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Abstract

Human microbiome research characterizes the microbial content of samples from human habitats to learn how interactions
between bacteria and their host might impact human health. In this work a novel parametric statistical inference method
based on object-oriented data analysis (OODA) for analyzing HMP data is proposed. OODA is an emerging area of statistical
inference where the goal is to apply statistical methods to objects such as functions, images, and graphs or trees. The data
objects that pertain to this work are taxonomic trees of bacteria built from analysis of 16S rRNA gene sequences (e.g. using
RDP); there is one such object for each biological sample analyzed. Our goal is to model and formally compare a set of trees.
The contribution of our work is threefold: first, a weighted tree structure to analyze RDP data is introduced; second, using a
probability measure to model a set of taxonomic trees, we introduce an approximate MLE procedure for estimating model
parameters and we derive LRT statistics for comparing the distributions of two metagenomic populations; and third the
Jumpstart HMP data is analyzed using the proposed model providing novel insights and future directions of analysis.
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Introduction

The Human Microbiome Project (HMP) [1] was initiated by

the NIH to identify and characterize the microbes and their

communities found in or on human body, focusing on the nasal

cavity, oral cavity, vagina, skin, and gastrointestinal tract. The goal

of the HMP is ‘‘determining whether individuals share a core

human microbiome, understanding whether changes in the

human microbiome can be correlated with changes in human

health, and developing the new technological and bioinformatics

tools needed to support these goals’’ [2].

Microbiome samples are collected from patient Body sites by

swabbing (e.g., skin, nasal, oral) or bulk collection (e.g., saliva,

stool). These samples contain within them the entire bacterial

community (i.e., the microbiome) as well as other organisms (e.g.,

human cells, viruses, fungi). Samples are processed to isolate the

genomic content (i.e., all DNA from the entire bacterial

microbiome, all patient DNA, all viral DNA, etc.) within that

sample, and prepared for state-of-the-art ‘next generation’

sequencing. To characterize the microbial community structure,

16S rRNA genes are sequenced using the high throughput 454

FLX Titanium sequencing platform (Roche). The sequences are

analyzed using either a phylogenetic or taxonomic approach [3],

[4]. The phylogenetic approach studies communities’ evolutionary

relationships between sequences within the sample, and generally

represents the microbiome by a phylogenetic tree. The taxonomic

approach assigns sequences to taxonomic units using unsupervised

and supervised methods: The unsupervised taxonomic method

computes pairwise nucleotide distances between 16S rRNA gene

sequences and an operational taxonomic unit (OTU) is assigned,

by alignment-based clustering, to sequences that are at least 97%

identical; and the supervised taxonomic method matches a

sequence to a hierarchical taxa or taxonomy bins defined in a

bacterial-taxonomy library such as, for example, the Ribosomal

Database Project (RDP) [5], Greengenes [6], SILVA [7], and

GAST [8]. The supervised taxonomic analysis allows us to

represent each sample (set of sequences) by a rooted taxonomic

tree where the root corresponds to taxon at the Kingdom level,

i.e., bacteria, and the leaves correspond to the taxa at the Genus

level, and the width of the edges (paths) between taxonomic levels

correspond to the abundances of the descending taxon. A number

of reviews on the phylogenetic and taxonomic analysis of

sequences have appeared recently (e.g. see [9], [10], [4]). In [4],

the authors showed that both the supervised and unsupervised

taxonomic methods arrive at similar ecological/biological conclu-

sions. However, the supervised taxonomic analysis is more tolerant

to sequencing errors, and it requires significantly less computa-

tional power than the taxonomy unsupervised analysis [4].

With the goal to enumerate the content and abundances in the

microbial communities of 18/15 body habitats of 300 healthy

female/male adults, 7,000 16S rRNA sequences were produced

from an individual on average per body site sample. These

sequence data sets provide the opportunity to estimate the
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microbial diversity with high resolution, but statistical tools and

strategies to analyze the microbial communities are needed to take

full advantage of the data density.

In recent years several tools have been developed to compare

Human microbiome communities using either phylogenetic or

taxonomical classification of metagenomic sequences. Current

strategies are based primarily on exploratory cluster analysis,

phylogenetic inferences, biological diversity indices, bootstrap or

resampling methods, and application of univariate and non-

parametric statistics to different subsets of the data [11–23].

Tools currently being used to analyze HMP data for limited

numbers of sequence reads include UniFrac [14], SONS [12], and

DOTUR [11]. UniFrac, for example, uses phylogenetic distances

and permutation testing to compare samples, which does not

require a large number of sequence reads to detect significant

differences between two samples. SONS and DOTURS compare

similarities between samples using OTU-based taxonomies and

standard diversity indices of complexity, which provide with

quantitative descriptions of a community as well as of its similarity

to other communities. Several other methods exist that depend on

sequence and phylogeny comparisons (e.g., AMOVA, Tree

Climber) [15] or diversity indices and community coverage (e.g.,

LIBSHUFF [16] and S-LIBSHUFF [17]). All the above methods

compare two libraries of sequences, however, because of the

computational complexity of calculating phylogenetic trees and

generating huge pairwise distance matrices between sequences,

these methods are meant mainly to perform pairwise sample

comparisons of at most two groups of samples with a restricted

amount of sequences per samples. Analysis of groups of large

HMP samples has been limited to the application of clustering and

ordination techniques based on pairwise distances between

samples (see for example, [24]). Other methods and ecological/

HMP software packages compare microbiomes based on standard

statistical methods such as contingency tables, Fisher’s Exact Test,

or goodness-of-fit tests to multinomial distributions, bootstrap tests.

These packages (e.g., ANOSIM [25], XIPE-TOTEC [18], IMG/

M [19], MEGAN [20], Metastats [21], QIIME [22], and STAMP

[23] require a significant reduction of the HMP data, often basing

the statistical analyses on pairwise comparisons of the abundances

of taxa bin or OTUs or other summary statistic features (e.g.,

community functions).

In this work a novel parametric statistical inference method

based on object-oriented data analysis (OODA) for analyzing

HMP data is proposed. OODA is an emerging area of statistical

inference where the goal is to apply statistical methods to objects

such as functions [26], images, and graphs or trees [27], [28]. In

particular, the data objects that pertain to this work are RDP-

based taxonomic trees. There is one such object for each habitat

sites sampled from each person, and, thus we are interested in

modeling and comparing population of trees. The probabilistic

modeling approach proposed here has been applied previously to

hierarchical clustering trees (dendrograms) and classification and

regression trees [29], [30], [27], as well as for constructing

Maximum Likelihood Supertrees [31]. This contribution is

threefold: first, a weighted tree structure to analyze RDP data is

introduced; Second, the unimodal probability measure proposed

in [29], [27] is applied to model a set of RDP trees, and the

likelihood ratio test statistics for comparing the probability models

of two microbiome populations is derived; and third the HMP

data is analyzed using the proposed model providing novel

insights. An R-package has been developed containing the

implementations of the visualization and methods proposed on

this work [32].

Of primary interest to HMP investigators is the estimation of

the core microbiota from a set of samples. Determining a core

microbiota aims at finding the organisms (or functions) selected in

the host environment, and at studying its correlation with changes

in human health. By defining a unimodal probability measure we

are able to compute a central taxonomic tree, the maximum

likelihood tree, providing an alternative and new definition of the

core-microbiome for a set RDP trees samples. Though, in this

paper we are focused on analyzing 454 sequencing of 16S rRNA

genes with the reads mapped to taxonomic (classification)

assignments, the methods are equally applicable to shotgun

sequencing data with functional profiling of the microbial

community.

Materials and Methods

Ethics Statement
Subjects involved in the study provided written informed

consent for screening, enrollment and specimen collection. The

protocol was reviewed and approved by Institutional Review

Board at Washington University in St. Louis. The data were

analyzed without personal identifiers. Research was conducted

according to the principles expressed in the Declaration of

Helsinki. This manuscript adheres to the HMP data release policy

(see [33] and [1] for more details).

HMP Data Description and Data Structure
Human microbiome data analyzed in this paper for illustration

purposes are from samples of 24 subjects (male and female), 18–40

years old, from two geographic regions of the US: Houston, TX

and St. Louis, MO. These samples were collected as part of study

HMP: 16S rRNA 454 Clinical Production Pilot (Project ID:

48335) (see [34]). Each sample was distributed to two HMP

sequencing centers, and ,16105 sequences were obtained from

two regions of the 16S ribosomal RNA gene, denoted as variable

regions V1–V3 and V3–V5. The sequences were assigned to

bacterial taxa by matching the DNA sequence reads to bacterial

reference sequences using the RDP [5]. RDP matches each rRNA

sequence to a set of hierarchical taxa following a Linnaean-based

taxonomy, and it provides a confidence score, computed via

bootstrapping, for each taxonomic classification [5]. The matching

is done using a naı̈ve Bayesian rRNA classifier which is trained on

the known type strain 16S sequences (and a small number of other

sequences representing regions of bacterial diversity with few

named organisms) [5]. Generally as a read is assigned further

down the taxonomy from kingdom to genus level there is less

confidence since reads may show partial matching at more specific

taxonomic levels, as well as matching to multiple taxa. This is

illustrated in Table 1 where three sequence reads are mapped

down to the genus level, with the associated confidence value at

each level. Each sequence read’s RDP match defines a taxonomic

tree path, and when combining them together forms a natural

representation of the HMP sample as a Linnaean taxonomic tree.

A taxonomic tree is an acyclic rooted graph in which any two

vertices or taxa are connected by a path or edge. HMP data is

naturally represented as a rooted taxonomic tree with higher

taxonomic levels (e.g., phylum or class versus family or genus)

closer to the root, and edges weighted by the RDP confidence

score. So far the tendency to combine RDP matches consists of

applying a hard threshold filter to the confidence scores, usually at

80% or at 50%, and then overlap all branches by adding the

filtered confidence scores of common paths. In the above

approach, taxa with confidence scores above or equal to the

threshold are assigned a score of 1, and below it are reassigned to

Statistical OODA of Taxonomic Trees from HMP Data
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an unknown taxa category with a score of 1. The path weights of

the taxonomic tree obtained after combining the set of RDP

matches provides with a measure of the abundance for the

descending taxa. The above approach is somehow arbitrary since

taxa abundances of known and unknown taxon will depend on the

specific threshold level used. In this work, we will combine RDP

values without using a threshold filter, which allows us to provide a

measure of taxa abundance weighting on the confidence of each

taxa assignment, and to avoid creating arbitrarily unknown taxa at

each taxonomic level. For the three sequence reads in Table 1, the

tree in Figure 1 is formed by adding confidence values for reads

with overlapping paths. In this example all three sequence reads

contribute 0.99 confidences to the Kingdom Bacteria

(0.99+0.99+0.99 = 2.97), while sequence 2 and 3 contribute to

Phylum Firmicutes (0.53+0.96 = 1.49). Note that all taxonomic

levels provide important information to characterize the sample

since the aggregated confidence at a parent node in the tree is not

necessarily equal to the addition of the aggregated confidences

from their children nodes.

Building a taxonomic tree based on adding RDP confidences

has several important properties. For example, the resulting tree is

consistent with the RDP classification of each sequence where

branches closer to the root have higher values than branches closer

to leaves. Also, this approach provides with a linear approximation

of the overall confidence of a branch in a sample, which allows us

to identify tree branches that have overall higher confidence in

each sample. Moreover, as stated above, for any given branch the

addition of the confidence values provides with a measure of taxa

abundance weighting on the confidence of the resulting RDP taxa

assignment. However, one drawback of this approach is that Trees

with larger number of sequence reads would tend to have

branches with larger weight values, and thus would tend to bias

the analysis when modeling a set of Trees, e.g., the computation of

the MLE tree. Therefore, to avoid this issue in this work we

normalize the number of sequence reads of all samples by a

common number of reads.

Probabilistic Model
A unimodal probability model for graph-valued random objects

has been derived and applied previously to several types of graphs

(cluster trees, digraphs, and classification and regression trees) [30]

and [27]. In this paper the model is applied to HMP trees

constructed from RDP data as described above. Let G be the finite

set of taxonomic trees with elements g, and d : G|G?Rzan

arbitrary metric of distance on G. We have the probability

measure H g�,tð Þ defined by

P g; g�, tð Þ~c g�, tð Þexp {td g�,gð Þð Þ, Vg E G, ð1Þ

where g�EG is the modal or central tree, tERzis a concentration

parameter, and c g�,tð Þ is the normalization constant. The

probability model in (1) is known as the Gibbs distribution, the

distribution that maximized the entropy providing the greatest

sampling diversity [29]. Note that if t~0, P g; g�,tð Þ becomes a

uniform distribution on G, and if t is large then the trees are

concentrated around g�, in which case the data provides

information about the central tree.

Distance metric. Two broad strategies exist for defining a

suitable distance metric d in tree space [35], [30], [36]: one

approach focuses on counting the number of times we prune a

Table 1. Example of a Linnaean taxonomic classification of three sequences.

Seq. ID Kingdom Phylum Class Order Family Genus

F51YIRY01BC31 Bacteria:0.99 Bacteroidetes:0.99 Bacteroidia:0.9 Bacteroidales:0.99 Prevotellaceae:0.99 Prevotella:0.99

F51YIRY01DFQI Bacteria:0.99 Firmicutes:0.53 Clostridia:0.53 Clostridiales:0.53 Veillonellaceae:0.53 Megasphaera:0.52

F51YIRY01CLKP Bacteria:0.99 Firmicutes:0.96 Bacilli:0.91 Lactobacillales:0.90 Enterococcaceae:0.44 Pilibacter:0.41

Each taxa assignment shows the estimated classification reliability computed via bootstrapping.
doi:10.1371/journal.pone.0048996.t001

Figure 1. Example of a bacterial taxonomic tree build from adding three RDP classifications of sequences as shown in Table 1.
doi:10.1371/journal.pone.0048996.g001
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branch (edge) or add a branch (edge) to transform one tree into

another, and the second approach focuses on mapping trees into

alternative mathematical structures for which natural metrics

already exist. In this work we will focus on the latter approach,

more specifically, we will focus on mapping trees into normed

spaces.

In general, any finite graph defined on a set of labeled vertices

or nodes can be uniquely characterized by mapping it into the

space of matrices through the vertex-adjacency matrix I gð Þ where

Iij gð Þ : ~ 1 if vertex i connects to vertex j in g; 0 otherwisef g,
and for a weighted graph it can be simply defined as

~IIij gð Þ : ~ wij

� �
where wij§0 is the edge weight linking vertices i

and j. If g is an undirected graph its vertex-adjacency matrix is

symmetric. The distance metric d gk,glð Þ is given by the Frobenius

norm [37] of the difference between the vertex-adjacency matrices

of gk and gl , i.e. d~II gk,glð Þ~ tr ~II gkð Þ{~II glð Þ
� �2
n o� �1=2

, where

tr Af g is the trace of the matrix A. In the case of the RDP trees,

the vertices are taxa labeled according to a Linnaean-taxonomic

classification. Therefore not every pair of vertices is connected by

an edge, for example, Bacilli is a descendent of Firmicutes but not

of Bacteroidetes. This implies that ~II gið Þ is a sparse matrix with

Figure 2. MDS plot showing the distribution of the taxonomic trees corresponding to stool samples sequenced at region V3–V5.
The MLE tree of all samples is denoted by MLE (dot in black) in the MDS plot. Individual taxonomic trees are denoted by gj with j = {2, 3, 5, 7, 16, 18}
and these are shown around the MDS plot to illustrate how the tree structure varies. The tree branches are color-coded to represent their weight
values (sum of confidence) according to the reference table at the bottom left side of the plot. Blue denote the branches with the highest confidence
among all while red denote the branches with lowest confidence. Note here that the tip of each branch represents a genus, and the location of each
genus is the same on all trees.
doi:10.1371/journal.pone.0048996.g002
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many of its elements being always zero for any RDP tree sample.

Moreover, the diagonal elements of Iij gð Þ and ~IIij gð Þ are always

equal to zero since the graphs which concern our work are simple

graphs which do not have loops. The above observations led us to

consider a more efficient representation of RDP trees by mapping

the weights of the edges that do exist, according to the Linnaean-

taxonomic classification, into a vertex-adjacency vector v gð Þ[RP

where P is the total number of existing edges. The distance metric

d gk, glð Þ is the Euclidean norm of the difference between their

adjacency-vectors and it is given by dv gk,glð Þ~PP
i~1

vi gkð Þ{vi glð Þð Þ2
� 	1=2

. Mapping trees to Euclidean space

facilitates the analysis and visualization of Tree objects, and the

fitting of any probability model is computationally simpler in this

space. However, one of the drawbacks of this metric is that it

weight branches with lower range of values (e.g., genus level) do

not contribute to differentiate one tree from another. Note that it is

easy to show that for simple graphs metrics dv gk, glð Þ and

d~II gk, glð Þare related as follows: d~II gi, gj

� �
~

ffiffiffi
2
p

dv gi, gj

� �
: Also, if

all the weights are considered to be 0 or 1, then dv gk,glð Þ is

equivalent to the square root of the Hamming distance between

the trees, which is the number of edges discrepancies between two

graphs. In [29] the authors show that under this metric the

normalization constant is a function of t only, namely, it is

independent of the central graph g�.
Normalization constant. The space of RDP trees is

continuous and constrained. In fact, by construction of the RDP

tree the edge weights (the sum of confidence levels) are

monotonically decreasing as we travel from the root, the vertex

Figure 3. Illustration of the MLE tree for stool samples, region V3–V5. Sample individual taxonomic trees shown in Figure 2 (gj with j = {2, 3,
5, 7, 16, 18}) are displayed around the MLE tree to illustrate some of tree structures represented by the MLE tree.
doi:10.1371/journal.pone.0048996.g003
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at the kingdom level, to the leaves, the vertices at the genus level.

This means that wij§wjk, where j is the common taxonomical

level, i is its respective and unique parent node of j, and k denotes

any of the descendant nodes of j. Moreover, all weighted edges are

nonnegative. Therefore, since a weighted edge wij is an element of

the vertex-adjacency vectorv gð Þ, we have that for any RDP tree g

the following vector inequality should be satisfied: Hv gð Þ§0,
where H is a 0, 1, 21 matrix describing the set of inequalities of

the type wij§wjk and wij§0. Hence, the normalization constant

c g�,tð Þ can be computed using the vertex-adjacency vector

mapping as follows:

c g�,tð Þ~
Hv gð Þ§0

exp {t v gð Þ{v g�ð Þk kð Þ dv gð Þ
� �{1

, ð2Þ

where the integral is defined on the subspace Sg formed by the set

of inequalities Hv gð Þ§0. It is straightforward to show that a lower

limit on c g�,tð Þ is given by,

Figure 4. Analysis of stool samples for 24 subjects sequenced at variable regions V1–V3 and V3–V5, mapped to the RDP database.
In Figure (a), a pairwise distance matrix was generated using Euclidean distance, and multidimensional scaling was used to display the distribution of
these 48 trees showing V1–V3 (red) and V3–V5 (blue) samples are overlapping; In Figure (b), the MLE tree for the 48 trees is illustrated; and in Figures
(c) and (d), the MLE tree for trees corresponding to V1–V3 and V3–V5 regions are shown, respectively.
doi:10.1371/journal.pone.0048996.g004
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c g�,tð Þ§
Ð?

{?
exp {t v gð Þ{v g�ð Þk kð Þ dv gð Þ

� �{1

~
C P=2ð Þ t

C Pð Þ
ffiffiffiffiffiffi
pP
p

2P
,

ð3Þ

where P is the dimension of v gð Þ: The lower limit depends only on

t and on P. Note that since the exponential function in c g�,tð Þ is

symmetric around v g�ð Þ, then c g�,tð Þ would tend to the lower

limit as v g�ð Þ moves away from the boundaries of Sg(including the

origin). For a given v g�ð Þ, the difference between c g�,tð Þ and the

lower limit depends on the concentration parameter t, i.e., the

larger its value the smaller the difference.

Model Parameter Estimation
To estimate g�,tð Þ from a set of sample trees we use a maximum

likelihood estimate (MLE) approach. In particular, for a random

sample of n observed trees, ~GGn : ~ g1, . . . ,gnf g5G, the log-

likelihood is given by

ln L g�,t; ~GGn

� �
~{n ln

ð
Hv gð Þ§0

e{t v gð Þ{v g�ð Þk k dv gð Þ

2
64

3
75

{ t
Xn

i~1

v gið Þ{v g�ð Þk k ,

ð4Þ

and the MLE ĝg�,t̂tð Þ are such that ln L ĝg�,t̂t,Snð Þ is maximum, ĝg�[G,

and t̂t§0. Note that Banks and Constantine [30] pointed out, the fact

that the likelihood equation (4) contains two terms whose importance

depends on the value of t. If t?0 then (4) is dominated by the first

term of the equation, and the points (trees) becomes less important. In

this case the likelihood is a non-linear function of the distances between

the trees in a neighborhood around g�. However, for large t, the

second term dominates the likelihood, and the data points (trees) are of

primary importance. In this case, the likelihood is a linear combination

of the distances between the observed trees and the current estimate of

g�. Following the analysis of Banks and Constantine [30], it can be

shown that the MLE ĝg�,t̂tð Þmust satisfy the following equation:

1

n

Xn

i~1

v gið Þ{v ĝg�ð Þk k~
Ð

Hv gð Þ§0
v gð Þ{v ĝg�ð Þk ke{t̂t v gð Þ{v ĝg�ð Þk k dv gð ÞÐ

Hv gð Þ§0 e{t̂t v gð Þ{v ĝg�ð Þk k dv gð Þ , ð5Þ

where

ĝg�~ arg min
ĝg�[ G

n ln

ð
Hv gð Þ§0

e{t̂t v gð Þ{v ĝg�ð Þk k dv gð Þ

2
64

3
75zt̂t

Xn

i~1

v gið Þ{v ĝg�ð Þk k

8><
>:

9>=
>;:

Solving the above equations for ĝg�,t̂tð Þ is hard, and thus it requires

numerical search algorithm to obtain an approximation solution.

Shannon and Banks in [27] developed an iterative algorithm to

compute an approximate MLEs ĝg�,t̂tð Þ using equations (5) and (6),

however their approach is specific to the set of unweighted trees

(classification trees) and to the distance metric based on a weighted

sum of the number of discrepant path of a certain length across all

possible path lengths (See [27] for more details.) An algorithm

considering the normalization constant would imply solving a

multidimensional integral of an exponential function defined on the

whole tree space, which does not have a closed-form solution. A

Monte-Carlo integration approach incorporating Importance

Sampling [38] could be attempted however at the cost of

introducing a high computational complexity. Here, instead, we

will approximate the likelihood function in (4) by replacing the

normalization constant with its lower limit as given in (3), and thus

the approximate MLEs ĝg�,t̂tð Þ are given by,

ĝg�~arg min
ĝg�[ G

Xn

i~1

v gið Þ{v ĝg�ð Þk k
( )

, ð7Þ

t̂t~
1

n

Xn

i~1

v gið Þ{v ĝg�ð Þk k
 !{1

: ð8Þ

Note that solving the minimization problem in (7) with respect

to ĝg� is equivalent to solving it with respect to the vertex-

adjacency vector v ĝg�ð Þ since ĝg� is uniquely characterized by

v ĝg�ð Þ: The unconstrained minimization problem with respect to

v ĝg�ð Þ is also known as the Fermat-Weber location problem [39],

and its solution is given by the geometric median of the vertex-

adjacency vectors v gið Þ, for gi[~GGn, i~1, . . . ,n. If the set of

v gið Þ,i~1, . . . ,n are not collinear, the expressionPn
i~1

v gið Þ{v ĝg�ð Þk k is strictly convex and hence there is a unique

minimum, v ĝg�ð Þ. If v gið Þ, i~1, . . . ,n are collinear, the minimum

is given by the dimension-wise median and hence it may not be

unique [39]. There are no analytic solutions to compute the

geometric median. Here we use the Weiszfeld iterative algorithm

(see [39] for more details) with initial solution given by the mean

Table 2. P-values of the two sample test comparison, using
LRT statistics and 1000 bootstraps, to test for similarities
across samples from variable regions V1–V3 and V3–V5 of the
16S rRNA gene, within a body site.

Body Habitats P-value

anterior-nares 0.15

attached-gingivae ,E-03

buccal-mucosa 0.02

hard-palate 0.12

l-retroauricular-crease 0.47

mid-vagina 0.23

palatine-tonsils 0.03

posterior-fornix 0.22

r-retroauricular-crease 0.53

saliva 0.02

stool 0.26

subgingival-plaque 0.12

supragingival-plaque 0.12

throat 0.10

tongue-dorsum 0.05

vaginal-introitus 0.20

doi:10.1371/journal.pone.0048996.t002

ð6Þ

ð5Þ
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tree, i.e., the average of the set of adjacency-vectors

v gið Þ,i~1, . . . ,n: Though the proposed MLE approximation is

computationally attractive, improving upon them is an interesting

problem for future research.

Two-sample Test Comparison
We are interested in assessing whether the distributions

H g�1,t1

� �
and H g�2,t2

� �
from two metagenomic populations are

the same or different, which is equivalent to evaluating whether

their respective parameters are the same or different. The

corresponding hypothesis is given as follows:

Ho : g�1,t1

� �
~ g�2,t2

� �
~ g�0,t0

� �
vs HA : g�1,t1

� �
= g�2,t2

� �
, ð9Þ

where g�0,t0

� �
is the common parameter vector. Since the

parameters under both hypothesis are unknown, we use the

likelihood-ratio test (LRT) to evaluate (9), which is given by,

l~{2 ln
L g�o,to; f~GG1,n,~GG2,mg
� �

L g�1,t1; f~GG1,ng
� �

zL g�2,t2; f~GG2,mg
� �

 !
, ð10Þ

Figure 5. Analysis of saliva and stool samples for 24 subjects sequenced at variable regions V3–V5, mapped to the RDP database. In
Figure (a), a pairwise distance matrix was generated using Euclidean distance and multidimensional scaling was used to display the distribution of
these 48 trees showing stool (red) and saliva (red) samples do not overlap; In Figure (b), the MLE tree for the tree samples combined is illustrated; and
in Figures (c) and (d), the MLE tree for trees from stool and saliva samples are shown, respectively.
doi:10.1371/journal.pone.0048996.g005
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where ~GG1,m : ~ g1,1, . . . ,g1,nf g and ~GG2,m : ~ g2,1, . . . ,g2,mf g are

the sets containing n and m random samples of trees from each

metagenomic population, respectively. We assume that the model

parameters are unknown under both the null and alternative

hypothesis, therefore, we estimate these using the ML procedure

described in Section 4, and compute the corresponding p-value

using non-parametric bootstrap (see [40] and [29] for more

details.)

Results

Application to Human Microbiome Data
We apply the HMP taxonomic tree OODA methods developed

here to existing HMP data formed by 24 subjects (see Methods

Section, under HMP Data Description and Data Structure, and

reference there in for a complete description). An R-package has

been developed containing the implementations of the visualiza-

tion and methods proposed above [32]. In all our analyses below

we only selected samples that have more than 1000 reads and, as a

consequence, we excluded the right and left antecubital fossa sites

since these ended up having 3 and 4 samples each.

For a given set of HMP stool samples we show in Figure 2 a

multidimensional scaling (MDS) plot based on the pairwise

Euclidean distance of all taxonomic trees. The MDS plot shows

the distribution of the taxonomic trees in 2 dimensions. Individual

taxonomic trees are shown around the MDS plot to illustrate how

the tree structure varies. The trees are displayed using a circular

graphical representation in which the root of the tree is at the

center and same taxonomic-level nodes are placed at a fix radius

around the center at a fix order, allowing each taxonomic lineage

to be represented in a fixed consistent position in each tree. In this

plots only genera are listed around the circumference of the plot.

The tree branches are color coded to represent different ranges of

weight values (see color table at the bottom left side of the figure).

Blue denotes the branches with the highest confidence among all,

and red denote the branches with lowest confidence. The

maximum likelihood estimation, ĝg�, summarizes the tree distribu-

tion, and is the tree structure (microbiota) that maximizes the

likelihood of seeing the data we observed. In Figure 3 we illustrate

the corresponding MLE tree for the saliva samples illustrated in

Figure 2.

To illustrate differences within a body site but across variable

regions of the 16S rRNA gene, stool samples for 24 subjects were

sequenced at variable regions V1–V3 and V3–V5, mapped to the

RDP database, and a taxonomic tree estimated for each sample.

Figure 4A shows a multidimensional scaling used to display the

distribution of these 48 trees showing V1–V3 (blue) and V3–V5

(red) samples are overlapping; Figure 4B shows the MLE tree

estimated after combining the two groups and Figure 4C and

Figure 4D illustrates the MLE trees for samples corresponding to

V1–V3 and V3–V5 regions, respectively. The LRT test of the null

hypothesis that the microbiota distributions in variable regions

V1–V3 and V3–V5 are the same is not rejected with p-

value = 0.26, based on 1000 bootstraps, and is confirmed visually

by the similarities in the MLE trees for these two regions. (Note

that the structure of these trees places the same bacteria taxon at

the same location on the tree, so visual branching comparisons are

valid.) We conclude from this analysis that the central trees are the

same for V1–V3 and V3–V5 and the combined MLE tree should

be used as the best estimate of the central tree of the stool samples.

Table 2 shows the p-values of the LRT statistics applied to each

body site to test for similarities between samples from regions V1–

V3 and V3–V5. In general, all of the sites except for attached-

gingivae, buccal-mucosa, palatine-tonsils, and saliva, did not reject

the null hypothesis that the distributions of samples from regions

V1–V3 and V3–V5 are same based on a statistical significance of

5%.

To illustrate differences across body habitats, stool and saliva

samples for 24 subjects were sequenced, mapped to the RDP

database, and a taxonomic tree estimated for each sample. In

Figure 5A we computed the Euclidean pairwise distance matrix

between the trees (region V3–V5) and multidimensional scaling

was used to display the distribution of these 48 trees showing stool

(red) and saliva (blue) samples are visually distinct. Figure 5B

displays the MLE tree estimated for the two body site groups

combined, and the MLE trees estimated for stool and saliva

separately are shown in Figure 5C and 5D, respectively. The LRT

test of the null hypothesis that the distribution parameter in stool

and saliva are the same is rejected with p-value , 10{3, based on

1000 bootstraps, and is confirmed visually by the differences in the

MLE trees for these two body habitats. We conclude from this

analysis that the distributions are different for the two groups, and

the MLE trees fit separately to the body habitats are the best

estimates of their corresponding central trees.

In Table 3 we show the p-values of the LRT statistics applied to

all possible pairwise comparisons of body habitats. It can be seen

that, based on a statistical significance of 5%, the LRT statistic

rejects the null hypothesis that the distribution parameters are

same on pair of samples from body habitats located on anatomical

regions physically separated, while in the case of some body

habitats sharing the same anatomical region, e.g., vaginal sites, the

null hypothesis is accepted. It is important to emphasize that we

cannot conclude that the MLE trees are different using the p-

values of the LRT statistics (only similarities can be concluded)

since this test statistic assess for changes in both the central mode

tree g� and the dispersion parameter t simultaneously. Note that

multiple hypothesis testing correction can be performed here,

however, the example is for illustration purposes only and so we

did not emphasize the biological implication of our results.

In addition, for purpose of comparison, we apply Analysis of

Similarity (ANOSIM) [25], which is a multivariate and non-

parametric test widely used in community ecology to compare the

variation in taxa abundance distribution among samples from

different groups or treatments. ANOSIM operates directly on any

measures of dissimilarity between the samples. Here, we compare

habitat sites using the Bray-Curtis distance [41] between the taxa

abundance information among samples at the genus level. We

found that the results the ANOSIM test in all pairwise

comparisons between habitat sites was consistent with the results

provided by our method (Table 3). For example, the ANOSIM

comparison of the saliva and stool samples shown in Figure 5

resulted in a statistically significant difference (P = 0.001) between

the 2 groups, which is consistent with what would be expected

from a visual examination of the separation of the two groups

using MDS based on Bray-Curtis distance, and consistent with the

taxonomic tree comparison (P, 10{3).

Discussion

We propose a novel parametric statistical inference method for

analyzing HMP data which is naturally represented in the form of

a taxonomic tree. Using methods from Object Oriented Data

Analysis (OODA), we applied classical statistical methods for

inference and hypothesis testing to the analysis of HMP RDP data.

In particular, we applied a unimodal probability model which

depends on a dispersion parameter and central mode tree. We

introduce an approximate MLE procedure for estimating model

Statistical OODA of Taxonomic Trees from HMP Data
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parameters and we derive LRT statistics for comparing the

distributions of two metagenomic populations.

Within the framework of representing HMP data by taxonomic

trees there are currently two basic approaches for defining

(estimating) the core: First, a consensus tree can be built by

combining common branches from the samples and removing

unusual samples, i.e., the intersection tree. This approach defines

the core as the set of organisms that are present in a particular

body site in all or in a vast majority of individuals [42]. However,

this graph-theoretic approach would eliminate taxa that are

alternate sources of the same biological function and thus would

each be present in some but not all tree samples. Moreover, it

assumes that every tree sample is correct and no estimates of error

or methods for inference are available; and second, all sequence

reads from each sample can be combined and a single taxonomic

tree constructed, i.e., the union tree. This approach will likely

produce a biased estimate since rare sequence matches and

spurious matches caused by error in sequencing or incorrect

matching to taxa with conserved genetic regions will be retained.

Therefore, the MLE tree, ĝg�, proposed in this work, stands as a

more appropriate definition of core since it corresponds to the

microbiome most likely to be observed, and is ‘‘core’’ in that sense.

The great comparative advantage of using ĝg� as a core definition is

that by using a probabilistic model it deals with the variability of

organisms present in the samples across subjects avoiding a highly

constrained and deterministic definition of the core. Note that the

approximate MLE tree tends to incorporate more branches that

any sample tree since the MLE tree correspond to the geometric

median of all the samples, and thus it is the results of a linear

combination of all sample tree. After reviewing this point more

carefully, we realized that the MLE tree has the properties of a

supertree, potentially a much larger tree than some or all of the

original tree data. Again, we believe this is an important

component of the definition of the core microbiome. In a future

work we will study the biological insights that the MLE tree can

provides as a core when analyzing metagenomic samples of

specific habitat sites.

Our approach is based on the assumption that a unimodal

model fits the set of tree samples, which might not always be valid

[43]. Goodness-of-fit test for the unimodal model applied to binary

trees has been discussed in [29] and [30]. However, the Pearson

Chi-Square approach proposed in [29] applies only to the set

binary trees which are discrete objects and unweighted, thus not

applicable to the tree objects of our paper. To the best of our

knowledge goodness-of-fit test statistics for this model applied on

weighted trees has not be derived yet. We are currently working on

deriving more general models such as finite mixture model of the

unimodal probability model to assess for the existence of several

modes in the data, e.g., due to the presence of subgroups of trees

within the data that correspond to sample subgroups. The

estimation of the corresponding core microbiomes of each

subgroup can be obtained by using the conventional EM

algorithm combined with the MLE search algorithm proposed

in this work. Though, this is formally a modeling selection

approach, it will provide a sense of how well the unimodal

assumption holds in the data compared with multimodal

alternatives. In addition, we will investigate several others distance

measures between taxonomic tree objects, and assess how these

metrics influence the estimation of the core microbiome and their

impact on the performance of likelihood ratio tests.

The application of the LRT statistics to real HMP data formed

by 24 subjects allowed testing for differences of core microbiomes

across body habitats and variable regions within the same body

site. When comparing the results of the LRT test with those

obtained by ANOSIM [25], consistent conclusions were obtained.

Though technically both methods assess different hypothesis about

the samples, several advantages can be listed in favor of our

approach when compared with ANOSIM. First, our methodology

provided with an estimate of the central taxonomic trees for both

body sites while ANOSIM does not provide a direct estimate of

the average microbiome. Second, taxonomic analysis retains more

information than ANOSIM which likely provides more power for

the analysis. ANOSIM, like many existing metagenomic analysis

methods, first reduces the data to a pairwise distance matrix which

by definition contains less information. By this we mean that the

distance between two samples does not indicate what the microbial

composition is of those samples, or allows the average composition

to be determined. These results illustrate the potential that our

method has in guiding the analysis of the vast amount of HMP

data is currently being generated (samples from 300 subjects, 18/

15 body habitats, multiple visits, and multiple sequencing

platforms), and in helping to bridge the transition from HMP

technology development to clinical applications.
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