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Abstract

The nonsense mediated decay (NMD) pathway degrades mRNAs bearing premature translation termination codons. In
mammals, SMG-8 has been implicated in the NMD pathway, in part by its association with SMG-1 kinase. Here we use four
independent assays to show that C. elegans smg-8 is not required to degrade nonsense-containing mRNAs. We examine the
genetic requirement for smg-8 to destabilize the endogenous, natural NMD targets produced by alternative splicing of rpl-
7a and rpl-12. We test smg-8 for degradation of the endogenous, NMD target generated by unc-54(r293), which lacks a
normal polyadenylation site. We probe the effect of smg-8 on the exogenous NMD target produced by myo-3::GFP, which
carries a long 39 untranslated region that destabilizes mRNAs. None of these known NMD targets is influenced by smg-8
mutations. In addition, smg-8 animals lack classical Smg mutant phenotypes such as a reduced brood size or abnormal
vulva. We conclude that smg-8 is unlikely to encode a component critical for NMD.
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Introduction

The nonsense mediated decay (NMD) pathway is an evolution-

arily conserved mRNA surveillance mechanism that recognizes

and degrades transcripts bearing premature translation termina-

tion codons [1,2]. In C. elegans, mRNAs that have acquired a

nonsense mutation or an extended 39 untranslated region (UTR)

are targeted for NMD [3]. In addition, physiological transcripts

that carry an early stop codon are substrates for NMD [4,5,6]. The

central players of the NMD pathway were discovered in S. cerevisiae

[7] and C. elegans [1,3,8,9] and comprise SMG-2/Upf1, SMG-3/

Upf2 and SMG-4/Upf3. In worms, Drosophila and mammals, the

NMD core components are modulated by additional SMG factors.

Recent screens have also identified and confirmed new candidate

NMD proteins in C. elegans, H. sapiens and D. rerio [10,11,12].

Elegant studies in several organisms have suggested a model in

which NMD reflects a competition between SMG-2/UPF1 and

Poly(A) Binding Protein (PABP) for ribosome-associated transla-

tion release factors. In mammals, the locations of mRNA splice

junctions are marked by exon-junction complexes (EJC) during

mRNA processing [1]. If the ribosome encounters a premature

termination codon (PTC) during the pioneer round of translation,

the SURF complex, (consisting of SMG-1, UPF1 and the release

factors eRF1 and eRF3) interacts with the EJC, triggers UPF1

phosphorylation by SMG-1 and initiates NMD [13]. In C. elegans,

EJC components are dispensable for NMD, and PTCs are instead

distinguished from normal stop codons by the size of the 39UTR

[10,14]. Once the PTC has been recognized, target mRNAs are

destroyed by either the SMG-6 endonuclease (mammals, Drosophila

and probably worms) [15,16], and/or a SMG-5/SMG-7-depen-

dent exonuclease (mammals, yeast and probably worms) [17,18].

Recently, Yamashita and colleagues used immunoprecipation of

HeLa cell lysates to identify proteins that interact with SMG-1, a

phosphatidylinositol kinase-related protein kinase [19,20]. SMG-1

bound two novel, conserved proteins, FLJ23205 and FJL12886,

which were renamed SMG-8 and SMG-9 [21]. This pair bound

strongly to each other, and modified SMG-1 kinase activity in vitro.

Inactivation of SMG-8 and SMG-9 lead to a partial stabilization

of ß-globin mRNAs in mammalian cell culture, suggesting they

might play a role in NMD. The authors also used RNA

interference (RNAi) to inactivate C. elegans smg-8 and smg-9, and

concluded that smg-8, but not smg-9, contributed to NMD in

worms [21].

Here we examine C. elegans smg-8 using a newly generated

mutant allele. smg-8(tm2937) contains a 272 bp deletion and a

1 bp insertion within smg-8 (Figure 1A). This deletion encompasses

22 bp upstream of the start site, the initiator ATG and the first two

exons. Using animals homozygous for this allele, we employed four

approaches to investigate a possible role for smg-8 in the NMD

pathway. Our findings suggest that smg-8 is unlikely to be a key

component for NMD in C. elegans.

Results and Discussion

smg-8 Mutants do not Exhibit Phenotypes Associated
with NMD Mutants

For our first assay, we examined two of the classical phenotypes

associated with smg genes. Hodgkin and colleagues reported a

reduced brood size of 174 (range 147–211) for smg-1, which was

lower than the mean brood size of wild-type animals (327, range

270–373) [9]. We observed a mean brood size of 301 (range 242–
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367, n = 10) for smg-8(2937), similar to the mean brood size of our

wild-type strain (279, range 211–328, n = 10) (Table 1). In

addition, animals bearing a mutation in a canonical smg gene

have a protruding vulva due to morphological defects [9].

However, vulvae appeared normal in smg-8(tm2937) worms

(Figure 1B). These data suggest that smg-8(tm2937) animals lack

two overt phenotypes associated with canonical smg mutants.

smg-8 does not Show an NMD Phenotype for the Native
NMD Target rpl-7a and rpl-12

For our second assay, we examined transcripts for two

ribosomal proteins rpl-7a and rpl-12, which are natural NMD

targets [4]. These genes each generate two alternatively spliced

mRNAs, one of which contains a premature termination codon

(PTC; Figure 2A). When NMD is active, the longer isoform

containing the PTC is degraded and only the shorter isoform

accumulates. When the NMD pathway is compromised, the

isoform containing the PTC is stabilized, and both mRNA

isoforms accumulate (Figure 2A). Using RT-PCR primers that

flank the PTC, it is possible to distinguish between the two

transcripts [4]. smg-8 shows no NMD phenotype by this assay.

When a known component of the NMD pathway, such as smg-1,

smg-2 or smg-3, is mutated, the mRNA isoform containing the PTC

is stabilized, generating a robust upper band (Figure 2B). In

contrast, for smg-8(tm2937), a very faint upper band was observed,

comparable to that of the wild-type strain (Figure 2B). To extend

this result, we inactivated smg-8 and also smg-9 using RNAi, which

reduced smg mRNA levels at least five-fold (Figure 2G) and similar

to a No Reverse Transcriptase negative control (Figure 2H). The

results were again negative for NMD (Figure 2C). RNAi is not

always robust; therefore we repeated the assay using the strain eri-

6/7(tm1917), which enhances RNAi [22,23], and once more

observed no NMD phenotype (Figure 2D). Finally, to exclude the

possibility that the tm2937 allele was hypomorphic, we treated smg-

8(tm2937) mutants with smg-8 RNAi or smg-9 RNAi, but again we

observed no NMD phenotype (Figure 2E). Similar results were

observed for rpl-12 (Figure 3).

To quantify these data, we used RT-qPCR to measure the

increase of the PTC containing isoform. We observed a fold

enrichment of 15 and 38 in smg-1 and smg-3 mutants respectively,

compared to the wild-type (Figure 2F). The PTC containing

isoform in smg-8 mutants remained similar to the wild-type (0.7

fold enrichment). A virtually identical result was obtained with

smg-8 RNAi treatment of smg-8 or eri-6/7 mutant worms (0.7 and

0.4 fold enrichment respectively) (Figure 2F). Together, these data

reveal that inactivation of smg-8 fails to stabilize two natural NMD

targets, rpl-7a and rpl-12.

Figure 1. smg-8 lacks the vulva phenotype associated with mutations in other NMD genes. (A) Schematic representation of the tm2937
allele, which contains a 272 bp deletion and a 1 bp insertion. This deletion encompasses 22 bp upstream of the start site and the first two exons.
Arrows indicate primers used for RT-qPCR (B) Vulval protrusion is one of the phenotypes of canonical smg genes. Left panel shows a wildtype vulva,
middle panel shows a smg-8(tm2937) mutant and right panel shows a smg-1(r861) mutant. smg-8 mutants are similar to wild-type and not to smg-1.
Arrowheads denote the vulva.
doi:10.1371/journal.pone.0049490.g001

Table 1. Brood Size Comparison of smg-1 and smg-8 vs wild-
type.

Strain Mean Brood Size Range

smg-1(r861)* 174 174–211

Wildtype* 327 270–373

smg-8(tm2937) 301 242–367

Wildtype 279 211–328

Average progeny (n = 10 mothers) at 20uC. Progeny were counted every day
until no more progeny were observed.
*Data from [9].
doi:10.1371/journal.pone.0049490.t001

C. elegans smg-8 Is Not Part of the NMD Pathway
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Figure 2. smg-8 lacks an NMD phenotype for the native NMD target rpl-7a. (A) Schematic representation of the two alternatively spliced
isoforms of rpl-7a. The isoform containing the premature termination codon (PTC) is subject to degradation by NMD, whereas the shorter isoform is
not. RT-PCR was performed using a pair of primers that distinguish the two spliced isoforms (purple arrows). (B) The upper, PTC band is visible only
when the NMD pathway is compromised by smg-1, smg-2 or smg-3 mutations (lanes 2, 3 and 4). Only the lower WT band is observed in wild-type
(lane 1) and smg-8 mutant (lane 5) animals. (C) Wild-type worms were fed bacteria expressing dsRNA targeting smg-1, smg-8 or smg-9 from the
Ahringer dsRNA library [26]. RNA was analyzed as in (B). (D) An enhanced RNAi mutant strain eri-6/7 [22,23] was used and RNAi conducted as in (C).
RNA was analyzed as in (B). (E) As in D, using the smg-8(tm2937) mutant strain. (F) RT-qPCR using primers flanking the PTC-containing isoform of rpl-
7a, mRNA levels were calculated using the delta-delta-CT method, relative to the control gene pmp-3 [27]. Fold enrichment of the PTC mRNA was
normalized to 1 for wild-type. The smg-1 and smg-3 mutants show an enrichment of 15 and 38 fold, respectively. In contrast, in smg-8 mutants, the
accumulation of the PTC containing isoform is similar to wild-type (0.7 fold enrichment). smg-8 and eri-6/7 mutant worms treated with smg-8 RNAi

C. elegans smg-8 Is Not Part of the NMD Pathway
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smg-8 is not Required for Endogenous NMD in C. elegans
As a third test for NMD, we examined an endogenous target of

the NMD pathway: unc-54(r293) [3,9]. The unc-54 gene generates

a muscle myosin heavy chain (MHC) in C. elegans, and the unc-

54(r293) allele contains a 256 bp deletion that removes the normal

39 cleavage/polyadenylation site and most of the 39UTR [3]

(Figure 4A). This deletion causes the production of a long unc-54

mRNA transcript that terminates at a cryptic poly(A) site and

renders unc-54 an NMD target. Without the MHC, unc-54 mutant

worms are paralyzed (Figure 4B). In the absence of NMD

components such as smg-1, the unc-54(r293) mRNA is stabilized,

wild-type protein is produced and the Unc phenotype is

suppressed [3] (Figure 4B). We generated unc-54(r293); smg-

8(tm2937) double mutants and observed no suppression of the

paralysis phenotype (Figure 4B), consistent with our hypothesis

that smg-8 is not required for NMD in C. elegans.

smg-8 does not Restore Expression the Exogenous NMD
Target myo-3::GFP

As a fourth test for NMD, we examined an exogenous NMD

target, myo-3::GFP. This strain carries a transgenic GFP reporter

that is transcribed in body wall muscles and targeted for

degradation by a long 39UTR (Figure 5A) [24]. When the

NMD pathway is inactive, GFP accumulates in muscle fibers,

whereas wild-type worms accumulate almost no GFP (Figure 5B).

We created double combinations of myo-3::GFP and smg-1, smg-3 or

smg-8. The strain myo-3::GFP; smg-8(tm2937) accumulated very

little GFP compared to the positive controls myo-3::GFP; smg-

1(r861) or myo-3::GFP; smg-3(r867) (Figure 5B), indicating that smg-

8 is not required for exogenous NMD in C. elegans.

In summary, we tested smg-8 for a role in NMD using four

different assays: i) anatomical phenotype and brood size, ii)

accumulation of natural NMD targets rpl-7a and rpl-12, iii) rescue

of the paralysis phenotype caused by the endogenous NMD target

unc-54(r293) and iv) GFP accumulation of the exogenous NMD

target reporter myo-3::GFP. The discrepancy between our study

and the results presented by Yamashita and colleagues is due in

part to the use of an allele (our study) vs. RNAi [21]. In addition,

we note that the effect of smg-8 inactivation on NMD in C. elegans

was not robust in the Yamashita study [21]. In all of our assays,

smg-8 mutants resembled wild-type worms and differed from

classical smg mutants. We detected no accumulation of mRNA or

protein in smg-8 mutants, even when the smg-8 mutation was

combined with RNAi. We suggest that smg-8 in C. elegans is a novel,

conserved gene whose function remains to be elucidated.

Materials and Methods

Strains
Worm growth and maintenance were performed as described

before [25]. Strains used: SM1618 unc-54(r293)I, SM456 smg-

1(r861)I, SM436 smg-2(e2008)I, SM196 smg-3(r867)IV, smg-

1(r861);unc-54(r293)I, smg-8(tm2937)II;unc-54(r293)I, CL724

dvIs38 [pCL60 (Pmyo-3::GFP::degron/long 39 UTR)+pRF4],

SM1944 smg-1(r861)I;myo-3::GFP, SM1929 smg-3(r867)IV;myo-

3::GFP, SM1937 smg-8(tm2937)II;myo-3::GFP, SM1881 smg-

8(tm2937)II eight times outcrossed.

RNA Interference
HT115 bacteria expressing double stranded RNA targeting smg-

1, smg-8 or smg-9 grown for ,8 hours at 37uC were plated using

1 mM IPTG (Sigma) and 50 mg/ml of Carbenicillin (Sigma).

RNAi clones were derived from the Ahringer library [26] and

verified by sequencing. Five wild-type, smg-8(tm2937) or eri-6/

7(tm1917) worms were transferred at the L4 stage to RNAi plates

and allowed to lay embryos for one day. The progeny was

collected ,48 hours later, when most worms had grown at least to

the L4 stage, by rinsing with water and frozen at -80uC for

show 0.7 and 0.4 fold enrichment, respectively. (G) RT-qPCR to quantify smg-8 RNA. mRNA levels were calculated using the delta-delta-CT method,
relative to the control gene pmp-3 [27]. Fold enrichment was normalized to 1 for wild-type. smg-8 and eri-6/7 worms treated with smg-8 RNAi show
0.3 and 0.26 fold enrichment, respectively. (H) As in (G) for wild-type animals and a negative control that lacked Reverse Transcriptase (No RT). Fold
enrichment was normalized to 1 for wild-type. No RT control shows 0.3 fold enrichment.
doi:10.1371/journal.pone.0049490.g002

Figure 3. smg-8 lacks an NMD phenotype for the native NMD target rpl-12. (A) RT-PCR was performed using a pair of primers that distinguish
the two spliced isoforms of rpl-12; the upper, PTC band is visible only when the NMD pathway is compromised by smg-1, smg-2 or smg-3 mutations
(lanes 2, 3 and 4). Only the lower, WT band is observed in wild-type (lane 1) and smg-8 mutant (lane 5) animals. (B) Wild-type worms were fed bacteria
expressing dsRNA targeting smg-1, smg-8 or smg-9 from the Ahringer dsRNA library [26]. RNA was analyzed as in (A). (C) As in (B), using an enhanced
RNAi mutant eri-6/7 [22,23]. (D) As in (B), using the smg-8(tm2937) mutant strain.
doi:10.1371/journal.pone.0049490.g003
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subsequent RNA extraction. Nine 35 mm plates were used per

strain per experiment.

RNA Extraction
For total RNA extraction, glass beads (Sigma) and 1 ml of

Trizol Reagent (GibcoBRL) were added to frozen worm pellets.

Pellets were lysed by vortex followed by chloroform extraction.

RNA was precipitated with isopropanol and washed with 70%

ethanol. Resuspended RNA was extracted with phenol:chloroform

and precipitated with ethanol. A first-strand reaction kit (NEB) was

used to perform the reverse transcriptase reaction, following the

manufacturers protocol.

RT-PCR of rpl
Amplification of rpl-7a from the cDNA was performed as

described in [4], and PCR product was analyzed in a 1% agarose

gel. Primers used were rpl-7a-fw GACATCCAGCCAAA-

GAAGGA and rpl-7a-rv AACGGTGTTTGGTCTCTTGG.

Primers for rpl-12 are Rpl-12-F1 ACCCAAGACTG-

GAAGGGTCT and Rpl-12 R1 GCCATCGATCTTGGTCT-

CAT.

RT-qPCR
For smg-8 and rpl-7a, mRNA levels were calculated using the

delta-delta-CT method, relative to the control gene pmp-3 [27].

Control mRNA was normalized to 1 and the mRNA levels are

shown as relative fold change. Primers for smg-8 were smg8-fw-

4348 GCTGCCAATATTTCCATCGT and smg8-rv-5165

TGACCACGGGAACATTCATA.

Brood Size
10 worms at the L4 stage were picked into individual plates at

20uC. Their progeny was counted everyday until no more progeny

was generated. The number of progeny per plate was averaged

(n = 10).

Figure 4. smg-8 is not required for endogenous NMD in C. elegans. (A) unc-54 gene schematic. The r293 allele contains a 256 bp deletion
within unc-54 that includes the 39 cleavage and polyadenylation site. (B) smg-8(tm2937) or smg-1(r861) mutations were combined with unc-54(r293).
Two worms were placed in the middle of the bacterial lawn and allowed to crawl for 45 minutes. Wild-type worms that crawl (top left) leave tracks in
the lawn whereas unc-54(r293) mutants cannot move well (top right). smg-1(r861) suppresses unc-54(r293) mRNA degradation and restores
movement [3] (bottom left). In contrast, smg-8 does not suppress the paralysis phenotype (bottom right). Arrowheads indicate the tracks left by
paralyzed worms.
doi:10.1371/journal.pone.0049490.g004

C. elegans smg-8 Is Not Part of the NMD Pathway

PLOS ONE | www.plosone.org 5 November 2012 | Volume 7 | Issue 11 | e49490



Acknowledgments

We thank C. Madubata for work on Figure 4, S. Mitani for providing the

smg-8(tm2937) strain, and C. Link for providing the CL724 strain. We

thank members of the Mango lab for helpful discussions, and John Calarco

and Arneet Saltzman for critical reading of the manuscript.

Author Contributions

Conceived and designed the experiments: JR SEM. Performed the

experiments: JR. Analyzed the data: JR. Contributed reagents/materi-

als/analysis tools: JR. Wrote the paper: JR SEM.

References

1. Chang YF, Imam JS, Wilkinson MF (2007) The nonsense-mediated decay RNA

surveillance pathway. Annu Rev Biochem 76: 51–74.

2. Nicholson P, Yepiskoposyan H, Metze S, Zamudio Orozco R, Kleinschmidt N,

et al. (2010) Nonsense-mediated mRNA decay in human cells: mechanistic

insights, functions beyond quality control and the double-life of NMD factors.

Cell Mol Life Sci 67: 677–700.

3. Pulak R, Anderson P (1993) mRNA surveillance by the Caenorhabditis elegans

smg genes. Genes Dev 7: 1885–1897.

4. Mitrovich QM, Anderson P (2000) Unproductively spliced ribosomal protein

mRNAs are natural targets of mRNA surveillance in C. elegans. Genes Dev 14:

2173–2184.

5. Ramani AK, Nelson AC, Kapranov P, Bell I, Gingeras TR, et al. (2009) High

resolution transcriptome maps for wild-type and nonsense-mediated decay-

defective Caenorhabditis elegans. Genome Biol 10: R101.

6. Barberan-Soler S, Lambert NJ, Zahler AM (2009) Global analysis of alternative

splicing uncovers developmental regulation of nonsense-mediated decay in C.

elegans. RNA 15: 1652–1660.

7. Leeds P, Wood JM, Lee BS, Culbertson MR (1992) Gene products that promote

mRNA turnover in Saccharomyces cerevisiae. Mol Cell Biol 12: 2165–2177.

8. Cali BM, Kuchma SL, Latham J, Anderson P (1999) smg-7 is required for

mRNA surveillance in Caenorhabditis elegans. Genetics 151: 605–616.

9. Hodgkin J, Papp A, Pulak R, Ambros V, Anderson P (1989) A new kind of

informational suppression in the nematode Caenorhabditis elegans. Genetics

123: 301–313.

Figure 5. smg-8 does not restore expression of myo-3::GFP, an exogenous NMD target. (A) Schematic representation of the exogenous
NMD GFP reporter, driven by the myo-3 promoter, which is destabilized by an amino acid sequence that marks a protein for degradation (degron),
and a long 39UTR [24]. (B) smg-8 and control mutations were introduced into CL724 (myo-3::GFP) worms. The double combinations were then
inspected under a fluorescent microscope. smg-1 and smg-3 mutants express high levels of GFP. In contrast, smg-8 animals photographed under the
same conditions show only a slight accumulation of GFP, similar to the wild type.
doi:10.1371/journal.pone.0049490.g005

C. elegans smg-8 Is Not Part of the NMD Pathway

PLOS ONE | www.plosone.org 6 November 2012 | Volume 7 | Issue 11 | e49490



10. Longman D, Plasterk RH, Johnstone IL, Caceres JF (2007) Mechanistic insights

and identification of two novel factors in the C. elegans NMD pathway. Genes
Dev 21: 1075–1085.

11. Sun Y, Yang P, Zhang Y, Bao X, Li J, et al. (2011) A genome-wide RNAi screen

identifies genes regulating the formation of P bodies in C. elegans and their
functions in NMD and RNAi. Protein Cell 2: 918–939.

12. Anastasaki C, Longman D, Capper A, Patton EE, Caceres JF (2011) Dhx34 and
Nbas function in the NMD pathway and are required for embryonic

development in zebrafish. Nucleic Acids Res 39: 3686–3694.

13. Kashima I, Yamashita A, Izumi N, Kataoka N, Morishita R, et al. (2006)
Binding of a novel SMG-1-Upf1-eRF1-eRF3 complex (SURF) to the exon

junction complex triggers Upf1 phosphorylation and nonsense-mediated mRNA
decay. Genes Dev 20: 355–367.

14. Mango SE (2001) Stop making nonSense: the C. elegans smg genes. Trends
Genet 17: 646–653.

15. Eberle AB, Lykke-Andersen S, Muhlemann O, Jensen TH (2009) SMG6

promotes endonucleolytic cleavage of nonsense mRNA in human cells. Nat
Struct Mol Biol 16: 49–55.

16. Huntzinger E, Kashima I, Fauser M, Sauliere J, Izaurralde E (2008) SMG6 is
the catalytic endonuclease that cleaves mRNAs containing nonsense codons in

metazoan. RNA 14: 2609–2617.

17. Unterholzner L, Izaurralde E (2004) SMG7 acts as a molecular link between
mRNA surveillance and mRNA decay. Mol Cell 16: 587–596.

18. Chiu SY, Serin G, Ohara O, Maquat LE (2003) Characterization of human
Smg5/7a: a protein with similarities to Caenorhabditis elegans SMG5 and

SMG7 that functions in the dephosphorylation of Upf1. RNA 9: 77–87.

19. Grimson A, O’Connor S, Newman CL, Anderson P (2004) SMG-1 is a

phosphatidylinositol kinase-related protein kinase required for nonsense-

mediated mRNA Decay in Caenorhabditis elegans. Mol Cell Biol 24: 7483–

7490.

20. Yamashita A, Ohnishi T, Kashima I, Taya Y, Ohno S (2001) Human SMG-1, a

novel phosphatidylinositol 3-kinase-related protein kinase, associates with

components of the mRNA surveillance complex and is involved in the regulation

of nonsense-mediated mRNA decay. Genes Dev 15: 2215–2228.

21. Yamashita A, Izumi N, Kashima I, Ohnishi T, Saari B, et al. (2009) SMG-8 and

SMG-9, two novel subunits of the SMG-1 complex, regulate remodeling of the

mRNA surveillance complex during nonsense-mediated mRNA decay. Genes

Dev 23: 1091–1105.

22. Zhuang JJ, Hunter CP (2011) Tissue specificity of Caenorhabditis elegans

enhanced RNA interference mutants. Genetics 188: 235–237.

23. Fischer SE, Butler MD, Pan Q, Ruvkun G (2008) Trans-splicing in C. elegans

generates the negative RNAi regulator ERI-6/7. Nature 455: 491–496.

24. Link CD, Taft A, Kapulkin V, Duke K, Kim S, et al. (2003) Gene expression

analysis in a transgenic Caenorhabditis elegans Alzheimer’s disease model.

Neurobiol Aging 24: 397–413.

25. Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77: 71–94.

26. Kamath RS, Ahringer J (2003) Genome-wide RNAi screening in Caenorhabditis

elegans. Methods 30: 313–321.

27. Hoogewijs D, Houthoofd K, Matthijssens F, Vandesompele J, Vanfleteren JR

(2008) Selection and validation of a set of reliable reference genes for

quantitative sod gene expression analysis in C. elegans. BMC Mol Biol 9: 9.

C. elegans smg-8 Is Not Part of the NMD Pathway

PLOS ONE | www.plosone.org 7 November 2012 | Volume 7 | Issue 11 | e49490


