last years as they are recognized to

provide significantly more robust predictions than all the single

models [26] and to perform better than single SDMs as EMs

buffer individual bias of each method and hence enhance

prediction reliability [25,27]. Disentangling environmental and

non-environmental absences in EMs might thus constitute a

promising way to enhance the reliability of the prediction of

species potential distribution.

Here we propose an optimization of EM by using an iterative

ensemble model (hereafter called IEM), designed to reduce the

effect of noisy absences in potential niche prediction. To do this,

we considered noisy absences to be the false presences predicted by

the model (i.e., commission errors, when the model predicted

species presence while it was actually absent from the training set).

These noisy absences were then considered as presence and the

resulting new data matrix was used as a new model training set.

This post-processing of model outputs was iterated until the

predictions stabilized, therefore providing a potential distribution

of the species. Such a strategy presents some similarities with the

pseudo-absences selection methods [15], but differs by two main

points: firstly, it is only based on the use of presence-absence

models that are known to be more efficient than presence-only

models [14]; secondly, the noisy absences are not discarded but

converted into presences.

In this context, the main objectives of this study were: (i) to

compare the performances of EM and IEM to predict the spatial

distribution of individual species and (ii) to assess the ability of the

two modelling methods to deal with noisy absences. To do this, we

used eight climatic variables to construct the potential climatic

niche of three virtual species over France. For each species, we

introduced non-environmental absences into the simulated occur-

rence data in two ways: a random distribution and a distance

gradient from the center of the environmental niche. In this last

case, the occurrence of non-environmental absences was maximal

at the edge of the environmental niche, where the species density

usually decreases [28] making the species less detectable.

Materials and Methods

Predictor Variables
Eight climate variables were extracted over France from the

309963099 resolution WorldClim layers for the period 1961–1990

[29]: precipitation in the driest quarter of the year and in the

wettest quarter; average monthly precipitation and precipitation

seasonality; mean temperature of the coldest quarter and of the

warmest quarter, annual mean temperature and temperature

seasonality. These variables were chosen as they are related to the

Figure 1. The niches of the 3 virtual species in the two-
dimensional space created by the two orthogonal axes
summarizing climatic variation across France. Prevalence 15%
(black), 30% (dark grey) and 60% (grey).
doi:10.1371/journal.pone.0049508.g001
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ecological requirements of numerous species, and have often been

used in SDMs [30–32].

Virtual Ecological Niches
The virtual species distributions were defined as hyper volumes

of a space defined by a set of relevant environmental variables

[33,34]. A normalized principal component analysis (PCA) was

computed on the eight climate variables and the first two axes of

the PCA, which accounted for 80% of the total variance, were

kept as composite variables that summarize the climate data. We

hence constructed two independent climate variables [34]. In the

two-dimensional space created by the two orthogonal axes

summarizing climatic variation across France, the virtual species

niches were defined as discs [35] centred on (0,0) (Fig. 1). All

geographic cells falling within this disc for the pair of climate

variables were considered as the observed distribution range of the

virtual species in France. Using three different disc radii, three

virtual species were created, with prevalences of 15%, 30% and

60% respectively so as to cover a large prevalence range.

Data Sets
First, 1000 cells were randomly sampled among the 912730 cells

covering the entire surface of France. These 1000 cells were

considered as the sampling sites. This operation was repeated 100

times, giving rise to 100 data sets. Each of these 100 data sets was

randomly split into two parts: two-thirds of the data (666 sites)

Figure 2. The iterative ensemble modelling (IEM) process. Step 1: At the first iteration, the learning data is the original data set with n = 666
sites. For the following iterations, the learning data is the raw data set updated using the predicted data matrix: an absence is considered as noisy if
the model predicts presence while the species is absent from the observed data. In that case, the raw data is updated by replacing absence (0) by
presence (1); Step 2: The six statistical methods are used to build models with the learning data set; Step 3: the six resulting suitability levels for each
site (one per modelling method) are averaged, giving rise to a per-site suitability level; Step 4: the suitability vector is converted into a presence-
absence response, using a cut-off threshold maximizing the Kappa index.
doi:10.1371/journal.pone.0049508.g002
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were used to calibrate the SDMs and the remaining third (334

sites) was used as a test set.

Then, five occurrence levels of noisy absences (15%; 30%; 45%;

60% and 75% of all the presences available in the learning data

set) were inserted into the learning data set. For each occurrence

level, two strategies were used to determine the position of the

noisy absences. On the one hand, noisy absences were selected

randomly from all the presences available in the learning data set.

On the other hand, we assumed that the probability of a site inside

the niche to be a noisy absence increased as a Gaussian function of

the distance to the centre of the environmental niche. More

explicitly, the probability of the site being selected was equal to (1–

0.9 exp(-d2/r2))/n where d was the distance to the centre of the

environmental niche, r was the radius of the environmental niche

and n was chosen to ensure that the sum of the probabilities over

all presence sites is equal to 1. We thus obtained 1000 (5 noisy

absence percentages, 2 absence distribution types, 100 repetitions)

data sets for each species.

IEM Modelling
According to the EM framework, we used six predictive

modelling methods belonging to 3 commonly used correlative

SDM techniques, and hence balance the weight of each technique

and its inherent biases. These methods included two regression

techniques: generalized linear models (GLM); generalized additive

models (GAM); two machine learning techniques: Random Forest

(RF) and generalized boosted regression models (GBM); and two

classification techniques: classification and regression trees

(CART); linear discriminant analysis (LDA). Raw variables were

used without prior transformation in all models, squared variables

were included in GLM and LDA models to deal with non-

linearity. For the GAM model all the variables were spline-

transformed (df = 4). In GBM, a maximal number of 1000 trees

was generated. In RF, 300 trees were generated and the number of

predictors randomly selected at each node was the square root of

the total number of predictors. Those six methods have already

been used in different EM studies [26,27], although there is no

strict consensus on which method should be implemented in each

EM.

All the modelling iterations followed an EM process. The six

statistical methods were used to build models using this learning

data set (Step 2; Fig. 2). For each site, the six resulting suitabilities

levels (one per modelling method) were then averaged [25,26,27],

giving rise to a per-site suitability level [26] (Step 3; Fig. 2). We

refrained from weighting the six model outputs using an accuracy

measurement like the AUC, because the data set contained noisy

absences. Indeed, weighting the outputs of the modelling methods

could favour the models that overfit the data and hence reduce the

correction rate of noisy absences. Lastly, the suitability level vector

was converted into a presence-absence response, using a cut-off

threshold maximizing the Kappa index (Step 4; Fig. 2). This

approach was preferred to the ROC curve approach (maximising

the sum of sensitivity and specificity) that gives less accurate

prevalence predictions [36,37]. These four steps account for one

IEM iteration. At the first iteration, the learning data was the raw

data (Step 1; Fig. 2). After the first iteration, the predicted data

matrix obtained at the end of the current EM iteration was used to

update the raw data set before the next iteration. To do this,

observed and predicted data matrices were compared and an

absence was considered as noisy when the model predicted

presence while the species was absent from the observed data (i.e.

the observed data was modified so that absences became presences

if the model prediction was a false presence). In that case, we

updated the raw data by replacing absence (0) by presence (1). The

resulting data matrix was then used as the learning data set for the

following iteration (Step 1; Fig. 2). The entire procedure was then

repeated 100 times (Fig. 2). The modelling procedure was

implemented in R [38].

Models’ Variability
To evaluate the prediction variability inherent to the statistical

methods (i.e., GBM and BT), we ran the EM 100 times for each

species and each complete data set. We observed that in 95% of

the cases less than 5% of the 334 test sites had variable predictions

(and 11% of the sites had variable predictions). The number of

different predictions was less than 27 in 95% of the cases. We thus

considered that our IEM model had stabilized when less than 5%

of the sites provided variable predictions in 27 successive

iterations.

The evolution of the variability among the six SDM predictions

through the iterative process was evaluated at each iteration.

Following Thuiller [39], we carried out a standardized Principal

Component Analysis (PCA) on the data matrix made up of the 6

suitability level vectors at the 334 test sites, and we evaluated the

consensus among the predictions by calculating the percentage of

variance accounted for by the first axis of the PCA.

Figure 3. Effects of noisy absences on threshold-independent measurements (i.e., AUC) of model accuracy after the first iteration
(EM, in green) and at the end of the process (IEM, in black) for three virtual species with true prevalence of (A) 15%, (B) 30% and (C)
60%. Box colors represent geographic distribution of noisy absences (grey: random; white: mostly at the edge of the niche).
doi:10.1371/journal.pone.0049508.g003
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The variability of the EM and IEM binary predictions inherent

to the sampling of learning sites was evaluated in the same way for

each virtual species, each percentage of noisy absences and each

absence selection. As the 100 tests sets share a very low number of

cells, we randomly selected 1000 cells among the 912730 cells

covering the entire surface of France. These cells were used as a

common test set for the 100 models built on the 100 learning data

sets. For each of the 100 models, we predicted the presence-

absence of the species over these 1000 cells. Then, we carried out a

PCA on the data matrix made up of the 100 presence-absence

vectors. The consensus among the predictions was evaluated by

calculating the percentage of variance accounted for by the first

axis of the PCA.

Comparing IEM and EM
For each of the species, we first evaluated the AUC [40] of the

mean model on the 334 test sites before using the Kappa cut-off

threshold. We then evaluated the predictive accuracy of both EM

and IEM presence-absence predictions on the test sites by

measuring three complementary and commonly used indicators:

(i) the percentage of correctly predicted sites that provides a direct

measure of both true absences and true presences; (ii) the Kappa

index; its dependence on prevalence merely reflects its role as a

chance-corrected measure [41]; and (iii) the True Skill Statistic

(TSS) which is more independent of observed species prevalence

than Kappa [42]. As a complement, we assessed the ability of EM

and IEM to predict the prevalence of the species by measuring the

difference between the observed and the predicted prevalences.

Pairwise comparisons between EM and IEM were done using

Wilcoxon’s tests.

Finally, we used a null-model simulation to explore the

possibility that the increase in model accuracy between EM and

IEM could only be due to an increase in the predicted prevalence

through the iterative process. We hence compared IEM predictive

accuracy to the accuracy of the output of EM predictions modified

by randomly turning some sites from absences to presences. The

number of sites where absences were replaced by presences was

identical to that turned from absences to presences by the IEM

procedure, and we computed the percentage of mispredicted sites,

Kappa and TSS. For each species, we reiterated this procedure 10

000 times for each learning data set and we compared the

observed values of indices produced by the IEM with the

distribution of the 10 000 values simulated by the null-model.

We also plotted a map of omission and commission errors. For

each species, we predicted the presence-absence of the species over

the 912730 cells covering the French territory. We then counted,

over the 100 models built using the 100 different learning data sets,

the percentage of mispredicting models in each cell. This was done

for both EM and IEM.

Results

IEM Modelling
For the three species, the iterative process tended to converge

rapidly, as most of the predictions stabilized after 2 to 70 iterations

(mean: 15 iterations). Only 3.5% of the models did not stabilize

after 70 iterations (see Fig. S1 a). The models that did not stabilize

were characterized by high levels of noisy absences. Moreover, the

stabilization time (i.e. number of iterations) increased with the

percentage of noisy absences (Fig. S1 b).

After a few iterations, the 6 different methods provided

consensual predictions for the 334 test sites (Fig. S2). At the first

iteration (i.e., EM), the mean percentages of variance accounted

for by the first axis of the PCA were 67.5%, 72.4% and 79.5% for

the three species, respectively. Using IEM, consensus increased

after 25 iterations up to 73.9%, 79%, and 86.1% respectively and

then reached a relatively stable plateau up to the end of the

iterative procedure (Fig. S2).

IEM also increased the consensus of predictions built on

different learning data sets (Fig. S3). At the first iteration (i.e., the

EM), the mean percentages of variance accounted for by the first

axis of the PCA were 81.5%, 72.2%, 59.6%, 45.9% and 32.3%

respectively for the five noisy absence levels. Using IEM, consensus

increased up to 82%, 79.5%, 74.5%, 66.7% and 49.6%

respectively. This increase was higher for frequent species

especially when noisy absences were randomly selected.

Predictive Performance
The AUC almost always significantly decreased during the

iterative process but this decrease remained low except for high

levels of noisy absences (Fig. 3). All AUC values were higher than

0.77 (higher than 0.88 for 95% of the models) for IEM whereas

they were higher than 0.79 (higher than 0.92 for 95% of the

models) for EM. Evaluating the predictive accuracy of both EM

and IEM presence-absence output on the 334 test sites showed

that compared with EM, IEM significantly reduced false absences

(Wilcoxon test, p,0.001, Fig. 4). Due to the IEM principle (i.e.,

replacing noisy absences by presences in the learning data set), the

model most easily predicted presences in environments that were

in fact true absences, and hence false presences increased

significantly in the test set predictions (Wilcoxon test, p,0.001,

Fig. 4). Lowering false absences and increasing false presences led

to a variation of the predictive accuracy evaluated on the test set

that almost depended on the percentage of noisy absences (Fig. 4).

Using IEM, the three species experienced a significant increase in

predictive accuracy for noisy absences levels greater than 30%

(Wilcoxon test, p,0.001). The results were more mixed for lower

levels of noisy absences (15 an 30%) as both positive, negative or

no change were detected between EM and IEM according to the

quality index. Although some were significant, these changes

remained of slight intensity (Fig. 4).

For noisy absence levels greater than 30%, iterations increased

the percentage of well-predicted sites, Kappa and TSS in 93%,

97% and 84% of the cases, respectively (Fig. 4). Moreover, the

Kappa index calculated for IEM gave a good score (.0.6) for

2253 out of the 3000 cases and a moderate score (between 0.4 and

0.6) for 593 cases. Our predictions were thus reliable (i.e. Kappa

.0.4) in 94.9% of the cases. The performance of EM was clearly

lower, with only 1376 cases reaching a Kappa score above 0.6,

and 71% of the cases for which the predictions were reliable. The

TSS index confirmed this trend, as TSS calculated for IEM

reached a score greater than 0.6 for 73.7% of the cases and

between 0.4 and 0.6 for 18.6% of the cases. TSS was lower for EM

with a score greater than 0.6 for 38.8% of the cases and a score

Figure 4. Effects of noisy absences on threshold-dependent measures of model accuracy after the first iteration (EM, in green) and
at the end of the process (IEM, in black) for three virtual species with true prevalence of (A) 15%, (B) 30% and (C) 60%. Model
accuracy was evaluated using the two types of mispredicted sites, percentage of well-predicted sites, TSS, Kappa, and predicted prevalence. Box
colors represent geographic distribution of noisy absences (grey: random; white: mostly at the edge of the niche). The grey line corresponds to the
true value of the prevalence.
doi:10.1371/journal.pone.0049508.g004
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between 0.4 and 0.6 for 27% of the cases. Moreover, the IEM

provided less biased estimates of species prevalence in 80.7% of

the cases (96.5% of the cases with noisy absences levels greater

than 30%) (Fig. 4). Note that for high levels of noisy absences, the

benefit of IEM compared to EM was lower if the noisy absences

were preferentially located at the edge of the niche. Moreover,

species prevalence only affected the pattern at the highest noisy

absence level due to the limited increase in model quality through

iterations for the rarest species.

The geographical pattern of omission errors depended on the

selection of noisy absences. When the noisy absences were

randomly chosen, the EM mispredicted presence cells spread

over the whole distribution and were slightly more abundant at the

edge of the distribution. For abundant, non-random noisy

absences, the EM only predicted the ‘core’ region of each species

distribution. At the end of the iterative process, the remaining

often omitted cells were in both cases more abundant at the edge

of the distribution, but this pattern was less marked for randomly

chosen noisy absences (Fig. 5, S4, S5).

The location of commission errors was less affected by the

selection of noisy absences. Mispredicted absence sites were mostly

located at the edge of the distribution and the IEM increased the

mispredicted areas especially in areas where the environmental

variables varied only slightly (Fig. 5, S4, S5).

The increase in the predictive performance between IEM and

EM was not due to the rise of the predicted prevalence, as for 2963

out of the 3000 cases (1789 of the 1800 cases with levels of noisy

absences greater than 30%), IEM predictions were significantly

more reliable than those produced by the null-model simulations

(p,0.05), considering TSS, Kappa and the percentage of well-

predicted sites (Table 1).

Discussion

In ecological sciences, the presence of an organism is factual

while absence is inferred i.e., the species was not seen or identified

or captured [5]. Absence is hence the main cause of uncertainty in

species occurrence data matrices and thus can have detrimental

consequences on the relevance of correlative SDMs [5,6].

Alternatives are limited as the only models currently used to take

species detectability into account require repeated survey data or

species abundance data [9], while most data matrices are

composed of presence-absence data without multiple observations.

IEM provides a way to reduce this problem as it only requires

presence-absence data matrices and can reduce the bias inherent

in species detectability by dealing with noisy absences. Although

IEM did not provide better results than the EM with low levels of

noisy absences, it was significantly more efficient than EM as soon

as the data set contained more than 30% of noisy absences. In

Figure 5. Distributions of the frequent species (prevalence = 60%). (A) The observed distribution; (B) the predicted distributions using noisy
absences randomly located; (C) the predicted distributions using noisy absences following a distance gradient from the center of the environmental
niche. For each noisy absence type, the top line of 3 maps refers to EM and the bottom line maps to IEM. For each line, noisy absences increase from
the left to the right (left 15%, centre 45%, right 75%). The situations with 30% and 60% of noisy absences are not shown for clarity. The 100 models
based on the 100 different learning data sets were used and we evaluated the percentage of mispredicting models in each pixel. The darker the
pixels, the higher the percentage of prediction errors.
doi:10.1371/journal.pone.0049508.g005

Table 1. Null-model simulations.

Random location of noisy absences
Gradient of noisy absences from the center of the
niche

Percentage of noisy
absences 0.01#p,0.05 0.01#p,0.01 p,0.001 0.01#p,0.05 0.01#p,0.01 p,0.001

Prevalence 15% 15% 7 8 9 5 5 15

30% 3 0 4 1 1 8

45% 2 0 3 1 1 4

60% 1 2 4 2 3 3

75% 3 1 7 2 2 11

Prevalence 30% 15% 2 5 7 1 4 5

30% 0 1 3 2 0 1

45% 0 0 2 0 0 1

60% 0 0 0 0 0 0

75% 0 1 1 0 0 1

Prevalence 60% 15% 2 1 9 3 1 11

30% 0 0 1 0 0 0

45% 0 0 0 0 0 0

60% 0 0 0 0 0 0

75% 0 0 0 0 0 0

Number of IEM models with accuracy not better than expected by chance among the 100 built on the 100 learning data sets. We counted the number of sites turned
from absences to presences by the IEM procedure. The same number of sites predicted as absences by EM were randomly selected and replaced by presences. The
accuracy of the resulting model was evaluated using the percentage of well-predicted sites, the TSS and Kappa indices. The accuracy was considered as lower if at least
one of the three indices of the IEM was lower than that evaluated on the random predictions. The random sampling was repeated 10000 times.
doi:10.1371/journal.pone.0049508.t001

An Iterative SDM Approach

PLOS ONE | www.plosone.org 8 November 2012 | Volume 7 | Issue 11 | e49508



such cases, it enhanced the prediction ability of correlative SDMs

by increasing both the quality of the statistical models and the

consensus between statistical methods. This is an important point

as the variability between statistical models is recognized as the

major source of uncertainty in the prediction of species spatial

distributions by correlative SDMs [30]. This tendency is triggered

for low detectable species [43,44], such as species of low

occurrence like large predators in forested areas [e.g. 45]. In the

same way, threatened species are characterized by a high

occurrence of non-contingent absences as those species have often

been extirpated from a large part of their natural area. The IEM

approach might therefore be of interest in the prediction of the

potential distribution of threatened or difficult-to-detect species,

which is not readily feasible using classical correlative SDMs [46].

Another possible application of the IEM is the prediction of the

potential distribution of non-native species, which has been

considered as difficult to achieve using correlative SDMs [e.g.,

47,48]. Indeed, it is now recognised that most non-native species

are in a non-equilibrium state, particularly due to spatial

variability in propagule pressure and human impact on ecosystems

across the world [49,50]. Up until now the two ways proposed to

predict the spatial invasion range of invasive species involved (1)

the use of presence-only models, which have a low predictive

efficiency [51,52], or (2) the calibration of models on the niche

conditions found in both the native and the exotic range of the

species [17,53,54], with the aim of accounting for potential niche

shifts between native and invasion ranges [54–57]. This however

strongly limits the predictive efficiency of the models, as a

substantial part of the absences in the exotic range are contingent,

leading to an underprediction of the potential range. The IEM

might hence constitute an alternative for predicting the invasion

potential of current and future invaders as it has been shown to

reduce omission errors that are known to be costly in the

prediction of invasive species distribution, as it is more difficult to

eradicate a pest than to identify a species that may become a

problem [58].

As for more classical correlative SDMs, the spatial extent of

presence data remains determinant in the quality of species

predictions. Although IEM has been shown to be of interest in the

reduction of omission errors, it should however be noted that this

method remains unable to guess missing ecological information.

This was observed in two ways on our virtual species for high levels

of false absences. First, IEM showed less improvement in the

accuracy of models built on data sets with noisy absences located

at the edge of the niche. As the model did not have information on

suitable environmental conditions at the edge of the environmental

niche, it tended to underpredict the distribution range. Second,

rare species experienced a lower accuracy increase through

iteration for the highest level of noisy absence. Here, the number

of observed occurrences probably fell under a critical threshold

that did not permit the models to gather sufficient information to

build a detailed image of the niche.

Particular attention should also be given to the selection of the

environmental variables, which always remains a crucial point in

the model building process [13,53]. This is particularly true for

IEM as an inaccurate variable may drive predictions in the wrong

direction through iterations. For the same reason, we also warn

against the use of the iterative approach when using a unique

statistical method as iterations may increase bias inherent to the

statistical method used, whereas the use of ensemble methods

buffers potential bias due to any specific statistical method [25].

Although accidental presences (i.e. the species is recorded in

environmental conditions where it is unable to settle) are usually

rare in ecological data, they can occur as species misidentification

in data bases or as recorded occurrences of non-established

species. As IEM is designed to fill noisy absences, it may also be

affected by these accidental presences. IEM might then inflate the

predicted distribution by considering as noisy absences those

falling in the gap between real and accidental presences.

Accidental presences might therefore promote IEM niche over-

prediction or drive the model in the wrong direction, especially in

the case of high levels of noisy absences that give more importance

to the accidental presences. The effect of accidental presences on

IEM hence deserves to be quantified.

In the same way, model transferability should be evaluated. We

showed here that compared to EM, IEM increased the consensus

between predictions based on different learning data sets. This

suggests that IEM tends to reduce both the sensitivity of models to

differences in the ranges of environmental predictors and the

overfitting of the learning data. As these two parameters are

known to reduce model transferability [59], IEM might be more

transferable than EM. But EM and IEM transferability remains to

be compared on real species as numerous ecological parameters

are known to affect model transferability [59].

Finally, many parameters are known to affect the quality of

correlative SDMs, such as the size and extent of the observed

distribution, environmental parameter sampling [60], the preva-

lence of the species [61], cut-off selection [62], or the selection of

absences used in the learning data set. The sensitivity of the IEM

to these parameters remains to be evaluated before intensively

using IEM. We therefore encourage complementary studies to

draw up precise guidelines for the use of this method.

Supporting Information

Figure S1 Stabilization of the iterative process. a)

Number of sites with variable predictions during the 27 following

iterations. The grey line corresponds to maximum value over the

3000 models, vertical bars correspond to the variability across

95% of the models; dots correspond to the mean values across the

3000 models. The two dashed lines correspond to the variability

inherent to the statistical methods (for all the simulations and for

the 95% less variable ones). b) Stabilization time (in number of

iterations) of the iterative process across noisy absence levels.

(TIFF)

Figure S2 Consensus (percentage of variance explained
by the first axis of the PCA) among the six models during
the iterative process for the 334 test sites. Species

prevalence (a) 15%; (b) 30%; (c) 60%. Grey lines correspond to

maximum and minimum values, vertical bars correspond to the

variability across 95% of the test sites; dots correspond to the mean

variance.

(TIFF)

Figure S3 Consensus (percentage of variance explained
by the first axis of the PCA) among the 100 learning data
sets after the first iteration (EM) and at the end of the
process (IEM) for 1000 randomly selected cells over
France. Symbols represent virtual species prevalence. Circles:

15%; squares: 30%; diamonds: 60%. Colour represents noisy

absence samplings. Grey: random; white: almost at the edge of the

niche. Border colour represents the models. Green: EM; black:

IEM.

(TIFF)

Figure S4 The (a) observed and (b) predicted distribu-
tions of the rare species (prevalence = 15%) using noisy
absences randomly located or (c) located following a
distance gradient from the center of the environmental
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niche. For each noisy absence type, the top line of 3 maps refers

to EM and the bottom line maps to IEM. For each line, noisy

absences increase from left to right (left 15%, centre 45%, right

75%). The situations with 30% and 60% of noisy absences are not

shown for clarity. The 100 models based on the 100 different

learning data sets were used and we evaluated the percentage of

mispredicting models in each pixel. The darker the pixels, the

higher the percentage of prediction errors.

(TIFF)

Figure S5 The (a) observed and (b) predicted distribu-
tions of the intermediate species (prevalence = 30%)
using noisy absences randomly located or (c) located
following a distance gradient from the center of the
environmental niche. For each noisy absence type, the top line

of 3 maps refers to EM and the bottom line maps to IEM. For

each line, noisy absences increase from the left to the right (left

15%, centre 45%, right 75%). The situations with 30% and 60%

of noisy absences are not shown for clarity. The 100 models based

on the 100 different learning data sets were used and we evaluated

the percentage of mispredicting models in each pixel. The darker

the pixels, the higher the percentage of prediction errors.

(TIFF)
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24. Araújo MB, Whittaker RJ, Ladle RJ, Erhard M (2005) Reducing uncertainty in

projections of extinction risk from climate change. Global Ecol Biogeogr 14:

529–538.
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