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Abstract

The establishment of the pluripotent ICM during early mammalian development is characterized by the differential
expression of the transcription factors NANOG and GATA4/6, indicative of the epiblast and hypoblast, respectively.
Differences in the mechanisms regulating the segregation of these lineages have been reported in many species, however
little is known about this process in the porcine embryo. The aim of this study was to investigate the signalling pathways
participating in the formation of the porcine ICM, and to establish whether their modulation can be used to increase the
developmental potential of pluripotent cells. We show that blocking MEK signalling enhances the proportion of NANOG
expressing cells in the ICM, but does not prevent the segregation of GATA-4 cells. Interestingly, inhibition of FGF signalling
does not alter the segregation of NANOG and GATA-4 cells, but affects the number of ICM cells. This indicates that FGF
signalling participates in the formation of the founders of the ICM. Inhibition of MEK signalling combined with GSK3b
inhibition and LIF supplementation was used to modulate pluripotency in porcine iPS (piPS) cells. We demonstrate that
under these stringent culture conditions piPS cells acquire features of naive pluripotency, characterized by the expression of
STELLA and REX1, and increased in vitro germline differentiation capacity. We propose that small molecule inhibitors can be
used to increase the homogeneity of induced pluripotent stem cell cultures. These improved culture conditions will pave
the way for the generation of germline competent stem cells in this species.
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Introduction

Embryonic stem cells (ESC) can be captured in vitro in two

distinct states of pluripotency known as ‘‘naive’’ and ‘‘primed’’ [1].

A distinguishing feature of naive cells is their capacity to integrate

into a blastocyst and to contribute efficiently to germline chimeras.

Importantly, naive stem cells can be established from mouse

strains of non-permissive genetic background and can be modified

genetically by homologous recombination [2]. ESC from non-

rodent mammals share features of primed pluripotency, charac-

terized by their FGF and Activin/Nodal dependence, and reduced

capacity to contribute to chimeras [3,4,5,6,7]. This has led to the

suggestion that establishing naive pluripotency may be beneficial

for generating highly competent stem cells amenable to genetic

modification. The conversion of primed cells to naive state by

switching culture conditions was first reported in the mouse

following the dissociation of epiblasts into single cells [8].

Established epiblast stem cell (EpiSC) lines, however, are much

more resilient to this switch and cannot be converted to naive ESC

simply by changing the culture conditions, unless additional factors

are overexpressed [9,10,11]. Similarly, human ESC (hESC)

cultured under stringent conditions to force the conversion to

a naive state are highly unstable and cannot be cultured

extensively [12,13,14]. These findings demonstrate that the naive

state can be captured efficiently by including specific cytokines

during the establishment of new cell lines from mouse blastocysts,

or shortly thereafter by disrupting cell interactions [8]. However,

once a cell exits the naive state and transits to a primed state, the

reversion can only be restored artificially by specific factor

overexpression. In non-rodent species naive ESC have not yet

been isolated from pre-implantation embryos. Stem cell lines

derived from primate [3,15], rabbit [7,16], and pig [4,6] embryos

share features of primed pluripotency, as described for mouse

EpiSC [17,18]. This seems to suggest that the naive state is either

absent or very transient during embryo development in these

species. A link between naive pluripotency and physiological

diapause has been proposed as the underlying developmental

mechanism that might explain why naive stem cells can be

established from certain inbred mouse strains [19], but not from

non-permissive mouse strains [20] or from other mammals [21].

Attempts to impose naive culture conditions failed in establishing

stem cell lines in the pig, however when ICM cells from early

blastocysts (day 5.5) were transduced with KLF4, cell lines with

some features of naive pluripotency were established [22]. These

lines failed to form teratomas when injected into SCID mice, but

when OCT-4 was over-expressed, the cells eventually acquired

naive properties as demonstrated by their LIF dependency,

teratoma formation capacity, and efficient integration to the

ICM of blastocysts [22]. Thus, it seems that naive pluripotency

can be imposed in cells derived from porcine embryos, however
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the optimal conditions for converting to this state may require

species-specific considerations. For instance, NANOG protein is

not detected in early pig blastocysts [23,24], suggesting that

entering the naive state in these cells might be compromised due to

the lack of a functional pluripotency network.

Studies in mouse embryos show that modulation of MEK and

Wnt signalling result in an enriched NANOG cell population in

blastocysts [25,26]. Interestingly, these effects were not observed in

human and cattle embryos, where hypoblast cells expressing

GATA4/6 were still detected [27,28]. These interventions before

the segregation of the inner cell mass (ICM) from trophectoderm

(TE) offer an opportunity for capturing naive cells that may

naturally only be present very transiently, if at all, when the ICM

arises. The aims of the present study were 1- to study whether

modulation of multiple signalling pathways can alter the pro-

portion of NANOG positive cells in the ICM of pig blastocysts,

and 2- to determine whether stringent culture conditions that

support naive pluripotency in the mouse can be imposed in pig

pluripotent cells.

Materials and Methods

Embryo Collection and In Vitro Culture
All the procedures involving animals have been approved by the

School of Biosciences Ethics Review Committee (University of

Nottingham, UK). Landrace 6 Large white crossbred sows were

artificially inseminated twice over 2 days. Pig embryos were

collected at day 4 after insemination. The oviduct and uterine

horns were flushed with pre-warmed phosphate-buffered saline

(PBS) supplemented with 1% fetal calf serum (FCS). The embryos

were placed in an ovum concentrator and rinsed with PBS

containing 1% FCS and 25 mM Hepes. Recovered embryos were

allocated to either PZM3 [29] or N2B27 [28] culture medium

supplemented with 0.3% fatty acid free BSA. Embryos at morula

stage were included in the study. Embryos at earlier stages were

cultured in PZM3BSA until the compact morula stage and

subsequently transferred to the experimental groups. Embryos

were incubated in a humidified atmosphere at 39uC, under

5%CO2 and 5%O2. The embryos were treated with inhibitors and

growth factors at the following concentrations: PD0325901 (PD,

MEK inhibitor, Calbiochem) 0.4 mM or 1 mM when combined

with GSK3b inhibitor CHIR (GSK3b inhibitor, Selleck) 3 mM;

PD173074 and PD161570 (FGF receptor inhibitors, Tocris)

100 nM; SB431542 (Type 1 TGFb receptor ALK5, Tocris)

20 mM; 42009 (JAKi, JAK/STAT3 Inhibitor 420099, Calbio-

chem) 0.6 mM; LY294002 (InSolutionTM LY 294002, Merck)

10 mM, human recombinant FGF4 (Peprotech) 1 mg/mL and

heparin 1 mg/mL, as described by [27]. Heparin was included

because it has been shown to bind FGF4, increasing the stability of

the ligand-receptor interactions [30]. DMSO was used to dissolve

the inhibitors, and was maintained at equal concentrations among

groups. Control groups were added DMSO accordingly.

Porcine Fetal Fibroblasts Isolation, Reprogramming and
Cell Culture
Primary porcine fetal fibroblasts (PFF) cell lines were isolated

from approximately 40 day-old fetuses. PFF were cultured in

DMEM containing 10% fetal calf serum (FCS) and supplemented

with 1% glutamine, 1% penicillin/streptomycin, 1% nonessential

amino acids and 0.1 mM b-mercaptoethanol (culture medium:

CM). Induced pluripotent stem (iPS) cells were generated from

passage 3 cells. PFF were plated onto gelatinized dishes (0.1%

porcine skin gelatine) at a density of 0.1 million cells per 9.6 cm2.

PFF were infected with virus containing-medium twice at 48 h

intervals. Lentiviruses were produced by transfecting HEK293

cells with doxycycline inducible FUW-tetO vectors (Addgene),

encoding the human cDNA sequence of the four transcription

factors (4 factors) OCT4, KLF4, SOX2 and C-MYC [31] plus

FUW-M2rtTA (Addgene). The virus containing-medium was

collected 48 h after transfection. The media containing the 4

factors and FUW-M2rtTA virus were pooled in equal volume,

filtered through a 0.45 mm filter and supplemented with 4 mg/mL

polybrene (Sigma-Aldrich).

PFF were passaged 48 h after the second transduction and

cultured in CM supplemented with 103 units/mL mouse LIF

(ESGRO, Chemicon International). Cells were supplemented with

2 ug/mL doxycycline (Dox, Sigma-Aldrich). Between 1 and 4

weeks after Dox induction the colonies were picked and plated

onto mouse embryonic fibroblast feeders. After two manual

passages, piPS cells were dissociated with 1 mg/mL collagenase

IV and passaged every 3–4 days at a ratio of 1:5 or 1:6. Pig iPS

cells required continuous Dox supplementation for survival. A

normal karyotype was determined for the cell lines used in this

study (2n=38). The FCS + LIF derived piPS were transferred to

serum free N2B27 medium supplemented with 0.3% BSA, 103

units/mL mouse LIF (ESGRO, Chemicon International), 1 mM
PD0325901, 3 mM CHIR and 100 nM PD173074, as described

previously [9].

Immunocytochemistry and Alkaline Phosphatase Activity
Before fixation, expanded embryos were treated with 0.5%

pronase for 1–2 min to remove the zona pellucida (ZP). Hatched

embryos were washed in 1% PBS/BSA and fixed in 2.5%

paraformaldehyde (PFA) for 15 min at room temperature (RT).

After three washes in 0.2% Tween 1% PBS/BSA (PBST),

embryos were permeabilized in 0.2% Triton X-100 PBS for

20 min at RT and blocked for 1 h at RT in 7% BSA and 5%

donkey serum in PBST. Pig iPS cells were fixed in 4% PFA and

subsequently permeabilized with 0.1% Triton X-100 in PBS and

blocked in 5% PBS/BSA. Embryos and piPS cells were incubated

overnight at 4uC with the following primary antibodies: NANOG

(1:400; rabbit polyclonal, Peprotech 500-P236), and GATA-4

(1:200; goat polyclonal, Santa Cruz Biotechnology SC1237),

OCT-4 (1:100; goat polyclonal, Santa Cruz Biotechnology

SC8628), STELLA (1:60; rabbit polyclonal, Abcam ab19878),

SSEA-1 (1:50; Hybridoma bank, Iowa City), all in 5% PBST/

BSA. The following antibodies were used in differentiated piPS

cells: NESTIN (1:100, rabbit polyclonal, Abcam), SOX17 (1:100,

goat polyclonal, R&D Systems), CYTOKERATIN-14 (1:100,

mouse monoclonal, Hybridoma bank, Iowa City), bIII-TUBULIN

(1:100, mouse monoclonal, R&D Systems), VIMENTIN (1:100,

AMF-17b, mouse monoclonal, Hybridoma bank, Iowa City). Pig

iPS cells incubated with SSEA-1 antibody were not permeabilized.

After 4 washes in 0.05% PBST-Triton (PBSTT) embryos and piPS

cells were transferred to the appropriate secondary antibody and

incubated for 1 h at RT, followed by 36 washes in PBSTT.

Embryos and cells were mounted in Vectashield with DAPI (49-6-

diamidino-2-phenylindole; Vector Laboratories). Alkaline phos-

phatase (AP) activity was analyzed with the AP kit (Sigma-Aldrich)

following the manufacturer’s instructions.

Quantification of Total and ICM Cell Numbers in Embryos
The total cell number was obtained by counting all DAPI

positive nuclei. Cell counts were performed in triplicates to obtain

the average 6 SD per embryo. The ICM cell number was

calculated as the total number of NANOG and GATA-4 positive

nuclei. Fluorescent images were acquired using epifluorescence.

Porcine Naive Stem Cells
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RNA Isolation and Polymerase Chain Reaction
RNA isolation was carried out using RNeasy kit (Qiagen)

following the manufacturer’s instructions. RNA reverse transcrip-

tion was performed using Omniscript synthesis kit (Qiagen). End-

point PCR was performed with ReadyMix (Sigma-Aldrich) and

0.4 uM of each primer. PCR products were run in 1.5% agarose

gel to determine the amplicon size. Quantitative RT-PCR (qRT-

PCR) was performed using SYBR green mix (Roche) and 0.25 nM

of each primer. For each gene, the analysis was performed in

triplicate.

RT-PCR protocol included an initial step of 95uC (5 min),

followed by 45 cycles of 10 sec at 95uC, 15 sec at 60uC and

a primer extension step of 20 sec at 72uC. Fluorescence data were

acquired at 72uC. Melting-curve analysis to confirm product

specificity was performed immediately after amplification and the

amplicon size was checked by electrophoresis. The relative

expression of the target gene was normalized with GAPDH and

a calibrator sample. Sequence accession numbers were obtained

from NCBI, Ensembl and TGI databases. Primers used in this

study are listed in Table 1.

In Vitro Differentiation
Embryoid bodies (EB) were prepared from piPS cells using the

hanging drop method. Briefly, piPS cells were trypsinized before

preparing hanging drops at a density of 3000 cells/EB. The

differentiation medium consisted of DMEM supplemented with

1 ug/mL Dox (for the first 10 days, and was subsequently

removed), 1% glutamine, 1% penicillin/streptomycin, 1% non-

essential amino acids and 20% FCS. Aggregated EBs were

transferred to non-adherent dish after 4 days. After 10 days, EBs

were plated onto gelatine coated plates and cultured for up to 30

days. EBs were collected and frozen at 280uC until analysis.

Statistical Analysis
To evaluate the statistical differences in relative numbers,

probability (P) values were established using Two-sided Mann-

Whitney U test. Two-tailed Student’s t-test was used to compare

absolute values between groups. Differences between groups were

considered significant when P,0.05. Pearson’s correlations co-

efficient was used to analyse results from qPCR.

Results

Culture of Porcine Embryos to the Late Blastocyst Stage
To study the segregation of the ICM and TE, morulae obtained

at day 4 of in vivo development were cultured in PZM3 medium

under low oxygen, which has previously been shown to support

in vitro porcine embryo development [29]. After 48 to 72 h,

30.2% (SD 615.9, n= 74) of embryos hatched from the zona

pellucida, and the majority of these (79% 615.5) had a total cell

number ,100 cells (Fig. 1A,B). Because these embryos showed

very small or no ICM (Fig. 1C), it was not possible to perform

meaningful analysis of lineage segregation. Next we tested N2B27,

a serum-free basal medium used for growing ESC and human

embryos [28,32]. After 48 to 72 h in culture, 53.4% (SD 625.8,

n = 182) of embryos hatched, and the total cell number exceeded

100 cells in more than 82% of these embryos (Fig. 1B). Since

a clear ICM was visible in most embryos (Fig. 1C) this culture

system was selected for the experiments performed in this study

(Fig. 1D).

Effect of FGF Signalling During Hypoblast Segregation in
the Porcine Embryo
NANOG and GATA-4 are expressed in mutually exclusive

cellular domains marking the epiblast and the hypoblast, re-

spectively [25]. In the pig embryo these two factors are not found

in early blastocysts (days 5.5–6.5) [23,24], but they can be detected

in the early epiblast from day 7.5 [33]. Since it is not clear whether

NANOG and GATA-4 are expressed in mutually exclusive

domains, in vivo retrieved morulae cultured for 48 h until they

progressed to the late blastocyst stage were analysed by

immunofluorescence (IF). Consistent with previous findings in

mice and humans, NANOG positive cells were observed in

clusters surrounded by GATA-4 positive cells (Fig. 2A control).

Importantly, NANOG and GATA-4 cells were only detected in

hatched embryos (late blastocysts) containing.100 cells (n = 5), all

others with ,100 cells (blastocysts and expanded blastocysts;

n = 15) stained negative. In four expanded blastocysts we found

NANOG positive cells (2, 2, 4, and 7 cells), but no GATA-4 cells

(not shown), suggesting that GATA-4 cells may originate from

a NANOG positive population in the ICM. These observations,

combined with the finding that OCT-4 is expressed in the pig

ICM [24,34], show that the pluripotency network is established

during the transition from early to late blastocyst in this species.

To study how this process is regulated, we evaluated this

transition in embryos treated with small molecule signalling

inhibitors. Experiments in mouse embryos show that MEK

inhibition prevents hypoblast differentiation and enhances the

number of Nanog expressing cells in the ICM, however in human

and bovine embryos no specific inhibition of GATA4/6 was

observed under these conditions [27,28]. We found that a high

proportion of pig morulae cultured with the MEK inhibitor

PD0325901 progressed to the hatched blastocyst stage (75%;

n= 20) (Table 2). These embryos had an average cell count of

197.2 (SD 644.1, n= 14) cells and a similar proportion of TE cells

as the control group, indicating that the viability of these embryos

was not visibly compromised by MEK inhibition. NANOG and

GATA-4 protein were detected in the ICM of treated embryos,

however the proportion of GATA-4 cells was reduced compared

to DMSO-only treated embryos (Fig. 2B). This result indicates

that the hypoblast can segregate in the absence of MEK signalling,

although the number of GATA-4 cells is reduced. In rodents, FGF

initiates hypoblast differentiation via MEK signalling [35].

Therefore, to gain further insight into GATA-4 activation,

embryos were cultured with the FGF receptor inhibitor (FGFRi)

PD161570. Although the proportion of embryos progressing to the

hatched blastocyst stage (55% 621.2, n = 20) and the total cell

count (215.8642.7, n= 15) was not significantly different to those

treated with PD0325901, only few embryos (5/15) formed an

ICM, all of which had very few cells (Table 2). To confirm that this

effect was not due to the specific inhibitor, we repeated

experiments with another FGFRi PD173074, and similar results

were obtained (data not shown). After immunostaining, we

observed no differences in the proportion of NANOG and

GATA-4 cells compared to the control group (Fig. 2B). This

result indicates that FGF inhibition does not interfere with

hypoblast segregation, but might interfere with the formation of

the original founder population of the ICM. Since FGF can signal

through phosphatidylinositol 3-kinase (PI3K), we evaluated

whether inhibition of this pathway affected the founder cell

population of the ICM. Embryos treated with PD0325901+
LY294002 hatched at a similar rate to control embryos (41.67%)

and showed no differences in NANOG and GATA-4 staining (not

shown).

Porcine Naive Stem Cells
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We next evaluated the effect of FGF4 supplementation in

lineage segregation. Morulae incubated with FGF4 and heparin

developed normally to the hatched blastocyst stage (62.5624.7,

n = 20) and had an average total cell number of 209.7 (SD 678.2,

n = 15; Table 2). The majority of these embryos formed a clear

ICM, although it was significantly smaller compared to the control

group. Furthermore, most embryos (9/14, 64.2%) had 100%

GATA-4 positive cells, and no NANOG positive cells (Fig. 2A, B).

This result shows that FGF4 promotes the segregation of the

hypoblast without affecting the total cell number of the embryo.

These experiments demonstrate that MEK inhibition has only

a partial effect in preventing hypoblast segregation in the pig

embryo (Fig. 2C).

Table 1. List of primers used in this study.

Gene Primer sequence Fw Amplicon Accession number or

Primer sequence Rv (bp) [Reference]

b-ACTIN TCCCTGGAGAAGAGCTACGA 249 AJ312193

CGCACTTCATGATCGAGTTG

GAPDH GGGCATGAACCATGAGAAGT 162 AF017079.1

GTCTTCTGGGTGGCAGTGAT

OCT3/4 GCAAACGATCAAGCAGTGA 201 NM_001113060

GGTGACAGACACCGAGGGAA

NANOG TTCCTTCCTCCATGGATCTG 214 DQ447201

ATCTGCTGGAGGCTGAGGTA

Sox-2 AAGAGAACCCCAAGATGCACAACT 219 TC208722

GCTTGGCCTCGTCGATGAAC

KLF4 CCATGGGCCAAACTACCCAC 154 EU669075.2

TGGGGTCAACACCATTCCGT

REX1 TTTCTGAGTACGTGCCAGGCAA 201 TC206552

GAACGGAGAGACGCTTTCTCAGAG

STELLA CTGAGTAGGTTGAGCCCACA 281 AJ656181.1

CCAAAAGAGGCAAAACCTGA

FGF5 GGAGCAGAGCAGCTTTCAGT 170 ENSSSCG00000009253

ACAATCCCCTGAGACACAGC

NODAL CGTCTCCAGATGGACCTGTT 222 AM072821

CTGCTCTGGAGAGAGGTTGG

VASA TCTTCCTATGTTCCCATCTTTG 254 NM_001001910.1

TTGTTTGAAAAACCTCTGTTTCC

SOX17 CGCACGGAGTTTGAACAATA 167 TC248504

CAGACGTCGGGGTAGTTACAG

CARDIAC ACTIN CAGGTATTGCTGATCGCATGCA 201 TC270296

ATTTGCGGTGGACGATGGA

PAX6 CAGCTTCACCATGGCAAATA 197 TC269600

GGGAAATGAGTCCTGTGGAA

NESTIN TACCTGGAAGCGGAAGAGAA 201 TC295480

CTGATCCAGGTCTGCCTTGT

GATA6 CAGGAAACGAAAACCTAAGAGCAT 201 TC238300

TTCTCGGGATTAGCGCTCTC

FUW-hOCT4 CCCCTGTCTCTGTCACCACT 148 [30]

CCACATAGCGTAAAAGGAGCA

FUW-hSOX2 ACACTGCCCCTCTCACACAT 122 [30]

CATAGCGTAAAAGGAGCAACA

FUW-hKLF4 GACCACCTCGCCTTACACAT 137 [30]

CCACATAGCGTAAAAGGAGCA

FUW-hCMYC CAGCTACGGAACTCTTGTGC 125 [30]

CCACATAGCGTAAAAGGAGCA

doi:10.1371/journal.pone.0049079.t001
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Effect of GSK3b, JAK/STAT3 and ALK5 Signalling
Inhibition During ICM Segregation in the Porcine Embryo
We next evaluated whether a combination of MEKi

(PD0325901) and stimulation of Wnt signalling by inhibition of

GSK3b could contribute to an enrichment of the NANOG

population in the ICM, as described in the mouse [25]. A

moderate increase in the proportion of hatched embryos (80%

628.3, n= 20) and in the total cell number (220.8673.8, n= 15)

was observed in these embryos (Table 2). The percentage of ICM/

total cells was lower than in control embryos. The proportion of

NANOG positive cells showed a median value similar to embryos

treated with MEKi, however, due to the high variability between

embryos, the observed differences were not statistically significant

compared with the control (Fig. 2B). Thus, stimulation of Wnt

signal together with MEK inhibition does not have a synergistic

effect on the number of NANOG positive cells present in the

porcine ICM.

Figure 1. Development of pig morulae after in vitro culture. A) Proportion of embryos hatching from the zona pellucida after culture in PZM3
and N2B27. B) Cell count of blastocysts developing after culture in PZM3 and N2B27. C) Images of embryos obtained after incubation of morulae in
PZM3 and N2B27. D) Diagram depicting the experimental design used to study signalling pathways involved in the segregation of ICM. *P,0.05.
doi:10.1371/journal.pone.0049079.g001
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Figure 2. Effect of signalling inhibition in lineage segregation. A) Immunofluorescence images of NANOG and GATA-4 of hatched blastocysts
after incubation with the indicated molecules from the morula stage. Blue: nuclei stained with DAPI. Scale bar: 50 mm. B) Box-whisker plots depicting
the proportion of NANOG (green) and GATA-4 (red) cells of embryos treated with different molecules. Numbers indicate median values for each
group. *P,0.05. C) Model depicting the stages of embryo development studied in this report. Inhibition of STAT3 signalling interferes with the
cavitation process affecting the development of the ICM and the TE during the transition from early to late blastocyst. In addition, inhibition of FGF
receptors at the morula stage prevents the formation of the ICM, whereas inhibition of MEK signalling reduces, but does not totally abolish, the

Porcine Naive Stem Cells
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LIF signalling is operative in the mouse ICM, as demonstrated

by the requirement of this cytokine for the derivation of ESC. In

the pig there is limited information on the role of this cytokine

during the formation of the ICM, although recent studies show

that LIF receptors are expressed in the TE of late blastocysts, but

not in the ICM [23]. We found that hatching rate (7.1% 610.1)

was significantly reduced in embryos treated with JAK/STAT3

inhibitor 420099 compared to the control group, mainly because

the embryos degenerated between early to late blastocyst transition

(Table 2). Of the two blastocysts that developed, only one had an

ICM with two NANOG positive cells. This result indicates that

during the transition from morula to blastocyst JAK/STAT3

signalling plays a critical role in the development of the ICM and

the TE.

Activin/Nodal signalling controls NANOG expression and is

essential for maintaining hESC and mEpiSC in the undifferenti-

ated state [4,17,36]. Furthermore, Activin A is expressed in the

porcine ICM [37], suggesting that this pathway may participate in

the activation of NANOG. To test this possibility we incubated

morulae with the ALK5 receptor inhibitor SB431542, which

causes downregulation of Nanog and neurectoderm differentiation

in EpiSC [4,17,18]. We found that progression to the hatched

blastocyst stage (65.5% 617.3, n = 18) and total cells numbers

were not affected by the treatment (Table 2). Similarly, the

proportion of ICM cells and distribution of NANOG and GATA-

4 cells was unaffected compared to the control group (Fig. 2A,B;

Table 2). This result demonstrates that Activin/Nodal signalling is

not required for NANOG activation and for normal segregation of

the hypoblast.

MEK and GSK3b Inhibition + LIF Promotes Naive
Pluripotency in Porcine iPS Cells
The results above suggest that during the transition from

morula to blastocyst the ICM responds to MEK inhibition by

reducing the proportion of cells differentiating to hypoblast. The

inhibition of this signalling pathway, together with inhibition of

GSK3b (known as 2i medium) and activation of JAK/STAT3

pathways, are essential for establishing naive pluripotency in the

mouse [10,32]. Here we applied these culture conditions to

embryos treated with 2i between the morula to blastocyst

transition. Seven whole-embryos plated onto feeders in 2i + LIF

medium attached after 24 h, however in the following 72 h most

clumps failed to initiate proliferation and degenerated (not shown).

This result suggests that the conditions for the isolation of naive

cells directly from embryos are still sub-optimal to support stem

cell derivations.

We turned to a piPS cell system to study whether the naive state

could be imposed in pluripotent cells in this species. A recent

report shows that piPS cells become LIF dependent when cultured

in normal ESC culture conditions [38]. Here we extended these

investigations to determine whether 2i (or 3i) + LIF could be used

to force naive features in piPS cells. We generated iPS cells from

porcine fetal fibroblasts using hOCT-4, hc-MYC, hKLF4 and hSOX2

under the control of doxycycline [31]. Colonies started to appear

after 6–7 days, and after 15–30 days strong alkaline phosphatase

activity was detected in most cell clumps (Fig. 3A). Colonies were

picked and transferred onto feeder cells in standard ESC culture

medium (containing 10% FCS and LIF). Eight cell lines were

expanded and further characterized. Cells under these conditions

grew as compact colonies which consistently expressed OCT-4

and endogenous NANOG, but only few colonies expressed SSEA1

antigen (Fig. 3A). All the lines expressed the four exogenous factors

(Fig. 3B), therefore we selected four lines to characterize their gene

expression profile in more detail. A distinguishing feature of mouse

naive stem cells is the expression of Stella and Rex1, in contrast to

the expression of Fgf5 and Nodal, typical of primed stem cells

[8,17]. An initial analysis of these lines showed that all lines

expressed endogenous OCT-4, NANOG, SOX2, KLF4, NODAL and

FGF5, however STELLA and REX1 were expressed in 2/4 lines

(Fig. 3C). These results show that piPS cells cultured with FCS and

LIF are heterogeneous, displaying features of primed and naive

pluripotency.

We next tested whether switching the culture conditions of piPS

cells to 2i and 3i (2i + FGFRi) + LIF promoted features of naive

pluripotency, as previously demonstrated for mouse ESC [32].

Switching piPS cell culture medium to N2B27 supplemented with

2i (or 3i) and LIF resulted in some cell death during initial 1–2

passages, however in subsequent passages the cells grew as

homogeneous round colonies (Fig. 4A). To test their LIF

requirements cells were cultured either with 2i only or with the

JAK/STAT3 inhibitor. In both conditions extensive cell death was

observed and most cells were lost within one passage (Fig. 4A).

segregation of hypoblast (GATA-4) in late blastocysts. Inhibition of SMAD2/3 does not interfere with the activation of NANOG in the blastocyst, but is
needed for the development of the epiblast, as previously shown [4].
doi:10.1371/journal.pone.0049079.g002

Table 2. Developmental capacity of pig morulae incubated with small molecule inhibitors.

Development rates Total HB HB with ICM

Morulae(N) B (%) HB (%) N Total cells TE (%) % (N) ICM (%)

Control 18 90.361.9a 51.2615.9a 10 111.3625.9a 91.569.6 50.0 (5/10) 17.165.0a

MEKi 20 85.067.1a 75.067.1a 14 197.2644.1c 93.366.0 57.1 (8/14) 11.163.7bd

FGFRi 26 79.4629.1a 55.0621.2a 15 215.8642.7c 99.361.0 33.3 (5/15) 2.060.7bc

FGF4 20 94.467.8a 62.5624.7a 15 209.7678.2c 93.665.3 93.3 (14/15) 6.965.2bd

2i 20 96.964.4a 80.0628.3a 15 220.8673.8c 98.063.3 33.3 (5/15) 6.162.7bc

ALK5Ri 18 78.6614.5a 65.5617.3a 11 144.0621.1b 89.669.3 81.8 (9/11) 12.768.7ad

JAKi 14 47.7611.0b 7.1610.1b 2 85.0650.9a 98.362.3 50.0 (1/2) 3.3

a vs. b, P,0.05 compared to Control group.
c vs. d, P,0.05 compared to FGFRi group.
doi:10.1371/journal.pone.0049079.t002
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Interestingly, LIF withdrawal or JAK/STAT3 inhibition of cells

grown with FCS resulted in a rapid loss of their compact

morphology. These cells showed overt signs of differentiation,

which was confirmed by the expression of SOX17 and NODAL and

the reduction in NANOG expression (Fig. 4B). Similar results were

obtained with cells cultured with 3i (not shown). These experi-

ments demonstrate that piPS cells depend on LIF to maintain the

undifferentiated state.

We next evaluated whether cells cultured in 2i/3i + LIF

activated genes indicative of naive pluripotency. Two cell lines (A-

09 and A-12) transferred from FCS + LIF to 2i/3i + LIF showed

increased STELLA and REX1 expression within 2 passages

(Fig. 4C). Cells grown in 3i + LIF showed a similar phenotype

to cells grown in 2i + LIF, but overall the cultures in 3i were more

homogeneous and showed low levels of differentiation (not shown).

Immunolocalization of STELLA demonstrated homogeneous

staining in colonies of cells grown in 3i + LIF, whereas cells

grown in FCS + LIF had a large proportion of cells in the

periphery of the colonies that were STELLA negative (Fig. 4D).

Analysis of additional 6 lines shows that 3i + LIF induced an

increase in STELLA expression in all cell lines, however high

variability was detected between different lines (Fig. 4E). In-

terestingly, the changes in STELLA expression correlated with

changes in NANOG, OCT-4 and REX1 expression, but were not

correlated with FGF5 expression (Fig. 4E).

Naive piPS have Increased Germline Differentiation
Potential
Mouse naive stem cells can differentiate to all somatic lineages

and can generate germline chimeras efficiently, in contrast to

primed stem cells. We investigated the capacity of three piPS cell

lines maintained in FCS + LIF or in 3i + LIF media to differentiate

in EBs. Expression of ectoderm (PAX6, NESTIN), mesoderm

(CARDIAC ACTIN), and endoderm markers (GATA6) was de-

termined by RT-PCR in the three cell lines analysed (Fig. 5A).

The expression of markers of ectoderm (b-TUBULIN, NESTIN,

CYTOKERATIN 14), mesoderm (VIMENTIN), and endoderm

(SOX17, GATA4) was further confirmed by immunohistochem-

istry (Fig. 5B).

We next compared the germ line differentiation capacity of cells

grown in 3i + LIF vs. FCS + LIF. Three cell lines expressing

STELLA at different levels (A-04low (female line), A-09medium (male

line), and A-12high (female line)) when cultured in 3i + LIF (Fig. 4E),

were induced to differentiate for 20 days. The differentiation

capacity of these cells was compared to the respective cell lines

grown in FCS + LIF before inducing differentiation. VASA was

induced after 15 days of differentiation in the three cell lines

cultured in 3i + LIF, however no VASA expression was detected

when the same lines were grown with FCS + LIF (Fig. 5C). After

20 days, VASA expression increased further in cells grown in 3i +
LIF, while some expression was also detected in cells grown in

FCS + LIF at this timepoint. To determine whether the

differentiation protocol induced the exit from the naive state,

REX1 was also analysed. Cells cultured in 3i + LIF had higher

levels of REX1 before differentiation, however a sharp reduction

was detected after 15 days, and it was not detected in two (A-04

and A-09) of the three cell lines after 20 days. These results show

that piPS cells expressing STELLA can be efficiently induced to

initiate the germ cell differentiation program in vitro.

Discussion

This study was designed to investigate the consequences of

modulating signal transduction pathways in the establishment of

pluripotency during pig embryo development and in piPS cells.

The first set of experiments were designed to determine which

signals participate in the establishment of NANOG expressing cells

from in vivo produced embryos. Since NANOG protein is first

detected in pig late blastocysts (from day 7.5) [33], the culture

conditions were optimized to ensure a high proportion of embryos

reaching this stage in vitro. The majority of embryos cultured in

the conventional PZM3 culture medium did not progress beyond

the blastocyst stage, had low total cell count, and very small or

inexistent ICM. The culture of pig morulae in N2B27 resulted in

a significant increase in hatching rate and total cell count, and

supported cultures up to the late blastocyst stage in vitro.

Furthermore, NANOG and GATA-4 cells were detected in the

ICM of most hatched blastocysts. In earlier embryos (non-hatched)

GATA-4 was never detected, however NANOG was found in

Figure 3. Characterization of piPS cells. A) Alkaline phosphatase, SSEA1, NANOG and OCT-4 staining in colonies of piPS cells. Phase contrast
image shows the morphology of cells under low magnification. B) Expression of exogenous factors was determined by RT-PCR in 8 cell lines. PFF:
porcine fetal fibroblasts used for generating the iPS cells. C) RT-PCR analysis of four iPS cell lines shows variables levels of gene expression of
endogenous genes.
doi:10.1371/journal.pone.0049079.g003
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a few isolated cells in 4/32 embryos, suggesting that NANOG

expression precedes GATA-4 expression in the founder population

of the porcine ICM. Since GATA-4 is a hypoblast marker, this

observation also suggests that hypoblast cells (GATA-4 positive)

segregate from early epiblast cells (NANOG positive).

We next investigated whether interfering with MEK signalling

during morula-blastocyst transition prevented hypoblast segrega-

tion [25,26]. In agreement with the observations in human and

bovine embryos [27,28], MEK inhibition did not completely

prevent hypoblast formation in the porcine embryo. Although

Figure 4. Induction of naive features in piPS cells cultured with 2/3i + LIF. A) piPS cells were seeded in the indicated culture conditions and
their growth was quantified daily for 4 days. B) piPS cells were seeded in the indicated culture conditions and collected 4 days after seeding at
passage 1 and 2. RT-PCR was performed to analyse gene expression. C) qRT-PCR for REX1 and STELLA of two cell lines grown in FCS + LIF or in 2/3i +
LIF. Expression was normalized to FCS + LIF piPS cells. D) STELLA immunostaining in piPS colonies seeded in the indicated culture conditions. E) qRT-
PCR for STELLA, OCT-4, NANOG, REX1 and FGF5 of 8 iPS cell lines grown in FCS + LIF or in 3i + LIF. Expression was normalized to PFF sample. Pearson’s
correlation coefficient analysis was performed to study interactions between genes.
doi:10.1371/journal.pone.0049079.g004
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GATA-4 expression was still detected after MEK inhibition, the

number of positive cells was significantly reduced. In contrast,

a significantly higher number of NANOG positive cells were

observed. Since the number of ICM cells was not affected by the

treatment, the results demonstrate that the reduction in GATA-4

was due to a partial interference with hypoblast segregation. To

establish whether MEK signal is triggered by a response to FGF,

as previously shown in mouse embryos [25,26], pig morulae were

cultured with an FGFRi. Interestingly, inhibition of FGFR

resulted in a significant reduction in the number of ICM cells,

however the proportion of NANOG and GATA-4 cells was

unaffected. These findings are in agreement with the observations

in bovine embryos [27], although the effect of the treatment on

total cell numbers was not reported in this study. Our results show

that MEK-independent FGF signalling is important for the

establishment of the founder population of the ICM. Since

inhibition of MEK and PI3K signalling (an alternative down-

stream pathway of FGF) did not affect lineage segregation, it is

possible that other FGF signalling effectors, such as phospholipase

C and protein kinase C [39], may be playing a role in establishing

the ICM. Future studies will focus on the role of these pathways on

the formation of the ICM.

The role of FGF signalling in promoting hypoblast differenti-

ation was further demonstrated in experiments where FGF4+
heparin were added to developing embryos. Treated embryos

developed normally and maintained normal cell numbers in the

ICM, however a significant increase in GATA-4 cells was

observed. These results are in agreement with observations in

mouse, rat, human and bovine embryos, and demonstrate that the

role of FGF in promoting hypoblast segregation is conserved in

mammals.

We next asked whether other signalling pathways may

participate in the activation or maintenance of NANOG

expression in the ICM. The role of Wnt was investigated first,

since maintenance of this pathway in mouse ESC promotes cell

proliferation and undifferentiated state when combined with

a MEKi in serum free cultures [32]. In the pig embryo, inhibition

of GSK3b in combination with a MEKi did not affect the

segregation of hypoblast cells, indicating that this pathway is not

critical during the establishment of the founder cells of the ICM.

The role of Activin/Nodal signalling was also evaluated, based

on a previous study showing the transient expression of Activin A

in porcine blastocysts [37] around the time when NANOG

expression is activated. Inhibition of Activin/Nodal signalling did

not affect the activation of NANOG, the number of ICM cells or

the segregation of the hypoblast. This demonstrates that an

Activin/Nodal-independent NANOG cell population exists during

the formation of the porcine ICM, perhaps with features similar to

the mouse ICM.

Since previous studies showed no increase in blastocyst rates of

porcine and bovine embryos cultured with LIF [40,41], here we

tested the possible involvement of this signalling pathway through

the inhibition of the JAK/STAT3 phosphorylation. We found that

most embryos cultured in the presence of the JAK/STAT3

inhibitor failed to hatch from the zona pellucida and had

significantly lower total cell count and ICM cells, indicating that

blocking this signal directly interferes with the cavitation process.

Indeed, a recent study described the expression of LIF receptors in

the TE, but not in the ICM of porcine late blastocysts [23]. This

suggests that LIF signalling may play an important role during the

segregation of the TE, rather than with the formation of the ICM.

It cannot be excluded that this effect is due to the interference with

IL-6 (which signals through JAK/STAT3) that is produced in an

autocrine manner, and plays a role during pig early embryo

development [42].

These experiments demonstrate that the transition from morula

to late blastocyst is characterized by the formation of the ICM, in

which NANOG is first activated. The ICM then gradually

expands before segregating GATA-4 cells. Although the activation

of NANOG in the founder population appears to be independent

of MEK, Wnt and Activin signalling, it is clear that FGF plays

a crucial role in ensuring the expansion of the starting ICM

population. These findings suggest that NANOG activation is a cell

autonomous process, and that extrinsic signals (including FGF,

TGFb, Activin, and Wnt ligands) may cooperate during the

transition from early to late epiblast to maintain NANOG activity

and pluripotency. As defined in ESC, modulation of different

signalling pathways supports two known states of embryonic

pluripotency: naive and primed pluripotency [1]. A naive state,

imposed by MEK and GSK3b inhibition + LIF cannot be used to

capture NANOG-only ICM cells in porcine embryos, suggesting

that additional signals may be needed to prevent hypoblast

formation. Importantly, however, we show that naive state can be

imposed effectively in piPS cells. These naive cells are LIF

dependent, resembling the cells reported by others [22,38],

however the analysis of STELLA and REX1 expression showed

significant heterogeneity between piPS cell lines. STELLA and

REX1 expression are good markers of naive stem cells, and are not

expressed in primed cells [8,32,43]. In agreement with findings in

mouse cells, STELLA and REX1 expression increased in piPS cells

transferred to 2/3i + LIF conditions. From our results we conclude

that STELLA expression is indicative of higher homogeneity in iPS

cell cultures, which is reflected in the compactness of the colonies,

low numbers of STELLA negative cells, and increased expression

of NANOG, OCT-4, and REX1. A test comparing the differenti-

ation capacity of STELLAhigh(cells in 3i + LIF) versus STELLAlow

(cells in FCS + LIF) cells demonstrated that both lines could

differentiate to the three somatic lineages, but importantly,

STELLAhigh cells had increased capacity to differentiate to VASA-

expressing germ cell precursors. These findings lead us to suggest

that naive pluripotency in piPS cells can be imposed in 2i and 3i +
LIF conditions, conferring these cells increased in vitro differen-

tiation capacity to germ line precursors. Future in vivo studies will

determine the capacity of these cells to colonize chimeric embryos.
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Figure 5. Differentiation potential of iPS cells grown under different conditions. A) RT-PCR performed on three iPS cell lines (A04, A-09,
and A-12) grown under 3i + LIF or FCS + LIF were spontaneously differentiated in medium containing 20% FCS. Gene expression analysis was
performed at the indicated time points. B) Immunocytochemistry analysis was carried out in spontaneously differentiated piPS cells. Scale bar: 10 mM.
C) qRT-PCR analysis of three iPS cell lines induced to differentiate in culture medium containing 20% FCS over 20 days. Expression levels are relative
to iPS cells grown in FCS + LIF.
doi:10.1371/journal.pone.0049079.g005
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