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Abstract

Metastasis is one of the most enigmatic aspects of cancer pathogenesis and is a major cause of cancer-associated mortality.
Secondary bone cancer (SBC) is a complex disease caused by metastasis of tumor cells from their primary site and is
characterized by intricate interplay of molecular interactions. Identification of targets for multifactorial diseases such as SBC,
the most frequent complication of breast and prostate cancers, is a challenge. Towards achieving our aim of identification of
targets specific to SBC, we constructed a ‘Cancer Genes Network’, a representative protein interactome of cancer genes.
Using graph theoretical methods, we obtained a set of key genes that are relevant for generic mechanisms of cancers and
have a role in biological essentiality. We also compiled a curated dataset of 391 SBC genes from published literature which
serves as a basis of ontological correlates of secondary bone cancer. Building on these results, we implement a strategy
based on generic cancer genes, SBC genes and gene ontology enrichment method, to obtain a set of targets that are
specific to bone metastasis. Through this study, we present an approach for probing one of the major complications in
cancers, namely, metastasis. The results on genes that play generic roles in cancer phenotype, obtained by network analysis
of ‘Cancer Genes Network’, have broader implications in understanding the role of molecular regulators in mechanisms of
cancers. Specifically, our study provides a set of potential targets that are of ontological and regulatory relevance to
secondary bone cancer.

Citation: Vashisht S, Bagler G (2012) An Approach for the Identification of Targets Specific to Bone Metastasis Using Cancer Genes Interactome and Gene
Ontology Analysis. PLoS ONE 7(11): e49401. doi:10.1371/journal.pone.0049401

Editor: Matthias Dehmer, UMIT, Austria

Received July 5, 2012; Accepted October 11, 2012; Published November 14, 2012

Copyright: � 2012 Vashisht, Bagler. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: No current external funding sources for this study.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: bagler@ihbt.res.in, ganesh.bagler@gmail.com.

Introduction

Cancer is a disease of multiple systems and components that

interact at both molecular and cellular levels leading to initiation,

progression and spread of the disease [1,2]. The changing

interactions of these systems in a dynamic environment underscore

the inherent complexity of the disease. Until recently, cancer has

been studied with a reductionist approach focusing on a specific

mutation or a pathway. Lately there has been a tremendous

increase in systems-level study of cancer and the use of integrative

approaches to understand mechanisms of cancers [3,4] and their

metastases [5,6].

Metastasis is one of the most enigmatic hallmarks of cancers

characterized by complex molecular interactions [1,7]. It is

responsible for as much as 90% of cancer-associated mortality,

yet remains the most poorly understood component of cancer

pathogenesis [7,8]. Tumor metastasis is a multistage process

during which malignant cells spread from the primary tumor to

discontiguous organs [7]. Metastatic dissemination involves a

sequence of steps involving invasion, intravasation, extravasation,

survival, evasion of host defense and adaptation to the foreign

microenvironment [7,8].

Secondary bone cancer (SBC) is a complex disease involving

interplay of osteolytic and osetoblastic mechanisms [9] (Figure 1).

Bone metastases are the most frequent complication of breast and

prostate cancers with a very high propensity of metastasizing to

bone causing bone pain, fracture, hypercalcemia and paralysis

[10–13]. Breast and prostate carcinomas are often known to take

years to develop metastatic colonies (in a limited number of sites)

suggesting that in these cancers, cells employ distinct adaptive

programs to laboriously cobble together complex shifts in gene-

expression programs [14]. Many molecules and associated

pathways are reported to be involved in metastasis of cancer cells

from breast cancer [13,15–22] and those from prostate cancer

[10,18,23–30].

Cancers are characterized by hallmark processes and shared

mechanisms involved in expression of disease phenotype. It is a

challenge to identify such genes involved in generic cancer

mechanisms. Identification of such ‘generic cancer genes’ may

help us focus on ‘disease specific cancer genes’ of potential

therapeutic value. Due to complexity and subtle mechanisms

involved in metastasis, it is difficult to identify their control

mechanisms. Therefore it is important to have methods for

identification of genes and regulatory mechanisms that are key to a

complex pathogenic state such as secondary bone cancer.

Complex network models of interactomes, along with graph-

theoretical analysis and overrepresentation studies, present us a

useful strategy for probing molecules that are central to SBC

mechanisms and hence potential therapeutic targets.
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Cellular functions reflect the state of the cell as a function of an

intricate web of interactions among large number of genes,

metabolites, proteins and RNA molecules. A disease phenotype

reflects various pathobiological processes that interact in a

complex network and is rarely a consequence of abnormality in

a single effector gene product [3]. Understanding diseases in the

context of organizing principles of the architecture of biological

networks allows us to address some fundamental properties of

genes that are involved in disease. Study of disease protein

interactomes offer a better understanding of disease-specific genes

and processes involved and may offer better targets for drug

development. Molecular interaction networks are characterized by

the presence of a few highly connected nodes, often called hubs,

suggesting a special role of these promiscuous interactors. Hubs of

protein interactomes are more likely to be essential for the survival

[31] and also reported to be important for cellular growth rate

[32]. Proteins with high betweenness [33,34] are reported to have

much higher tendency to be essential genes [35,36]. Cancer

proteins are reported to be more central in the protein interactome

and are, on an average, involved in twice as many interactions as

those of non-cancer proteins [37].

The Gene Ontology [38] project provides an ontology of

defined terms representing gene product properties. The ontology

covers three domains: cellular component, parts of a cell or its

extracellular environment; molecular function, elemental activities

of a gene product at the molecular level and biological process, sets

of molecular events with a defined beginning and end, pertinent to

the functioning of integrated living units. GO enrichment methods

provide a way to extract biological insight from a set of genes using

the power of gene sets [39]. Enrichment analysis involves

identification of GO terms that are significantly overrepresented

in a given set of genes using statistical models such as

Figure 1. Regulatory mechanisms underlying metastasis to bone reflecting complex interplay of molecules. Bone metastasis results
from imbalance of normal bone remodeling process involving osteolytic (leading to bone destruction) and osteoblastic (leading to aberrant bone
formation) mechanisms. Breast cancer metastases are usually osteolytic, whereas prostate cancer metastases are usually osteoblastic. Osteolytic
metastasis: Osteolytic metastasis of tumor cells involves a ‘‘vicious cycle’’ between tumor cells and the skeleton. The vicious cycle is propagated by
four contributors: tumor cells, bone-forming osteoblasts, bone resorbing osteoclasts and stored factors within bone matrix. Osteoclast formation and
activity are regulated by the osteoblast, adding complexity to the vicious cycle. Tumor cells release certain factors including IL-1, IL-6, IL-8, IL-11,
PTHrP and TNF that stimulate osteoclastic bone resorption. These factors enhance the expression of RANKL over OPG by osteoblasts, tipping the
balance toward osteoclast activation thus causing bone resorption. This bone lysis stimulates the release of BMPs, TGFb, IGFs and FGFs for
stimulating the growth of metastatic cancer cells to bone. Osteoblastic metastasis: Factors released by osetoblastic cells, such as ET-1, Wnt, ERBB3,
VEGF play an important role in osteoblastic metastasis by increasing cancer cell proliferation and enhance the effect of other growth factors including
PDGF, FGFs, IGF-1. Osteoblast differentiation is also increased by BMPs through the activation of certain transcription factors. Urokinase Plasminogen
Activator (uPA), a protease, also acts as mediator for osteoblastic bone metastasis by cleaving osteoclast-mediated bone resorption factors
responsible for regulation of osteoclast differentiation; thereby blocking the bone resorption.
doi:10.1371/journal.pone.0049401.g001

Targets Specific to Secondary Bone Cancer

PLOS ONE | www.plosone.org 2 November 2012 | Volume 7 | Issue 11 | e49401



hypergeometric and chi squared distributions [40]. A large

repertoire of tools has been developed in recent years for

enrichment analysis [41,42]. Methods of network analysis and

enrichment studies have been effectively used to identify targets of

diseases such as chronic fatigue syndrome [43], major depressive

disorder [44], glioblastoma [45], colorectal carcinogenesis [46]

and primary immunodeficiency disease [47].

In this study, we aimed to identify secondary bone cancer

specific genes. Towards this goal, we used a composite strategy

(Figure 2) involving identification of cancer genes specifying

generic cancer mechanisms, compilation of genes implicated in

metastasis to bone and identification of genes annotated with GO

terms specific to secondary bone cancer, to obtain disease specific

targets. While network analysis provides a systems perspective of

complex molecular mechanisms and helps to identify its central

components (functional elements), gene enrichment method

enables identification of characteristic ontological features of the

gene sets. We first constructed a representative protein inter-

actome of all cancer genes and obtained hubs that are involved in

generic cancer mechanisms. Further, we compiled a set of

experimentally verified genes from the literature that is involved

in metastasis of primary breast and prostate cancer into bone, the

dominant cause of secondary bone cancer. Using a combination of

protein interactome analysis and gene ontology enrichment

studies, we obtained a set of genes (targets) specific to SBC

mechanisms. Our study provides an approach to identify targets

specific to a complex disease phenotype (bone metastasis) by

combining systems-level interactome analysis and ontological

studies.

Results

CGN as a Representative Interactome of Cancer
Mechanisms

We intended to construct an interactome that represents

mechanisms involved in processes contributing to cancers. For

this purpose we used genes listed in CancerGenes database [48], a

compilation of cancer genes that are causally implicated in

oncogenesis. We obtained 3164 cancer genes from CancerGenes

database, which were used to construct an interactome. These

genes were mapped on Human Protein Reference Database [49],

a database of curated proteomic information pertaining to human

proteins, to construct the Cancer Genes Network (CGN). CGN

thus represents an intricate network of cancer proteins. CGN

comprises 11602 interactions among 2665 proteins. Figure 3

depicts the CGN, a representative protein interactome of

molecular agents and their regulatory interactions, involved in

disease phenotype of cancers. Based on earlier reports [3], we

hypothesize that proteins that are key to the structural integrity

and interaction dynamics of CGN would correspond to proteins

involved in regulatory mechanisms generic to cancers.

Topologically Central Genes of CGN Correlate to Generic
Cancer Mechanisms

Molecular interaction networks have been reported to have a

scale-free nature marked by the presence of few hubs that are

critical for the networks [50]. Such hubs of protein interactomes

are reported to be more essential for the survival [31] and also

important for cellular growth rate [32]. Proteins with high

betweenness are reported to have much higher tendency to be

essential genes [35,36]. Cancer proteins are reported to be more

central in the protein interactome and are, on an average, involved

in twice as many interactions as non-cancer proteins [37]. As

reported for other biological molecular networks [50,51], we find

that CGN has a scale-free nature indicating presence of

exceptionally promiscuously interacting hub nodes and those

mediating a large number of interactions (Figure 4) [52].

We computed seven parameters that reflect topological features

(degree [53] and neighborhood connectivity [54]), network flow

(betweenness [33,34], stress [33,34] and average shortest path

length [55]) and local clustering (clustering coefficient [53,55,56]

and topological coefficient [57]). The ‘key’ proteins, that are

topologically and dynamically central to CGN, were identified by

network analysis. For this purpose ‘degree’, ‘stress’ and the

normalized counterpart of the latter, ‘betweenness’, were used for

identification of central proteins of CGN. We find that the selected

parameters show very high mutual positive correlations (Figure 5).

The best-ranked proteins from each of these parameters were

compiled, for various thresholds (Top25–Top200), to identify

proteins designated as ‘hubs’ (Set-A in Figure 2 and Table S1).

We find that the ‘hubs’ (Figure 3; Top75 threshold), thus

identified, include genes involved in regulation of processes known

to be generically present in most cancers [1]. Proteins known to be

involved in growth signals, thus leading to self-sufficiency in cancer

cells, such as TGFBR1, EGFR, IGFR1R, GRB2, are in the ‘hubs’

of CGN [2]. The hubs also include RB1, BCL2, AKT1, CDK2,

CASP8 which are involved in mechanisms of apoptosis, to which

cells are known to acquire resistance in all types of cancers [1,58].

The TP53 tumor suppressor protein, known to be involved in most

commonly occurring loss of proapoptotic regulation and affecting

the apoptotic effector cascade [59,60], is also present in the CGN

hubs. One of the hub proteins, SMAD4, is known to be involved

in differentiation, apoptosis and cell cycle [61]. MYC, known to

upregulate cyclins and downregulate CDKN1A (P21), is also one

of the hubs of CGN.

Further, we checked how well the identified hubs correlate with

KEGG-PIC [62], a collection of genes from generic pathways

involved in cancers (Table S2). Figure 6 shows the overlap of hub

genes (Top25 to Top200) with KEGG-PIC genes. We find that

indeed the Top25 hubs, comprising the most promiscuously

interacting proteins and mediating a large number of interactions

in cancer genes interactome, have a 74% overlap with KEGG-

PIC. The precision of identification of generic cancer proteins

drops as the definition of ‘hubs’ is relaxed further (57% for Top50

and 52% for Top75). As a negative control, for the ability of

network-metrics-based ranking to identify generic proteins, we use

genes ranked worst according to the selected parameters. We find

that these genes have a very poor overlap with KEGG-PIC genes,

even when compared to that expected from corresponding

random samplings (Figure 6). We treat Top25, Top50 and

Top75 CGN hubs as representatives of generic cancer genes and

use them, further, to identify SBC-specific targets.

GO Enrichment of CGN Hub Genes
We performed GO enrichment analysis of CGN ‘hub’ genes

identified. We expect the ‘hubs’ to represent generic cancer

processes which are shared by most, and perhaps, all types of

human cancers. The molecular machinery regulating prolifera-

tion, differentiation and death of all mammalian cells is highly

similar [1]. The genetic transformation of normal body cells results

in defects of regulatory circuits that govern normal cell prolifer-

ation and homeostasis, and collectively dictate malignant growth.

Cancer cells show self-sufficiency of growth signals involving

alteration of transcellular or intracellular mechanisms [2]. The

growth signaling pathways are suspected to suffer deregulation in

all human tumors [2]. This was reflected in the following

significantly overrepresented GO terms of CGN hubs: cellular

response to growth hormone stimulus (GO:0071378), regulation of

Targets Specific to Secondary Bone Cancer
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epidermal growth factor receptor signaling pathway

(GO:0042058), transforming growth factor beta receptor signaling

pathway (GO:0007179), signal complex assembly (GO:0007172).

In contrast to normal cells, which respond to antigrowth signals,

cancerous cells are insensitive to antigrowth signals due to

disruption of pathways related to cell cycle clock. We find that

our list of significantly enriched GO terms for CGN hubs had

many terms associated with cell cycle processes: mitotic cell cycle

G1/S transition checkpoint (GO:0031575), regulation of G1/S

transition of mitotic cell cycle (GO:2000045), DNA damage

response, signal transduction by p53 class mediator

(GO:0030330), regulation of stress-activated MAPK cascade

(GO:0007173).

In human carcinogenesis, all types of cancers are known to

acquire resistance to apoptosis [58]. The overrepresented GO

terms of CGN hubs underline this observation: release of

cytochrome c from mitochondria (GO:0001836), activation of

pro-apoptotic gene products (GO:0008633), cell-type specific

Figure 2. Strategy implemented for the identification of targets specific to secondary bone cancer. The strategy that was implemented
in this work comprised three tasks, leading to three corresponding gene-sets that were used for obtaining SBC-specific targets of potential
therapeutic value. (a) A compilation of cancer genes from CancerGenes database was used to construct a representative cancer genes interactome
(Cancer Genes Network; CGN) by mapping them on to a reference human protein interactome (Human Protein Reference Database; HPRD). Using
methods of network analysis, proteins that are central to CGN and interaction dynamics were obtained. These set of genes (SET-A; shaded area) was
found to be correlating well with genes implicated in generic cancer mechanisms (Figure 6) as well as those annotated as essential using mouse
phenotype data (Figure 8). The CGN, comprising of 11602 interactions among 2665 proteins, also serves as a reference set (universe) for gene
enrichment studies; (b) A set of genes (Secondary Bone Cancer Genes; SBCGs) that are implicated in metastasis to bone from primary breast and
prostate cancer, the most prevalent causes of bone metastasis, was compiled from literature. This set (SET-B) serves as a basis of genes and
ontological correlates of secondary bone cancer that characterize the disease phenotype; (c) Significantly enriched GO terms that characterize SBCGs
were obtained by overrepresentation analysis against the ‘cancer genes’ universe. SET-C, a subset of CGN, was obtained by segregating cancer genes
that were annotated with these SBC-specific ontological terms. Part of SET-C (hatched area; Set-c and Set-bc in Figure 10A) serves as a ‘source set of
target cancer genes’ that, both, carry ontological essence of SBCGs and are not involved in generic cancer mechanisms. SBC-specific targets (Figure 3
and Figure 10B), that are annotated with key GO terms (Figure 9) reflecting role in, both, bone processes and metastasis mechanisms, were further
obtained from the source set.
doi:10.1371/journal.pone.0049401.g002
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apoptotic process (GO:0097285), cellular component disassembly

involved in apoptotic process (GO:0006921), positive regulation of

anti-apoptosis (GO:0045768).

In addition, we find following significantly enriched ‘molecular

function’ terms: transforming growth factor beta receptor,

pathway-specific cytoplasmic mediator activity (GO:0030618),

receptor signaling protein tyrosine kinase activity (GO:0004716),

ephrin receptor binding (GO:0046875), MAP kinase activity

(GO:0004707), beta-catenin binding (GO:0008013), cytokine

receptor binding (GO:0005126), androgen receptor binding

(GO:0050681).

All the GO-terms mentioned above broadly support generic

cancer processes. The p-values for these ‘significantly enriched

GO terms of CGN Top75 hubs’ are in the range of 10e-4 and 10e-

13. Figure 7 depicts these overrepresented GO terms and statistics

of their prevalence.

Topologically Central Genes of CGN Correlate with
Biological Essentiality

We further checked the biological relevance of the central genes

of CGN. We divided CGN into two sets, essential and non-

essential, using Mammalian Phenotype Ontologies [63] to classify

genes as essential when they caused embryonic, perinatal,

postnatal or neonatal lethality in mouse models [64] using

phenotypic data from Mouse Genome Informatics (MGI) [65].

The percentage of essential genes were computed in the ‘hubs’ and

their corresponding non-hubs for varying hub definitions. Figure 8

shows the statistics for percentage of hub and non-hub genes

annotated as essential. Among the seven parameters computed,

the hubs identified using degree, betweenness and stress have a

significant percentage of essential genes (between 82% to 92%)

(Figure 8A). Incidentally, none of the remaining four network

Figure 3. CGN, a representative protein interactome of cancer genes, Top75 hub genes and SBC-specific targets. Cancer Genes
Network (CGN) is a protein interactome of cancer genes embodying molecular mechanisms of cancers. Each node represents a cancer protein and an
edge between two nodes represents a protein-protein interaction. The giant cluster comprises 89% of all cancer genes. The hubs of CGN, cancer
genes central to the structural stability and information dynamics, are depicted in shades of red. The hubs encode genes involved in generic cancer
mechanisms and those classified as essential using phenotypic data from Mouse Genome Informatics. 88% of these hubs are essential (‘dark red’) and
the rest non-essential (‘light red’). SBC-specific targets, with ontological role in bone and metastasis processes, are highlighted in ‘green’.
doi:10.1371/journal.pone.0049401.g003
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parameters show good correlation with biological essentiality. The

non-hubs, as expected from the random samplings statistics, have

around 50% of essential genes associated, regardless of the metric

used for ranking (Figure 8B). For hubs comprising of Top75 genes,

the chosen parameters have a very high proportion of essential

genes (between 88% and 89%), compared to the rest of the

parameters. Figure 3 depicts the central nature of Top75 hub

genes of CGN and highlights the essential and non-essential genes

among them. This emphasizes the relevance of the network

metrics chosen in encoding biological relevance. This is consistent

with earlier reports about hubs being more essential [64] and

network centrality of cancer genes [37].

SBCGs and their Characteristic GO Terms
Knowing that metastasis into bone is primarily caused by spread

from primary prostate and breast cancers [10–13], we aimed at

compiling genes linked with these processes. We compiled a list of

391 Secondary Bone Cancer (SBC) susceptible genes from

literature reporting experimental studies (Set-B in Figure 2 and

Table S3). For identifying the relevance of these genes in the

context of metastasis into bone, we performed an overrepresen-

tation analysis using CGN as universe. Gene ontology enrichment

studies of SBCGs are expected to reflect GO categories of

biological processes and molecular functions that are relevant for

metastasis into bone, consistent with the known aspects of

regulatory mechanisms of bone metastasis (Figure 1).

We identified 93 significantly enriched GO terms of SBCGs for

biological processes, molecular functions and cellular components.

We identify CGN genes annotated with either of these 93 GO

terms to construct ‘Enriched Genes’ set (Set-C in Figure 2). We

find that out of the 93 significantly enriched GO terms, 31 are

associated with metastasis or bone processes. Out of these 31 GO

terms, 21 are most relevant for metastasis mechanisms and 10 for

bone-related processes (Figure 9).

The following GO terms, that were significantly enriched, are

related to bone processes: osteoblast differentiation (GO:0001649),

regulation of bone remodeling (GO:0046850), endochondral

ossification (GO:0001958), replacement ossification

(GO:0036075), bone mineralization (GO:0030282), ossification

(GO:0001503), cartilage development (GO:0051216), response to

vitamin D (GO:0033280), collagen metabolic process

(GO:0032963), collagen fibril organization (GO:0030199).

The following biological processes GO terms, that were

significantly enriched, are related to mechanisms of metastasis:

leukocyte migration (GO:0050900), cell-cell adhesion

(GO:0016337), angiogenesis (GO:0001525), positive regulation

of cell adhesion (GO:0045785), negative regulation of cell

adhesion (GO:0007162), positive regulation of leukocyte migration

(GO:0002687), regulation of leukocyte chemotaxis (GO:0002688),

positive regulation of leukocyte chemotaxis (GO:0002690), posi-

tive regulation of catenin import into nucleus (GO:0035413).

Following molecular functions GO terms that were significantly

enriched, are related to mechanisms of metastasis: laminin binding

(GO:0043236), fibronectin binding (GO:0001968), fibroblast

growth factor receptor binding (GO:0005104), platelet-derived

growth factor binding (GO:0048407), extracellular matrix binding

(GO:0050840), collagen binding (GO:0005518), integrin binding

(GO:0005178), glycosaminoglycan binding (GO:0005539), cyto-

kine activity (GO:0005125), carbohydrate binding (GO:0030246).

Predicted SBC-specific Targets
For predicting SBC-specific targets of potential therapeutic

value, we logically juxtaposed the three sets of genes obtained:

CGN hub genes (Top75), SBCGs and the cancer genes annotated

with GO terms overrepresented for SBCGs (Figure 2 and

Figure 10). On the basis of specificity for secondary bone cancer,

as depicted in Figure 10A, the Venn diagram corresponding to

these gene sets was divided into seven distinct regions: Set-a, Set-b,

Figure 4. Scale-free nature of degree and betweenness distributions of CGN. The distributions of (A) degree and (B) stress (as well as its
normalized counterpart ‘betweenness’) show a scale-free nature. Dotted lines show the power law fit with an exponent of 22.85 and 22.13,
respectively. This indicates presence of promiscuously interacting proteins with high degrees and central mediators that play role in information
dynamics across the network, respectively.
doi:10.1371/journal.pone.0049401.g004
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Set-c, Set-ab, Set-bc, Set-ac and Set-abc. Overall, the sets

belonging to central genes of CGN (Set-a, Set-ab, Set-ac and

Set-abc) contain genes that are involved in generic cancer

mechanisms (Figure 6) and are also essential (Figure 8). Hence,

while obtaining SBC-specific targets, we don’t consider these gene

sets. Out of the rest of three sets, Set-b comprises genes that are

already reported to be associated with SBC mechanisms, hence

may not reveal novel genes. We focus on Set-c and Set-bc,

corresponding to non-generic cancer genes annotated with SBC-

specific GO terms and those reported to be having a role in SBC

mechanisms, respectively, for the search of novel SBC-specific

targets.

Set-bc and Set-c contain 53 and 134 genes, respectively. These

lists were refined to select only those genes that are annotated with

Figure 5. Heatmap of topological metrics computed for Cancer Genes Network. The heatmap of pair-wise correlations among seven
parameters that enumerate topological, dynamical and local clustering features of the network: betweenness, stress, degree, neighborhood
connectivity (neigh_conn), clustering coefficient (clust_coeff), average shortest path length (avg_short_paths) and topological coefficient
(topo_coeff). The heatmap highlights three parameters with very high mutual positive correlations (r = 0.8989, 0.9930 and 0.9210): degree,
betweenness and stress. The upper triangle of the heatmap depicts pair-wise correlations as pie charts. The lower triangle depicts positive and
negative correlations in shades of blue and red, respectively; the darker the color the stronger the correlation. Positive and negative correlations are
also depicted with right- and left-handed diagonal lines.
doi:10.1371/journal.pone.0049401.g005
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GO terms most relevant for SBC (Figure 9 and Table S4), to

obtain 28 and 60 genes from Set-bc and Set-c, respectively. We

find that, in these sets, we were still left with KEGG-PIC genes

known to be involved in generic cancer pathways. The list of

targets was refined further to obtain a total of 72 targets that are

non-generic to cancers and relevant for secondary bone cancer.

Out of these 72 genes, 14 genes are annotated with GO terms

relevant to bone processes, 51 with metastasis and 7 with both

(Figure 3). We predict these seven proteins, with ontological

relevance to bone processes as well as metastasis, to be most potent

targets and key regulators of metastasis into bone. The non-

generic SBC-specific targets, with relevance to metastasis and bone

mechanisms, identified are: SPP1 (Secreted Phospoprotein 1),

CD44 (Cluster of Differentiation 44), CTGF (Connective Tissue

Growth Factor), TNXB (Tenascin X), BMP1 (Bone Morphoge-

netic Protein 1), BMPR1A (Bone Morphogenetic Protein Recep-

tor, Type IA) and VWF (Von Willebrand Factor).

We find that the SBC-specific targets identified are indeed

relevant for the metastasis into bone and involved in regulation of

SBC mechanisms (Table S5). SPP1 is reported to interact with

CD44 receptor and is thought to exert pro-metastatic effects

leading to tumor progression by regulating the cell signaling events

[66,67]. CD44 is also reported to enhance integrin-mediated

adhesion and transendothelial migration of breast cancer cells

[68]. CTGF expression has been shown to be associated with

tumor development and progession. The overexpression of CTGF

in breast cancer cells may promote their metastasis to bone [69].

BMPR1A, belonging to the family of transmembrane serine/

threonine kinases, is reported to be necessary for extracellular

matrix deposition by osteoblasts, while not essential for osteoblast

formation or proliferation [70]. BMP1, which does not belong to

TGFb superfamily unlike other BMPs, is known to induce bone

and cartilage development. TNXB is an extracellular matrix

glycoprotein expressed in connective tissues including skin, joints

and muscles and in known to have role in cell-matrix and cell-cell

adhesion. It has been reported that TNX deficiency leads to the

invasion and metastasis of tumor cells by facilitating increase in the

activity of MMPs which results in the degradation of laminin. The

over-expression of TNX could be of potential therapeutic benefit

in reducing tumor progression [71]. VWF is a large multimeric

glycoprotein present in blood plasma and is produced constitu-

tively in endothelium, megakaryocytes and subendothelial con-

nective tissue. It has been reported that in osteosarcoma tumors

the expression of VWF gets deregulated, potentially leading to

metastasis [72].

Figure 6. Hubs of CGN correlate with generic cancer genes (KEGG-PIC). The hubs of CGN, identified using chosen network centrality
parameters, correlate with the set of generic cancer genes (KEGG-PIC). For hub definitions varying between Top25–Top200, the CGN hubs (top
ranked cancer genes) show good overlap with KEGG-PIC genes (filled circles). The correspondence of network centrality and generic role in cancers,
expectedly, drops as the strictness of criterion used for identifying hubs is loosened. For the corresponding random samples, the overlap with KEGG-
PIC is as expected (stars; error bars indicate standard errors from 1000 samples). The cancer genes with worst centrality rankings (open circles), show
almost no overlap with generic cancer genes; worse than that expected from random samplings. Top75, Top50 and Top25 hubs, with 52%, 57% and
74% overlap with generic cancer genes, respectively, were further used for identification of SBC-specific cancer genes.
doi:10.1371/journal.pone.0049401.g006
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Discussion

Towards our goal of identifying key targets specific for

mechanisms of metastases of primary breast and prostate cancers

to bone, we used network analysis and gene ontology enrichment

studies. The motivation behind using a combination of network

analysis and gene enrichment methods is that, while the prior

provides a systems perspective of complex molecular mechanisms

and helps to identify its central components (functional elements),

the latter enables identification of characteristic ontological

features of the gene sets. Secondary Bone Cancer (SBC) is a

complex disease triggered from the primary form of cancers, most

commonly through breast cancer and prostate cancer. Many

pathways and molecular regulators involved in the metastasis of

primary prostate cancer and breast cancer are well known.

Starting from SBC-related proteins and interactome of proteins

involved in cancer mechanisms, using network analysis and

Figure 7. Significantly enriched GO terms for hubs of CGN reflecting their role in generic cancer mechanisms. The overrepresentation
studies of Top75 CGN hubs reflect their role in generic cancer processes and functions. Among the significantly enriched GO terms, 17 represent self-
proliferation circuits (light-gray), 20 represent cytostasis and differentiation circuits (dark gray) and 4 represent viability circuits (black).
doi:10.1371/journal.pone.0049401.g007
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overrepresentation studies, we identify targets that are specific to

SBC.

The final list of seven targets was identified using generic cancer

genes obtained with Top75 hubs. We repeated this task with

Top25 and Top50 lists, which have better overlap with KEGG-

PIC genes (74% and 57%, respectively), as compared to that of

Top75 hubs (52%) (Figure 7). Using the procedure described, we

identified SBC-specific targets starting from Top25 and Top50

CGN hubs. Figure 11 illustrates the results of these experiments

obtained with better overlap with generic cancer genes (KEGG-

PIC). Using these thresholds we obtained 31 and 60 hubs,

respectively, which were filtered from the potential target set. This

resulted in increase in number of potential targets in Set-c to 141

and 139, respectively, compared to those obtained with Top75

hubs (134). There was no change in the number of genes (53)

obtained in Set-bc. Even with these criteria that correspond better

with generic genes, the number of targets (that are annotated with

GO terms relevant to metastasis and that of bone processes) does

not increase, indicating the soundness of criteria used for

identification of SBC-specific targets.

Network analysis has been shown to be a very useful and potent

tool in understanding the disease phenotype and probing for

therapeutic targets [3]. The identification of network parameters

relevant to the question(s) being asked is an important task. We

chose degree, betweenness and stress that are known to be

important in the topology of the disease interactome and dynamic

interplay of proteins involved [3]. These parameters were also

found to have very good correlation with ‘essential genes’

(Figure 8). The significant terms emerging from overrepresentation

analysis of CGN too support our choice of parameters (Figure 7).

Gene Ontology (GO) defines a set of functional terms related by

parenthood relationships forming a directed acyclic graph. It

produces sets of explicitly defined, structured vocabularies that

describe biological processes, molecular functions and cellular

components of gene products [38]. GO classification is expected to

become an increasingly powerful tool for data analysis and

functional predictions as the ontologies and annotations continue

to evolve [40]. It is characterized by high quality manual curation,

consistent annotation standards across species, and has the

advantage of lesser bias as compared to domain specific

classification schemes due to its comprehensive nature [40]. GO

enrichment methods, which provide means of identification of

significantly overrepresented GO terms, could be effectively used

to get biological insights from a given set of genes [40]. One of the

critical points in GO enrichment analysis is the selection of

background set for getting the correct results. In this study, we use

a pool of cancer genes (CGN) as universe, which serves the

purpose of a meaningful background set of cancer mechanisms.

Cancer is a complex genetic disease characterized by intricate

regulations among a diverse set of cancer genes. Hence, it is useful

Figure 8. The percentage of essential genes in the hubs and the corresponding non-hubs of CGN. A. For hub definitions varying
between Top25 to Top200, the hubs identified using degree (1, ‘red’), betweenness (2, ‘green’), and stress (3, ‘blue’) have significantly high
percentage (82%–92%) of essential genes, classified using phenotypic data for Mouse Genome Informatics. Among the rest of the four parameters
neighborhood connectivity (4) and topological coefficient (5) show neither significant nor consistent correlation with essential genes. Due to the
nature of ‘clustering coefficient’ and ‘average shortest path length’ parameters, the data could not be binned at the same intervals. For clustering
coefficient, percentage of essential genes among the nodes having up to Top200 rankings is in the range of 27% and 62%. For average shortest path
length, the percentage of essential genes for nodes having ranking up to Top200 is 26%, worse than expected from random sampling. B. In the
corresponding non-hubs, the percentage of essential genes is as expected from random sampling, regardless of the centrality measure or cut-off
used for hub definition.
doi:10.1371/journal.pone.0049401.g008
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to have a detailed map of interactions that could help in probing

hallmark regulatory modules and perhaps cancer-specific motifs.

Here, we used CancerGenes Database (CGDb) [48] as a premise

of cancer genes to construct a representative cancer interactome.

This could potentially be improved by compiling a more

exhaustive list of cancer genes. Though, we believe that the

ultimate set of generic cancer genes, central to the topology of the

cancer genes network, would not alter much, it may enrich the

data and enable a more meaningful analysis of subtle regulatory

features of cancer phenotype. It would be interesting to see

whether and how the modules of CGN reflect the hallmarks of

cancers. Also, while a few of the network centrality metrics for

cancer genes may enumerate biological essentiality, it would be

interesting to explore a larger parameter space to search for

Figure 9. Overrepresented GO terms of processes relevant and necessary for execution of bone metastasis. From the GO enrichment
studies of SBCGs, curated from literature, 21 GO terms relevant for metastasis (‘light gray’) and 10 GO terms relevant for bone (‘dark gray’) processes
were identified.
doi:10.1371/journal.pone.0049401.g009
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topological correlates of essentiality. We use KEGG-PIC genes as

a prototype of generic cancer mechanisms. There is scope for

improvement of this data by inclusion of generic genes through

curation from landmark studies [1,2,73,74]. We believe that better

metrics that embody structure and information dynamics over the

cancer genes interactome could be developed that are more

Figure 10. Venn diagrams depicting the strategy used for the identification of SBC-specific targets. A. Venn diagram legend
representing generic cancer genes identified by network analysis (CGN hub genes; gray area) and gene subsets used as a source of target genes that
are specific to bone metastasis (hatched area). In search of SBC-specific targets, the generic cancer genes were rejected and the potential source of
target genes was refined to obtain the final targets. B. Venn diagram depicting components of gene-sets identified using Top75 hubs. The source set
of target genes (53+134) was refined to obtain seven targets.
doi:10.1371/journal.pone.0049401.g010

Figure 11. Venn diagram of gene sets obtained with Top25 and Top50 CGN hubs. The Venn diagrams with generic gene-set (gray area)
and source set of target genes (hatched area) for (A) Top25 and (B) Top50 CGN hubs.
doi:10.1371/journal.pone.0049401.g011
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successful in elucidating the regulatory features characterizing

molecular circuitries of cancers.

In view of the complex and subtly intertwined regulatory

mechanisms of cancers, we modeled it as a network of protein

interactions and aimed to identify generic cancer genes that specify

hallmark features of cancers. We find that, indeed hubs of the

cancer genes interactome that are central to the structural integrity

and dynamical interplay of proteins, correlate with genes from

generic pathways of cancers. We believe that the methodology

presented here could be useful in obtaining cancer-specific targets

of potential therapeutic value.

Materials and Methods

Cancer Genes Network (CGN)
We used HPRD (Human Protein Reference Database) [49],

one of the most comprehensive resources of human protein-

protein interactions (PPIs), to construct a reference human protein

interactome. HPRD is a manually curated human protein-protein

interaction resource containing 36617 unique human PPIs and

9427 associated proteins (Release 9: April 13, 2010). It is one of the

best resources of human PPIs, containing the largest number of

binary non-redundant human PPIs, largest number of genes

annotated with at least one interactor, and largest citations of PPIs

curated [75].

The data of cancer genes involved in carcinogenesis were

compiled from CancerGenes database [48] (as on May 2012).

CancerGenes database is a compilation of cancer gene lists

annotated by experts with information from key publicly available

databases. Cancer associated genes are collected from various

sources such as Cancer Map Pathways, Sanger Cancer Gene

Census, Sanger Catalogue of Somatic Mutations in Cancer,

reviews on cancer, Entrez queries and prostate cancer list. This

data of 3164 cancer genes was used to compile a protein

interactome representing molecular mechanisms of cancers. The

interactions associated with proteins corresponding to these genes

were collected from HPRD [49]. This network was called CGN

(Cancer Genes Network), in which nodes represent cancer genes

and edges represent experimentally validated interactions between

a pair of genes i and j. Thus CGN is an intricate network of cancer

proteins, comprising of 11602 interactions among 2665 proteins. It

contains a giant cluster of 2376 proteins interlinked via 11590

interactions and the rest fragmented into minor clusters and

isolated nodes (Figure 3). To adjudge the scale-free nature of

degree and betweenness distributions of CGN, we tested the

power-law hypothesis and estimated the parameters for these

distributions with the technique based on maximum likelihood

methods and the Kolmogorov-Smirnov statistic (Figure 4) [52].

Secondary Bone Cancer Genes (SBCGs)
We curated and compiled 391 genes involved in ‘metastasis to

bone from primary prostate and breast cancer’ (167 and 230

genes, respectively), through literature mining (Set-B in Figure 2).

These genes were called SBCGs (Secondary Bone Cancer Genes).

We used following keywords to search for SBCGs: ‘‘secondary

bone cancer genes from primary prostate cancer’’, ‘‘secondary

bone cancer genes from primary breast cancer’’ (Pubmed) and

‘‘genes involved in metastasis of prostate cancer to bone’’, ‘‘genes

involved in metastasis of breast cancer to bone’’ (Google Scholar).

Table S3 provides the details of SBCGs compiled from the

literature.

Gene Ontology Analysis
Gene Ontology (GO) enrichment or overrepresentation analysis

allows one to identify characteristic biological attributes in a given

gene set. It is based on the hypothesis that functionally related

genes should accumulate in the corresponding GO category. We

used GOrilla [41], a tool to identify enriched GO terms, to obtain

biological attributes characterizing CGN hub genes as well as

SBCGs. It uses the hypergeometric distribution to identify

enriched GO terms in a given set of genes. We performed GO

enrichment using ‘two unranked lists of genes’ mode, with an

‘unranked target set’ in the background of an ‘unranked source

set’. We identify ‘significantly enriched GO terms’, for Biological

Process, Molecular Function and Cellular Components, with p-

value cut-off of 0.001 and those having at most 100 genes

associated with, in the source data (B#100). The latter criterion is

used to weed out terms those are too generic. The CGN Top75

hub genes (target) were enriched against all genes present in CGN

(source). Similarly, the SBCGs (target) were enriched against CGN

(source). These GO enrichment experiments help us obtain

biological attributes that characterize the CGN hubs and those

characterizing SBCGs, respectively, in the background of ‘cancer

genes’ universe.

We performed the GO enrichment studies at three different p-

values (0.01, 0.001 and 0.0001) for, both, SBCGs and CGN

Top75 gene-set. We found that the significantly enriched GO

terms obtained for BP, MF and CC were similar for p-values 0.01

and 0.001. For stricter p-value of 0.0001, we found that many of

the GO terms relevant for secondary bone cancer and with generic

role in cancer mechanisms, respectively, were lost. In the case of

SBCGs, 14 BP and 4 MF disease-specific GO terms were lost at p-

value 0.0001, including following key GO terms: angiogenesis

(GO:0001525), regulation of bone remodelling (GO:0046850),

bone mineralization (GO:0030282), collagen fibril organisation

(GO:0030199), integrin binding (GO:0005178), laminin binding

(GO:0043236), platelet derived growth factor binding

(GO:0048407) and regulation of chemotaxis (GO:0050920). In

the case of CGN Top75 gene-set analysis, 20 BP and 2 MF GO

terms were lost, including following GO terms important for

generic cancer mechanisms, at p-value 0.0001: cellular component

disassembly involved in apoptotic process (GO:0006921), positive

regulation of MAPK cascade (GO:0043410), positive regulation of

cell cycle process (GO:0090068), regulation of G1/S transition of

mitotic cell cycle (GO:2000045), mitotic cell cycle G1/S transition

checkpoint (GO:0031575), growth hormone receptor signaling

pathway (GO:0060396), response to fibroblast growth factor

stimulus (GO:0071774) and transforming growth factor beta

receptor signaling pathway (GO:0007179).

The value of ‘B’ (number of genes from the source set associated

with a given GO term) was chosen to increase the ‘signal’ (specific

GO terms) and to reduce ‘noise’ (non-specific GO terms). High

values of ‘B’ increase noise by populating the enrichment results

with non-specific GO terms; whereas small values of B reduce the

signal by rejecting specific and relevant GO terms. We performed

multiple experiments at different thresholds of B-values. (i) For

B#50, we missed 6 BP and 3 MF GO terms specific to SBC

including the following: positive regulation of cell adhesion,

angiogenesis (GO:0001525), cell-cell adhesion (GO:0016337),

cytokine activity (GO:0005125), glycosaminoglycan binding

(GO:0005539) and carbohydrate binding (GO:0030246). Similar-

ly, in the case of ACGN Top75 gene-set, 12 BP and 3 MF relevant

GO terms were lost including DNA damage response, signal

transduction by p53 class mediator (GO:0030330), regulation of

DNA replication (GO:0006275), positive regulation of cell cycle

process (GO:0090068), positive regulation of MAPK cascade
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(GO:0043410), Ras protein signal transduction (GO:0007265) and

response to UV (GO:0009411). (ii) For 50,B#100, we got most of

the relevant terms for both SBCGs and ACGN Top75 gene-set.

(iii) For B.100, almost all the terms obtained were non-specific

(noise). Hence, we chose B#100 to maximize the relevant GO

terms and to reduce the non-specific GO terms in the enrichment

results.

Protein Interactome Analysis
We performed network analysis of CGN to compute various

graph-theoretical metrics, using NetworkAnalyzer plugin of

Cytoscape [76]. We computed seven network centrality param-

eters based on network connectivity (degree [53] and neighbor-

hood connectivity [54]), network flow (betweenness [33,34], stress

[33,34], average shortest path length [55]) and local clustering

(clustering coefficient [53,55,56] and topological coefficient [57]).

Degree [53] corresponds to the number of nodes adjacent to a

given node v, where adjacent means directly connected. The

degree distribution P(k) of a network is then defined to be the

fraction of nodes in the network with degree k. Thus if there are

total N nodes in a network and nk of them have degree k, we have

P kð Þ~nk=N.

‘Neighbourhood connectivity’ [54] of a node v is defined as the

average connectivity of all neighbors of v. For a node v with kv

number of neighbors, the neighborhood connectivity is defined as:

nc(v)~

P
w[W

kw

kv

Where w is the set of neighbors of v, and kw is the degree of

each of the neighboring node.

‘Stress’ [33,34] and (its normalized counterpart) ‘betweenness’

[33,34] enumerate number of shortest paths from all pairs of

vertices passing through the node of interest. In a graph G~(V,E)
with N nodes, stress (str(v)) is defined as the total number of

shortest paths passing through a node v:

str(v):
X

s=v[N

X

t=v[N

sst(v)

Where, sst vð Þ is the number of shortest paths from s to t that pass

through vertex v. Betweenness is normalized (with the total

number of shortest paths in graph G;
X

s=v=t[V
s=t

sst) value of stress.

The higher the value of stress/betweenness, the higher is the

relevance of the protein as a critical mediator of regulatory

molecules and/or functional modules.

The average shortest path length [55] of a vertex v in graph G,

corresponds to the average of all the shortest paths between v and

the rest of the vertices. The average shortest path length of vertex v
is defined as:

asp(v):
X

w=v[V

dist(v,w)

(N{1)

Where V is the set of nodes in G,dist(v,w) is the shortest path

from v to w, and N is the number of nodes in G.

Clustering Coefficient Cv [53,55,56] of a node v is defined as:

Cv:
2ev

kv(kv{1)

Where kv is the number of neighbors of v and ev is the number

of connected pairs of nodes between all neighbors of v.

Topological Coefficient tc vð Þ [57] of a node v is defined as,

tc(v):

P
w=v[V

J(v,w)

kv

Where V is the set of nodes in G and J(v,w) is the number of

neighbors shared between the nodes v to w, plus one if there is a

direct link between v and w.

We used degree, betweenness and stress metrics for identifica-

tion of hubs of CGN. These metrics have been reported to be

useful in identification of hubs of biological relevance [31,35,36]

and those relevant to cancer [37].

Identification of Hub Nodes and their Controls
First, we ranked the genes of CGN for each of the chosen

parameters (degree, betweenness and stress). Then, we compiled

eight ‘hub gene-sets’ (called Top25, Top50, so on till Top200),

containing genes with ranks above the cut-off threshold, for each

of the three parameters (Table S1). Each of these hub gene-sets

contains hub genes identified by either of the three parameters.

Thus defined, the size of a hub gene-set may be up to three times

the hub cut-off threshold, depending upon the similarity between

the hubs identified by each of the parameters. Top25, Top50 and

Top75 hub gene-sets of CGN contain 31, 60 and 92 hub genes,

respectively. Figure 3 depicts the CGN hub genes identified using

Top75 hubs criterion. As a negative control for these hub gene-

sets, we identified the corresponding genes (from the bottom of

ranked lists), with lowest ranking for the chosen parameters. As

random controls, we randomly sample a corresponding number of

genes from CGN (1000 instances each).

Compilation of Genes Involved in Generic Cancer
Mechanisms (KEGG-PIC)

Cancer cell mechanisms could be envisaged as an elaborate

integrated circuit of intracellular signaling networks [1,2]. This

map of molecular mechanisms could be represented as a

combination of circuits and subcircuits with considerable cross

talk among them [1]. We compiled a set of (328) representative

genes known to be implicated in generic cancer mechanisms from

cancer pathways/circuits (Table S2). ‘Pathways in Cancer’ (PIC)

(hsa05200) from KEGG PATHWAY database, are representative

of generic cancer circuits. Here, we call this ‘generic cancer genes’

set KEGG-PIC [62]. KEGG-PIC comprise the following KEGG

pathways: colorectal cancer (hsa05210), pancreatic cancer

(hsa05212), thyroid cancer (hsa05216), acute myeloid leukemia

(hsa05221), chronic myeloid leukemia (hsa05220), basal cell

carcinoma (hsa05217), melanoma (hsa05218), renal cell carcinoma

(hsa05211), bladder cancer (hsa05219), prostate cancer

(hsa05215), endometrial cancer (hsa05213), small cell lung cancer

(hsa05222), non-small cell lung cancer (hsa05223) and glioma

(hsa05214).
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Mouse Phenotype Data
For inferring the biological significance of the network

parameters, we divided CGN into two sets, essential and non-

essential, using the phenotypic information of the corresponding

mouse ortholog [47,77]. It is assumed that human orthologs of

mouse genes could be mapped onto each other for their function

and biological essentiality. We considered the classes of embryon-

ic, perinatal, neonatal or postnatal lethality in mouse models as

lethal phenotypes, and the rest of the phenotypes as non-lethal

ones. The human orthologs of murine genes were considered as

essential, when the murine gene was annotated with one of the

following phenotypes [63]: neonatal lethality (MP:0002058),

embryonic lethality (MP:0002080), perinatal lethality

(MP:0002081), postnatal lethality (MP:0002082), lethality-postna-

tal (MP:0005373), lethality-embryonic/perinatal (MP:0005374),

embryonic lethality before implantation (MP:0006204), embryonic

lethality before somite formation (MP:0006205) or embryonic

lethality before turning of embryo (MP:0006206). The human-

mouse orthology and mouse phenotype data was obtained from

Mouse Genome Informatics [65] (May 2012). Out of a total 2665

cancer genes of CGN, 1315 (49.34%) were essential genes and the

rest 1350 (50.66%) were non-essential. For each hub definition,

from the hub-genes identified using each of the seven network

metric, we compute the percentage of hubs that are essential

(Figure 8A). We also found the percentage of essential genes in the

corresponding non-hubs (Figure 8B).

Venn Diagram
We logically juxtaposed the hubs of cancer genes network,

curated bone cancer metastasis genes and cancer genes annotated

with characteristic SBC GO terms to identify SBC-specific targets

(Figure 2). Figure 10A illustrates this process highlighting the hubs

of CGN (shaded area) that correspond to generic cancer genes and

subsets potentially containing genes specific to SBC (hatched area).

Figure 10B depicts the data when Top75 hubs of CGN are taken

into consideration. For this data, there are 92 hubs of which 21

(Set-ab and Set-abc) happen to be common with SBCGs and 9 of

those (Set-ac and Set-abc) are common to ‘enriched genes’.

Among the ‘secondary bone cancer enriched cancer genes’ 55 are

common to SBGCs (Set-bc and Set-abc). We find that, for this

data, there are 2 genes (Set-abc) that happen to be CGN hubs that

are common to SBCGs and are also annotated with characteristic

SBC GO terms. The logical juxtaposition results for the data of

Top25 and Top50 hubs of CGN are depicted in Figure 11A and

Figure 11B, respectively.

Prediction of SBC-specific Candidate Genes
We propose that the genes that are specific to secondary bone

cancer mechanisms would be annotated with characteristic GO

terms that are obtained from overrepresentation analysis of a

literature curated list of genes implicated in metastasis to bone.

From the ‘secondary bone cancer enriched cancer genes’, that

serve as a ‘source set of targets’ we filtered the CGN hubs (Set-ac

and Set-abc; shaded area) as they are generic to cancers (Figure 6)

and found to be correlating with essential genes (Figure 8).

Towards our aim of identifying SBC-specific targets, we focused

on genes in Set-c and Set-bc (hatched area in Figure 10). We

identified SBC-specific targets by refining these sets of genes to

obtain genes that are annotated with any of the GO terms

representing ‘bone processes’ as well as that of ‘metastasis’

(Figure 9) (Table S4). .

Supporting Information
In the supporting information we present the details of hubs of

CGN; the KEGG-PIC genes that serve as a reference set of

generic cancer genes; secondary bone cancer genes that were

curated and compiled; characteristic GO terms that were used to

obtain SBC-specific targets and relevance of SBC-specific targets

identified from experimentally validated studies. The supporting

information contains 5 tables, out of which Table S3 has 46

references, Table S4 has 23 references and Table S5 has 8

references.
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