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Abstract

The Meishan pig breed exhibits increased prolificacy and reduced neonatal mortality compared to commercial breeds, such
as the Large White, prompting breeders to introduce the Meishan genotype into commercial herds. Commercial piglets are
highly susceptible to hypoglycemia, hypothermia, and death, potentially due to limited lipid stores and/or delayed hepatic
metabolic ability. We therefore hypothesized that variation in hepatic development and lipid metabolism could contribute
to the differences in neonatal mortality between breeds. Liver samples were obtained from piglets of each breed on days 0,
7, and 21 of postnatal age and subjected to molecular and biochemical analysis. At birth, both breeds exhibited similar
hepatic glycogen contents, despite Meishan piglets having significantly lower body weight. The livers from newborn
Meishan piglets exhibited increased C18:1n9C and C20:1n9 but lower C18:0, C20:4n6, and C22:6n3 fatty acid content.
Furthermore, by using an unsupervised machine learning approach, we detected an interaction between C18:1n9C and
glycogen content in newborn Meishan piglets. Bioinformatic analysis could identify unique age-based clusters from the lipid
profiles in Meishan piglets that were not apparent in the commercial offspring. Examination of the fatty acid signature
during the neonatal period provides novel insights into the body composition of Meishan piglets that may facilitate liver
responses that prevent hypoglycaemia and reduce offspring mortality.
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Introduction

Although genetic similarities exist between oriental Meishan

and European commercial pigs such as the Large White, there are

significant morphological and physiological differences which are

the consequence of intense phenotypic selection [1]. Meishan

offspring are typically from larger litters, lighter at birth, slower

growing and have increased intramuscular fat content in

comparison to domestic European pigs [2]. However, Meishans

exhibit very low rates of neonatal mortality in comparison to their

European commercial counterparts [2,3,4]. Previous studies have

described important differences in endocrine and physiological

factors during gestation which regulate fetal growth and thereby

improve neonatal survival [5,6]. For instance, by late gestation, the

Meishan placenta is more vascular and therefore adapted to meet

the slower rate of fetal growth, in a larger number of fetuses, in

comparison to European breeds [3,5]. Furthermore, Meishan

offspring typically exhibit little variation in birth weight which may

limit competition between littermates, and potentially be a major

survival advantage [3]. In contrast, the offspring of commercial

large white pigs, show a much greater difference in birth weight

and often produce one or more low birth weight piglets, indicative

of growth restriction during gestation [3]. These piglets (typically

described as ‘‘runts’’) may then be unable to feed as regularly at

birth, due to increased competition from their normal sized litter-

mates and are therefore more susceptible to hypoglycemia,

hypothermia and death [7]. One important factor contributing

to neonatal hypoglycemia in Large White offspring is limited

reserves of hepatic fat and glycogen [8].

After birth, important physiological processes such as thermo-

regulation and growth require a rapid metabolic adaptation to

increase the rate of fatty acid and lactate oxidation, a function that

occurs primarily in the liver [9,10]. This produces a high

requirement for fatty acids that is provided by maternal colostrum

[11,12]. However, the newborn pig has a limited capacity for lipid

oxidation and formation of ketone body production, making them

highly dependent on glycolysis for meeting energy demands

[13,14,15]. Despite these difficulties, there are specific fatty acids

with a greater oxidative capacity, including oleic acid (C18:1n9C)

and shorter fatty acid chains (C ,14) [13]. These are oxidized

more rapidly than saturated fatty acids, such as palmitic (C16:0)

and stearic acid (C18:0), particularly in the presence of glycogen

[13]. In addition, other families of lipids, known as n-3 and n-6,

exceed the typical role of energy storage molecules and participate

in a variety of physiological processes, such as inflammation, and

skeletal as well as cardiac muscular growth. In particular,
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arachidonic acid (C20:4n4) and docosahexaenoic acid (C22:6n3)

are known to have significant anabolic effects during gestation and

in the newborn [16,17,18]. Cellular uptake of fatty acid induces

both oxidative and catalytic mechanisms that are regulated by

enzymes, including acetyl-coenzyme A (CoA) carboxylase, fatty

acid synthase (FAS), stearoyl-CoA desaturase (SCD)-1 and the

elongation of very long chain fatty acids (ELOVL)-6, which are all

active in the newborn liver but the effect of breed on the lipid

profile and handling is not known [19].

The liver has a major role in regulating glucose production,

glycogen synthesis and lipid handling and is likely to be a primary

determinant in the increased survival of Meishan compared with

commercial piglets especially as hypoglycaemia is a significant

contributor to mortality [7]. We therefore utilized a lipidomic

approach in order to compare differences in hepatic lipid

pathways over the first three weeks of newborn life between these

breeds. This techniques has provided new insights into our

understanding of complex lipid metabolic pathways in humans

[20] and animals [21]. We now report the first comparative

lipidomic analysis of the liver between two porcine breeds on

samples taken during the first three weeks of postnatal life.

Materials and Methods

Ethics Statement
All operative procedures and experimental protocols had the

required Home Office approval as designated by the Animals

(Scientific Procedures) Act (1986) and had local ethical approval

(Imperial College Wye).

Animals
Thirteen Meishan sows and seventeen commercial sows (Large

White cross) of known mating date and parity were used in this

study. All the animals were kept on the same commercial unit. All

piglets were weighed approximately 4 hours after birth and the

closest to the median weight were randomly assigned to be tissue

sampled on day 0 (Meishan n = 5; commercial n = 5), 7 (Meishan

n = 6; commercial n = 6) and 21 (Meishan n = 5; commercial n = 5)

of postnatal age. The ratio of males and females within each group

for the 0 and 21 day old groups was 2:1 and 1:1 for the 7 days

group of each breed. On each assigned day, the offspring were

humanely euthanized with an overdose of barbiturate anesthetic

(200 mg/Kg: Euthatal: RMB Animal Health, Stoke, UK). Liver

weight was noted immediately and samples were frozen in liquid

nitrogen and subsequently stored at 280uC until analysis. All the

homogenizations were performed using a gentleMACSTM closed

homogenizer (Milteny Biotec Ltd., Surrey, UK).

Biochemical Analysis
Determination of liver glycogen content. Glycogen con-

tent was determined using the method developed by Dalrymple

and Hamm [22]. The concentration of glucose released from this

reaction was measured by a colorimetric commercial assay

(Randox Ltd., Country Antrim, UK) and the results were

expressed as a concentration of milligrams of glycogen per gram

of tissue dissected.

Determination of liver triglyceride content. Hepatic lipid

content was assessed using the Folch method; briefly, 0.5 g hepatic

tissue was homogenized in a total volume of 10 ml cold

chloroform/methanol (2:1) and agitated for 20 minutes at room

temp followed by phase separation through centrifugation at

2000 rpm for 10 minutes [23].The concentration of triglycerides

obtained from this reaction was determined by colorimetric assay

(Randox Ltd., Country Antrim, UK) and the results were

expressed as a concentration of milligrams of triglycerides per

gram of tissue dissected.

Determination of liver phospholipid composition. Gas-

chromatography (GC) was used to determine the fatty acid

composition in phospholipids. The chloroform phase was evapo-

rated by applying a nitrogen stream and then 2 ml of hexane was

used to re-dissolve each sample. Samples were transesterified by

the method of Christie [24] and modified by Chouinard et al. [25].

Briefly, 40 ml of methyl acetate was added to the phospholipid

sample followed by vortexing. Then 40 ml of methylation reagent

(0.9 ml of 30% sodium methoxide in 4.1 ml methanol; Fisher

Scientific Ltd. Loughborough, UK) was added to each reaction.

The mixture was vortexed and allowed to react for 10 minutes at

room temperature and then 60 ml of termination reagent (0.2 g

oxalic acid in 6 ml diethyl ether) was added followed by vortexing.

200 mg of calcium was added and allowed to stand for 1 hour to

absorb the moisture. The samples were centrifuged for 5 minutes

at 3400 x g and the supernatant transferred to a gas chromatog-

raphy vial and used directly for gas chromatography. The fatty

acid methyl esters were then injected (split ratio 50:1) into gas

chromatograph (GC 6890; Agilent technologies Ltd, Stockport,

UK). Separation of fatty acid methyl esters was performed with a

Varian CP-Sil 88 (Crawford ScientificTM Ltd., Strathaven, UK)

capillary column with hydrogen as carrier gas. Oven temperature

was programmed from 59uC to 100uC at 8uC per min, then to

170uC at 6uC per minute and held for 10 minutes, and then to

240uC at 3uC per min and held for 10 min. The temperature of

the injector and detector were set at 255uC and 250uC. The fatty

acid methyl esters were identified by comparing the retention

times with a fatty acid methyl esters standard mixture (Sigma-

Aldrich Co LLC, Gillingham, UK) and the area percentage in

moles were used for the statistical analysis.

A total of 37 fatty acids were analyzed in this study and

included: saturated fatty acids: C4:0, C6:0, C8:0, C10:0, C11:0,

C12:0, C14:0, C15:0, C16:0, C17:0, C18:0, C20:0, C21:0, C22:0,

C23:0, C24:0. Monousaturated fatty acids: C14:1, C15:1, C16:1,

C17:1, C20:1, C24:1. Polysaturated fatty acid- Omega (n)-3:

C18:3n3, C20:3n3, C20:5n3, C22:6n3. Omega (n)-6: C18:2n6t,

C18:2n6, C20:3n6, C20:4n6. Omega (n)-9: C18:1n9t, C18:1n9C,

C20:1n9.

Gene Expression Analysis
Total RNA was extracted from 40 mg liver using a commer-

cially available kit (Qiagen Ltd., Crawley, UK), which included a

DNA purification step. The amount and purity of the extracted

RNA was determined using a Nanodrop (Thermo Fisher Scientific

Ltd. Leicester, UK). Total RNA (1 mg) was reverse transcribed

using a thermocycler (Thermo Fisher Scientific Ltd. Leicester,

UK). Quantitative PCR (qPCR) was performed using a Roche

Lightcycler 480 and SYBR technology (Roche, Burges Hill, UK).

For quantification of the gene expression we used 18s RNA

abundance as a housekeeping gene for the normalization of the

mRNA expression. Data were analyzed using the DDCT method

[26].

The qPCR primers were designed based on known porcine

sequences published on Genbank using online software (Primer3),

on intra-exonic boundaries where possible. A standard curve was

included and the samples were run in duplicate as well as having

the appropriate positive and negative controls. The primers used

were purchased from Eurofins MWG Operon GmbH (Ebersberg,

Germany) and validated as described in previous publications

[27]. The following porcine specific oligonucleotide forward (F)

and reverse (R) primers used were as follows:

Meishan Piglets and Hepatic Lipids
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FAS F: 59-CGGCTCACACACCTTCGT-39 and R: 59-

TGCTCCATGTCGGTGAACT-39

CoA F: 59-ACCAGGCAACTGAGGAACAG-39 and R: 59-

TCCAAGCCTCGAAGATGAGT-39

SCD-1 F: 59-CTGGTTTCATTGGGAGCTGT-39 and R: 59-

CGCTGGCAGAATAGTCATAGG-3

ELVOL-6 F:59-CCAATGGATGCAGGAAAAACT-39 and R:

59-GCCAAAGATAAAGGCAGCAT-39.

The primers for 18s have previously been published [27].

Data Analysis
Statistical analysis. Data obtained from the liver phospho-

lipid composition was filtered of poorly measured fatty acids

(defined as fatty acids with percentiles below 0.01%). All data were

evaluated using SPSS 16.0 (SSPSH Inc. Chicago, USA) for

windows applying General Linear Model analysis and adjusted by

Bonferroni correction. Only differences between postnatal age and

breed, including a correction for sex, with p,0.05 were considered

as significant. In all the cases, the results are given as mean 6

SEM.

Unsupervised analysis. The R-package gplots was used for

hierarchical clustering analysis of two lipid profiles to identify

groups within each breed independently. Clustering results are

presented as dendograms and heatmaps. We used the class

discovery module of the public online software ArrayMining.net

[28] (http://arraymining.net/), originally developed for micro-

array data to assess the clustering results obtained from various

clustering algorithms. Additionally, Matlab (MathWorksH Inc.

Natick, USA) was used for the principal component analysis

(PCA).

Machine learning analysis. We have also processed the

lipid profile data using machine learning (ML) techniques to

measure the predictability of these samples and identify key

variables involved in these predictions; these techniques have been

applied to a diverse range of data sets by the authors [29,30]. To

this aim we have used an analysis procedure that was recently

applied to identify novel regulators of seed germination from

transcriptomics data [31]. The core of this analysis procedure is a

rule-based machine learning system called BioHEL [32] (http://

icos.cs.nott.ac.uk/software/biohel.html). BioHEL automatically

generates, from a set of samples, a series of production rules (an

example of a high-quality rule set is available in the results section)

that contain human-readable explanations of why a given sample

belongs to a class (e.g. commercial vs. Meishan pigs, or 0-day

samples vs. 7/21 day samples). To evaluate the prediction capacity

of BioHEL we have employed the leave-one-out procedure, where

we generate a rule set using all samples except one and validate the

prediction capacity of the generate rule set on the remaining

sample. This procedure is repeated as many times as samples,

using each time a different one as test. We have evaluated the

prediction capacity of several scenarios: Meishan vs. Commercial

(tested separately for each of the three age groups), 0 days vs. 7

days vs. 21 days (separately for Meishan and Commercial pigs)

and two variants of the latter: 0 days vs. 7+ days and 7- days vs. 21

days. In total we are evaluating 9 scenarios.

Results

Body Growth and Liver Characteristics
As previously observed by Mostyn et al., [33] commercial piglets

were significantly heavier than the Meishan group throughout the

study (Figure 1A). In both breeds, liver weight increased with age,

however, this was only significantly different between the Meishan

and commercial groups after one week of postnatal age (Figure 1B).

Interestingly, despite these increases in liver weight, there is a clear

disparity in the rate of liver growth in commercial piglets during

the postnatal period in relation to the increase in global body

weight and in relation to the Meishan group. Thus, at 7 days of

age the commercial offspring had a lighter liver relative to their

body weight compared to the Meishan group, this reduction in

liver growth persisted until 21 days of age when they had a

relatively smaller liver compared to the measurements observed at

birth (Figure 1C).

At birth, the Meishan group had a trend for higher hepatic

triglyceride content, which subsequently declined with age

(Figure 2A). A significant reduction in hepatic glycogen was

observed up to day 21 in the Meishan piglets (Figure 2B).

Effects of Breed and Age on Hepatic Fatty Acid
Composition

Only five fatty acids analysed during this study showed

significant differences between breeds, with the most variable

lipid profile observed in the Meishan newborn. Among the two

breeds, the proportions of most saturated fatty acids were similar,

however, a reduction in the proportion of stearic acid (C18:0;

Figure 3A) was observed on day 0 in the Meishan piglets.

Compared with commercial piglets, day 0 Meishans had a

significant increase in oleic acid (C18:1n9C) (Figure 3B). Eicose-

noic acid (C21:0n9) was also increased in day 0 Meishan livers

and, as observed with oleic acid, it declined with age (Figure 3C).

Among n-6 fatty acids, docosahexaenoic acid (C22:6n6) was lowest

at birth in Meishan pigs, increasing with age and showing similar

values at 7 and 21 days of age (Figure 3D), a similar pattern was

observed for of the n-3 fatty acid n-3 arachidonic acid (C20:4n3)

(Figure 3E).

Lipidomic Analyses
To explore whether the changes in lipid pathways in the liver

were unique to the Meishan breed at birth, we performed

lipidomic analysis of the most common 18 fatty acid species. To

capture all the alterations in lipid profiles, we first performed

unsupervised hierarchal cluster analysis for each breed, focusing

on lipid species independent of any significant differences. Each

column (Figure 4a and 4B) represents a single lipid profile across

the sample data set and each row corresponds to a single animal

sample. The percentile value of each fatty acid was transformed by

centring and scaling values in a column direction. Transformed

values are represented by a colour code, with green and red

representing a score above, or below the mean percentile,

respectively. The intensity of the colour corresponds to the

magnitude of the deviation from the mean. Through this analysis,

the lipid samples extracted from Meishan piglets were segregated

into two independent clusters: one single cluster included all the

newborn Meishans in addition to a single 7-day-old offspring and

the rest of the age groups were incorporated into a second cluster

(Figure 4A). All available clustering methods of the class discovery

module of the Arraymining.net tool [28] generated these two

clusters as their best scoring clustering result for the Meishan

piglets.

Interestingly, analysis of the commercial piglets regardless of age

was unable to identify any substantial age-based cluster (Figure 4B).

This is consistent with the results from the class discovery module:

all the methods identified as their best scoring clustering resulted in

a large cluster with 13 piglets from all ages, with the remaining

three piglets in two small clusters of size composed by different age

piglets. Classical standardization of samples gave the same

clustering results for both breeds.

Meishan Piglets and Hepatic Lipids
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Similar results for the unsupervised analysis of the two breeds

were obtained by principal component analysis (PCA). Plotting the

first two principal components shows a clear separation of the

newborn Meishan piglets (Figure 4C). For the commercial group,

however, the PCA plot does not show a separation of any group

(Figure 4D), suggesting that the changes in lipid metabolism at

birth are highly heterogeneous in this breed. The first two

components explain 90.9% and 87.3% of the total variance within

the two lipid datasets of the Meishan and commercial piglets,

respectively. Next, we calculated the association between the

different fatty acids and the ability of the liver to produce glycogen

by employing the BioHEL machine learning system, which was

able to predict developmental outcome and differentiate the

newborn from the 7 and 21 day old samples in Meishans with an

accuracy of 81.25%. For this scenario BioHEL was able to

generate a very simple rule set (Figure 5) with just two rules and

using only glycogen and C18:1n9c. This can be summarised as

follows:

If glycogen .1.21(mg/ml) and C18:1n9C .13.5 mole%

predict age 0.

Everything else R predict age 7+.

Similar to the results obtained from clustering and PCA data,

BioHEL was not able to generate accurate rules to identify the

newborn from the Large White breed age groups.

Expression of Genes Associated with Fatty Acid Uptake,
Elongation and Mitochondrial Biogenesis

To further assess the changes in liver metabolism at birth

among the two breeds, we performed real-time quantitative PCR

of the genes involved in several aspects of lipid uptake, transport

and metabolism. Hepatic expression of FAS, CoA and ELOVL-6

were similar between breeds. We detected a significant increase of

SCD-1 n-9 desaturase expression in the liver of new born

commercial piglets, compared to Meishan piglets (Figure 6). No

differences were observed between breeds at 7 or 21 days (data not

shown).

Figure 1. Body and liver weight with age and breed. Influence of breed on early growth in Meishan (open bars) and commercial (closed bars)
piglets during the first 21 days postnatal life. (A) Changes in body weight, (B) Changes in liver weight and (C) Relative liver weight. A; p,0.05:
statistical difference between the Meishan breed age groups, B; p,0.05: Statistical difference between the commercial age groups, C; p,0.05:
Statistical difference between the 0 and 7 day old in comparison to 21 days old commercial breed group and *; p,0.05: Statistical difference between
the same postnatal age groups. Bar graphs illustrate means 6 SEM.
doi:10.1371/journal.pone.0049101.g001

Meishan Piglets and Hepatic Lipids
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Figure 2. Liver composition between age and breed. The effect of breed and postnatal age in liver composition between Meishan (open bars)
and commercial (closed bars) piglets: (A) Triglyceride content and (B) glycogen content. *; p,0.05: statistical difference between the same postnatal
age groups. Bar graphs illustrate means 6 SEM.
doi:10.1371/journal.pone.0049101.g002

Figure 3. Fatty acid profiles. Differences of the major fatty acids in the livers of Meishan (open bars) and commercial (grey bars) piglets over the
first 21 days of postnatal life. (A) stearic acid, (B) heptadecanoic acid, (C) oleic acid, (D) eicosenoic acid (E) arachidonic acid, (F) docosahexaenoic acid.
A; p,0.05: statistical difference between the 0 and the other age groups within Meishan breed group. B; p,0.05: Statistical difference between the
same postnatal age groups. Bar graphs illustrate means 6 SEM.
doi:10.1371/journal.pone.0049101.g003

Meishan Piglets and Hepatic Lipids
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Discussion

We have demonstrated distinct differences in hepatic lipid

composition and substrate regulation between Meishan and

Commercial piglets at birth that are likely to reflect divergent

developmental profiles between breeds in utero. These are likely to

contribute to the greater ability of Meishan piglets to survive after

birth.

Meishan Livers Possess a Lipid Profile that could Enable
them to be Better Adapted to Withstand Food Shortages
after Birth

Despite porcine colostrum being rich in fat [12], newborn

piglets are highly susceptible to hypoglycaemia [34], especially

those with faster growth rates, such as commercial breeds

[4,10,35] who maintain hepatic glycogen production (Figure 2B).

Maintenance and or production of hepatic glycogen, although

necessary to meet sudden nutritional shortages and sustain

metabolism, occurs at the expense of plasma glucose and may

be a cause of hypoglycaemia in this breed [7]. A major challenge

to the newborn pig is to adapt to the substantial changes in dietary

composition at birth; switching to a diet low in carbohydrate but

high in fat that is the opposite of the in utero nutritional

environment [36]. During the first weeks of postnatal life there

is inefficient oxidation of long-chain fatty acids in neonatal pigs for

liver gluconeogenesis, due to an immature capacity of mitochon-

drial transport [37] and a reduction in pancreatic lipase activity

[10]. The lipid profile of the Meishan piglets at birth may offer

important insights as to how they evolved to meet this challenge.

Although stearic acid (C18:0) is one of the most abundant dietary

fatty acids and can also be obtained through de novo synthesis we

observed a substantial reduction in the hepatic content for both in

newborn Meishan [38]. In contrast, oleic (C18:1n9C) and

eicosenoic acid (C20:1n9) which are both derived from stearic

acid (C18:0) increased, whereas palmitic acid (C16:0) (a potential

substrate for C18:0) was unchanged [39]. We propose that the

source of both omega-9 fatty acids was from the conversion of

stearic acid to n-9 fatty acids during gestation. This may be

advantageous for the newborn Meishan as oleic acid can be

oxidised or incorporated in triglycerides by the liver more rapidly

than stearic acid [13,38]. In addition, we found a reduction in

hepatic gene expression of SCD-1 in newborn Meishan piglets.

This is a key enzyme involved in the desaturation of stearic acid to

oleic acid [40] and is suppressed by a diet rich in oleic acid, leading

to increased lipid oxidation and glycogen depletion [38]. The

developmental ‘‘rules’’ we generated using supervised learning

algorithms (BioHEL) were able to recognize the interaction

between oleic acid and glycogen as a unique feature for the

Figure 4. Heat maps and principal component analysis of fatty acid profiles. Heat maps and dendrograms visualizing the hierarchical
clustering results (average linkage, Euclidean distance metric) of Meishan (A) and commercial piglets (B). Rows correspond to animals and the
corresponding age group is indicated by coloured circles. The fatty acid mole percentiles were transformed to a z-score and indicated by a colour
code, with red representing low percentiles and green high percentiles. Principal component analysis (PCA) plots of all Meishan (C) and all
commercial piglets (D).
doi:10.1371/journal.pone.0049101.g004

Meishan Piglets and Hepatic Lipids
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Meishan breed at birth. In contrast, due to the heterogeneity in the

lipid profiles in the commercial group at birth, BioHEL was

unable to find such a ‘‘rule’’ for this breed. These observations

suggest that the Meishan liver passes through a series of prenatal

adaptations that enable the newborn to better adapt to the

postnatal nutritional environment, thus increasing their chances of

survival.

Differences in Hepatic Lipid Profile at Birth and the
Potential Impact of the Ability of the Meishan Placenta to
Select and Limit the Maternal-fetal Exchange of Nutrients

We have identified differences between hepatic composition and

lipid profile between Meishan and commercial piglets that may

determine neonatal survival [3,4,41]. It is known that Meishan

sows possess an endocrine network capable of discriminating

nutrients that affect placental development and anatomy, reducing

fetal growth without compromising neonatal viability [3,42,43].

This is in contrast to European breeds, particularly during the last

weeks of gestation, whose offspring appear to rely on placental

growth to increase nutrient uptake [3,5]. Therefore, in commercial

piglets, this lack of regulation in placental expansion can

compromise offspring viability and may be one factor contributing

to large variations in size between littermates mediated by

competition for nutrients and uterine space [3,5].

The majority of the fatty acids accumulated in the fetus during

gestation are derived via placental transfer [16] for which only

trace amounts cross the swine placenta [44]. It is known in humans

that specific metabolic pathways exist that facilitate the transfer of

C20:4n6 and C22:6n3 [16] and both are considered to be essential

because of the absence of the enzymes needed for their synthesis.

Both n-3 and n-6 fatty acids are necessary for the activation of

prostaglandins that induce growth in several tissues, including

skeletal muscle and brain [18,45]. The limited accretion of these

fatty acids in the livers of Meishan fetuses may limit fetal growth

[18,45]. In response to starvation, the most common cause of

piglet death, liver glycogen stores are rapidly depleted [46] as

other energy body reserves, such as fat, represent only between 1

to 2% of the total body weight in European commercial breeds

[47]. A greater abundance of triglycerides in the livers of newborn

Meishan piglets may provide an initial alternative energy source

that is depleted by one week of age. As the liver to body weight

ratio in the Meshian piglets remains constant during the first 21

days of life, it is possible to conclude that this organ may play a

Figure 5. Graphical representation of the interaction between glycogen and oleic acid in Meishan piglets. Graphical representation of
the rule set generated by BioHEL to separate between newborn and 7+ day samples in Meishan pigs based on the measurements for C18:1n9c and
glycogen. Each Meishan offspring is represented by a circle and is colour coded as indicated. The marked area corresponds to the parameters that are
included in this rule.
doi:10.1371/journal.pone.0049101.g005
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more important role their survival compared with commercial

piglets.

Changes in Meishan Lipid Profile are the Result of
Adaptation to the Postnatal Nutritional Environment

One surprising observation from our study was the substantial

differences in the lipid profile between the newborn and older

Meishan piglets. These changes in hepatic fatty acid abundance

suggest an enhanced ability to respond to the changes in nutrition

and are in accordance with previous studies demonstrating

enhanced lipid accretion that is indicative of greater metabolic

maturity [10].

The rapid changes in hepatic fatty acid content with age could

be a response to the comparatively low metabolic need for

muscular development and thermogenesis by Meishan piglets

during this period [33,48]. Interestingly, one seven day old

Meshian piglet was clustered together with the newborn group;

upon further examination this piglet was characterised as failing to

grow thereby offering an explanation for its immature lipid profile.

In hepatic tissue, a reduction in mitochondrial number has been

observed in newborn commercial pigs, suggesting limited fatty acid

oxidation [8], possibly explaining why the lipid composition of

adipose tissue resembles the fatty acid profile of colostrum [34,49].

After the first day of postnatal life carnitine-stimulated oxidation of

palmitate increases in the liver and a range of other tissues

suggesting the ability of piglets to utilize fat improves with age

[50]. The lack of any change in liver lipid profile and triglyceride

content with age in the commercial breed suggests mobilisation of

lipids from alternative depots [51]. This limitation of liver

oxidation appears also to be present in newborn Meishan piglets

as the gene expression of key lipogenic enzymes is similar, again

highlighting the importance of colostrum in early neonatal

survival. Variations in milk lipid and hormonal composition are

observed between porcine breeds with Meishan sows producing

milk containing more fat and triiodothyronine and less leptin

[12,34,52].

Conclusion
This is the first lipidomic study in the neonate that has shown

distinct differences in hepatic lipid prolife between two porcine

breeds. We detected a difference in the lipid profile ontogeny in

the newborn Meishan and were able to identify five different fatty

acids that may play important roles in postnatal growth and

metabolism as well as potentially revealing important interactions

between fetus and placental nutrient exchange during gestation.

Further investigations are now needed to evaluate whether the

differences in hepatic lipid profiles interact with other tissues

during this period of accelerated growth, particularly in adipose

tissue and skeletal muscle.
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Figure 6. mRNA expression of hepatic metabolic genes between breed and age. mRNA abundance of FAS, SCD-1, ELOVL-6 and CoA in the
liver of newborn Meishan (open bars) or commercial (closed bars) piglets as determined by real time PCR. Bar graph illustrates means 6 SEM with
statistically significant differences between groups represented by *p,0.05.
doi:10.1371/journal.pone.0049101.g006
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