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Abstract

In this work we show that in genome-wide association studies (GWAS) there is a strong bias favoring of genes covered by
larger numbers of SNPs. Thus, we state here that there is a need for correction for such bias when performing downstream
gene-level analysis, e.g. pathway analysis and gene-set analysis. We investigate several methods of obtaining gene level
statistical significance in GWAS, and compare their effectiveness in correcting such bias. We also propose a simple algorithm
based on first order statistic that corrects such bias.
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Introduction

A large number of genome-wide association studies (GWAS)

have been conducted in recent years. The purpose of such studies

is screening for genetic markers that are associated with common

diseases. The loci of genetic markers, and eventually genes at those

loci, are further investigated on their roles in the etiology of

disease, which may lead to a combination of improved diagnosis,

treatment, and preventative measures.

In a typical GWAS, all subjects are genotyped at hundreds of

thousands, and up to a couple of millions, DNA markers that are

pre-selected to cover the entire genome. Usually, p-values are used

to assess statistical significance at each DNA marker, and

susceptible loci are identified where DNA markers have p-values

lower than a specified threshold. The threshold is determined with

the goal of controlling the number of expected false positives and

adjusted for multiple testing. The genes that are in close proximity

of the most significant loci are often treated to be the most relevant

to the analyzed trait and are investigated in the downstream

analysis. For example, in two recently published GWAS studies,

Timmann et al. [1] suggests that ATP2B4 is related to severe

malaria based on the fact that several associated SNPs are inside

the genes; and Dunlop et al [2] suggested that CDKN1A, POLD3

and SHROOM2 are related to colorectal cancer as association are

found in nearby SNP loci. We argue here that genes near the most

significant SNP markers are not necessarily the most relevant to

the disease in question and it is not always appropriate to select

genes near the most significant markers for the purpose of gene-

level analyses such as pathway analysis and gene-set analysis [3,4].

Since there is a large variation in number of markers covering each gene, this

selection process based on p-value at individual markers is biased toward genes

saturated with SNPs. For example, consider a case-control study with

1,000 cases and 1,000 controls. Suppose gene A has a single SNP

and that its frequency of a risk genotype is 5% in the control

population and 6% in the case population. The power to detect

the difference is 361025 at the significance level of 1026 [5] if the

Pearson Chi-Squared test is used, and slightly higher if the G-test is

used (4.361025 according to our simulation). Now consider gene

B, which has 100 SNPs but has no association with the disease.

The probability of at least one of the 100 SNPs obtaining a p-value

,1026 is approximately 1024. Thus, with a p-value cut-off at

1026, Gene A is less likely to be selected than Gene B, even if the

former is disease related and the latter is not.

Furthermore, if gene sets (pathways, functions etc.) are different

in average genes sizes, then having a bias towards genes with

larger number of SNPs in GWASs may result into subsequent bias

of favoring pathways that relate to larger genes on average in

subsequent gene set enrichment analysis.

Results

Bias in Reported GWAS Genes
From the above arguments, we hypothesize that among genes

reported by GWASs there is a bias favoring genes of large size as

they usually contain more SNP markers. To verify our hypothesis,

we examined 2,504 reported disease/trait related genes (TRGs)

available from A Catalog of Published Genome-Wide Association Studies

[6]. The catalog includes genes reported in more than 800

genome-wide associating studies; each used at least 100,000 SNP

markers before filtering. Only those genes that has SNP markers

with p-values ,1025 were ascertained in the database, resulting

4,736 implicated genes, of which 2,504 are unique. We compared

the distribution of the number of SNPs in reported TRGs (solid

line, Fig.1) to the distribution in all 26,125 genes annotated in the

NCBI dbSNP [7] (dashed line, Fig. 1). It is clear that those

reported TRGs tend to have more SNPs than the average of genes

present in human genome. The average number of SNPs per

reported TRG was 1,715, almost three times more than of all
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genes, which is 638. The comparison of the two distributions

(Fig. 1) using the two-sample Kolmogorov-Smirnov test resulted in

high statistical significance (p-value = 8.116102144), which indi-

cates that there is indeed a notable bias in GWASs reporting genes

containing a larger number of SNPs.

Gene Size Differences Among Gene Sets
To examine if the gene size differs among gene groups, we

obtained a list of Gene Ontology categories of the highest

hierarchical level under the section of ‘‘Biological Process’’ [8]

(Table 1). Out of 33 total classes, three (GO:0006794,

GO:0006794, GO:0015976) had no associated genes in human,

and two (GO:0019740, GO:0009758) had low number of genes (1

and 2 respectively), which left us with the remaining 28. Number

of SNPs was assigned to each gene as described in the method

section. One-way ANOVA is used to test the null hypothesis that

mean SNP numbers per gene in each GO category are equal and

p-value of the F-test is 1.8861028. This suggests that these gene

sets are different in average genes sizes. In order to further

investigate this issue we performed the same analysis on sets of

categories of two subsequent hierarchical levels, which consisted of

421 and 3,514 categories respectively. Filtering out categories with

0 or only 1 human gene in them resulted in 283 and 1,711

categories respectively. One-way ANOVA test resulted with a p-

value = 2610216 for the second level and a p-value = 2610216 for

the third.

Correction of the Bias
We evaluated five methods for the correction of the bias. Two of

them, VEGAS [9] and GATES [10], has been recently proposed

to obtain gene-level statistical significance in GWAS. Although the

original goal of both methods is to improve the power of detecting

disease associated genes, such approach in principle should also

correct, at least partially, the gene size bias in SNP based tests. We

also included two simple methods in the comparison, Fisher’s

combined probability test [11], and Simes test [12]. Both methods

Figure 1. Distribution of the number of SNPs in log2. TRG – solid line, all genes – dashed line.
doi:10.1371/journal.pone.0049093.g001
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assume that the tests at individual SNPs are independent. In

addition, we also proposed a simple method to correct for the size

bias. For each gene we suggest adjusting the significance measure

by padj~1{(1{p(1))
Ma

, where p(1) is the smallest p-value of M

SNP markers in a gene, and a is a tuning parameter that accounts

for the degree of non-independence among the SNPs. We call this

method First Order Statistic Correction (FOSCO). Note that this

method does not consider a local LD structures of each gene, as

GATES and VEGAS do, and adjusts the statistical significance

only based on the number of SNP markers per gene, thus ignoring

the difference of LD structure between the two sets of SNP

markers. Hence, FOSCO is not an alternative to the aforemen-

tioned methods in obtaining gene-level significance for individual

genes.

To evaluate aforementioned methods, we make use of the data

of a GWAS on Schizophrenia [13]. The study was conducted on

2,548 European ancestry subjects (1,170 cases and 1,378 controls).

Genotyping was performed using Affymetrix 6.0 array and

genotyped by the Birdseed calling algorithm. Association tests

are performed on 729,454 SNPs. These SNPs are obtained after

filtering out low polymorphic and low quality SNP marker’s

sample call rate .97%; SNP MAF ,0.01; SNP call rate .0.95;

HWE p-value .1027, the criteria described in the original study

(http://www.ncbi.nlm.nih.gov/sites/entrez?db = gap; Study Ac-

cession: phs000021.v3.p2). All five methods are evaluated on 10

random permutations of the disease status. For FOSCO, the

tuning parameter a is determined from an additional random

permutation and the value 0.84 is used for other 10 permutations.

For each method, after obtaining (gene-level) p-values, we fit

a linear regression model on the logarithm of those p-values with

the number of SNP markers of the genes as the explanatory

variable. If the gene-size bias is well corrected, we expect the

regression coefficients to normally distribute around zero, and the

corresponding p-values to uniformly distribute on [0,1].

Figures 2 and 3 show the coefficients and p-values from the

linear regressions respectively. As one can see in Figure 2, SIMES

overcorrected for the size bias, as the coefficients are consistently

well above 0; On the other hand, Fisher’s Independent test did

a poor job of correcting the size bias. Both GATES and FOSCO

have coefficients center around zero and the p-values uniformly

Table 1. Top categories in Biological Process (GO:0008150) according to Gene Ontology classification system.

GO number Category name Number of genes

GO:0000003 reproduction 1169

GO:0001906 cell killing 64

GO:0002376 immune system process 1546

GO:0006791 sulfur utilization 0

GO:0006794 phosphorus utilization 0

GO:0008152 metabolic process 8662

GO:0008283 cell proliferation 1360

GO:0009758 carbohydrate utilization 2

GO:0009987 cellular process 12145

GO:0015976 carbon utilization 0

GO:0016032 viral reproduction 432

GO:0016265 death 1573

GO:0019740 nitrogen utilization 1

GO:0022414 reproductive process 1165

GO:0022610 biological adhesion 884

GO:0023052 signaling 4174

GO:0032501 multicellular organismal process 5182

GO:0032502 developmental process 4094

GO:0040007 growth 705

GO:0040011 locomotion 1112

GO:0043473 pigmentation 52

GO:0048511 rhythmic process 187

GO:0048518 positive regulation of biological process 2973

GO:0048519 negative regulation of biological process 2710

GO:0050789 regulation of biological process 7611

GO:0050896 response to stimulus 5982

GO:0051179 localization 3911

GO:0051234 establishment of localization 3253

GO:0051704 multi-organism process 963

GO:0065007 biological regulation 8045

GO:0071840 cellular component organization or biogenesis 3755

doi:10.1371/journal.pone.0049093.t001
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distributed from [0,1], showing that the gene-size bias is well

corrected. The performance of VEGAS is quite interesting, as the

coefficients are all slightly above zero, but p-value not showing

statistical significant biases.

Discussion

The motivation of the study is to demonstrate that there is

a strong bias towards favoring genes of large size among those

reported as disease related by GWASs. This bias, as we reasoned,

is largely caused by the popular method of reporting genes that are

closest to the SNP markers with the smallest p-values, without

taking consideration of the fact that the number of SNP markers

varies a lot among genes. We also demonstrate that the average

sizes of the genes among the different gene functional groups are

also different, if biased selection of genes are used for downstream

in vitro and/or in silico gene-level studies, the validity of such studies

would also be questionable.

Therefore, we propose here that the gene-level statistical

significance should be used in the process of selecting genes for

downstream gene-level analysis. We examined two recently

proposed methods GATES and VEGAS, originally developed to

improve the power of genetic association study, to see if the size

bias would also be well corrected. We also proposed a simple

method for correcting the bias based on the first order statistic. We

evaluated these methods on simulated phenotypes using real

genotype data from a GWAS study on schizophrenia.

We show that the gene-size bias is well corrected by both our

method and GATES, and much reduced by VEGAS. Both

GATES and VEGAS were proposed as a method to increase the

statistical power of detecting genes associated with the phenotypes,

but they also successfully correct the gene-size biases. Here we

highly recommend such gene-level significance tests be used for

the purpose of prioritizing genes for gene-level downstream

analysis. However, the current version of GATES and VEGAS

restrict their analysis on specific sets of gene units predefined by

their respective developers. For users who wish to work on gene

units with their own definition, our simple method provides the

flexibility.

Materials and Methods

Biases in the Reported GWAS
List of trait related genes (TRG) was obtained from A Catalog of

Published Genome-Wide Association Studies (http://www.genome.gov/

gwastudies) [6]. Number of SNPs per gene was obtained from the

NCBI dbSNP (build 131) [7]. Data processing and statistical tests

were performed using PERL, MATLAB and R.

Gene Size Differences Among Gene Sets
Lists of unique genes associated with different biological

categories were obtained from ‘‘Biological Process’’ class of Gene

Ontology database. Out of 31 categories of the highest hierarchi-

cal level 28 categories containing human genes were retained for

analysis. The ‘‘size’’ of a gene was determined as number of SNPs

associated with the gene according to NCBI dbSNP. One-way

Figure 2. Box-plots of regression coefficients from 10 simulated data with random disease status. The regression coefficients are
obtained by regressing the log of gene-level significance p-value on the number of markers per gene.
doi:10.1371/journal.pone.0049093.g002
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ANOVA test was utilized to detect significant difference between

average gene size in categories.

Correction of the Bias
For a gene, let m be the number of SNPs in a gene and p(i) be the

p-value of the ith SNP.

1. Fisher combined probability test: The p-value is determined

based on x2~{2
Pm

i ln p(i), where the degree of freedom of

the x2 statistic under the null hypothesis is 2 m.

2. Simes test: P~min
i

(mp(i)=i);

3. GATES: P~min(
mep(i)
me(i)

), where me is the effective number of

independent p-values among the m SNPs and me(i) is the

effective number of independent p-values among the top i

SNPs. me is approximated by eigenvalues of the correlation

matrix of p-values of m SNP based tests, in which the pairwise

correlation between two tests can be approximated by an

empirically determined formula given the allelic correlation

coefficients between the two SNPs. In the simulation study

reported here, the computation is performed on the LD

structure derived from CEU subjects of HapMap Project, as

this population matches the population used in the Schizo-

phrenia GWAS.

4. VEGAS: for each gene, the reference distribution of the test

statistic, sum of Chi-Square statistics over all SNPs, is

generated using Monte Carlo simulation taking into consider-

ation the LD among those SNPs. In the simulation study

reported here, the computation is performed on the LD

structure derived from CEU subjects of HapMap Project.

5. FOSCO: For each gene, the significance measure is given by

padj~1{(1{p(1))
Ma

, where p(1) is the smallest p-value of M

SNP markers in a gene, and a is a tuning parameter. When

a=1, padj is the probability of observing the smallest value, i.e.

the first order statistic, of M independent random variables, all

uniformly distributed from [0,1]. The value of a is determined

empirically on the data set in which case/control status of

subjects is randomly permuted, but the genotypes remain the

same. We use a grid search to find the value of a that minimize

the absolute value of the correlation coefficient between padj’s

and number of SNP markers of a gene, and used it as the

tuning parameter.

We assign SNPs to genes according to NCBI dbSNP, and use

this definition for FOSCO, SIMES, Fisher’s methods. GATES

uses the same database for its set of genes but also includes 5 kb

flanking regions for each gene. VEGAS uses UCSG Genome

Brower hg18 version and include 50 kb flanking regions. Major

features of all methods are summarized in Table 2.

Schizophrenia GWAS Data
We obtained the data from The NCBI Genotypes and Phenotypes

database (dbGaP; http://www.ncbi.nlm.nih.gov/sites/

entrez?db= gap; Study Accession: phs000021.v3.p2) [13]. p-values

of SNPs were calculated in the same manner as in the original

Figure 3. P-values for the linear regression model that regress the log of gene-level significance p-value on the number of markers
per gene. Plotted are the results from 10 simulated data with random disease status.
doi:10.1371/journal.pone.0049093.g003
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study (Pearson Chi-Squared test without Yates continuity

correction).
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Table 2. Summary of the methods.

Simes test Fisher test GATES VEGAS FOSCO

Source [12] [11] [10] [9] –

Core idea Adjust p-values by
P~min

i
(mp(i)=i) under

assumption of
independence

Obtain p-value based on

x2~{2
Pm

i ln piunder the

assumption of
independence

Adjust p-values by

P~min(
mep(i)
me(i)

), where me(i)

is obtained from each gene
empirically

Obtain p-values base on

x2~
Pm

i x2 i . The

distribution under the null
hypothesis is obtained
through Monte Carlo
methods

Adjust p-values by

padj~1{(1{p(1))
Ma

where

a is determined empirically
from a random permutation

Linear regression
coefficient after
correction*

2.32E-04 28.32E-03 23.14E-04 21.00E-04 23.75E-04

SNPs association
to genes

NCBI dbSNPs NCBI dbSNPs NCBI dbSNPs+5kb flanking
regions

UCSG Genome Brower
hg18+50 kb flanking
regions

NCBI dbSNPs

Note: * Linear regression coefficient before correction b=27.23E-03.
doi:10.1371/journal.pone.0049093.t002
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