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Abstract

Correlation coefficients among multiple variables are commonly described in the form of matrices. Applications of such
correlation matrices can be found in many fields, such as finance, engineering, statistics, and medicine. This article proposes
an efficient way to sequentially obtain the theoretical bounds of correlation coefficients together with an algorithm to
generate n | n correlation matrices using any bounded random variables. Interestingly, the correlation matrices generated
by this method using uniform random variables as an example produce more extreme relationships among the variables
than other methods, which might be useful for modeling complex biological systems where rare cases are very important.
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Introduction

Many important properties of financial models, engineering

problems, and biological systems can be represented as correlation

matrices, which describe the linear relationships among variables.

It is not always the case that these correlation matrices are known;

therefore, correlation matrices are an integral part of simulation

techniques for solving or analyzing problems in, for example,

signal processing [1], portfolio selection [2], factor analytic

research [3], genetic modeling [4], and neuroscience [5].

To create a correlation matrix, it is important to ensure that it is

valid, meaning that the matrix must be symmetric and positive

semi-definite, with the unit diagonal and other elements in the

closed interval [21, 1]. On the contrary, an invalid correlation

matrix is one in which assets or variables cannot be correlated

according to the specified relationship. The simplest method for

constructing a correlation matrix is to use the rejection sampling

method, which generates correlation coefficients using uniform

random variables in the closed interval [21, 1]. Subsequently, we

check whether the matrix is semi-definite and, if not, another

correlation matrix is generated. This procedure is repeated until a

valid matrix is obtained. Further details of rejection sampling will

be described later in this article. For a low-dimensional matrix, it is

relatively easy to use rejection sampling, but when the dimension is

greater than or equal to four, the chance of finding a valid

correlation matrix becomes very low. However, the number of

variables in physical or economic systems is normally considerably

greater than four, and so the rejection sampling method is

considered inefficient for the large-scale construction of correlation

matrices.

Instead, for large-dimensional problems, there are several

techniques for generating a correlation matrix. These can be

classified, based on the relevant objectives or constraints, as

follows:

1. Generating of a correlation matrix with predetermined

eigenvalues and spectrum [6,7,8];

2. Generating of a correlation matrix with a given mean value [9];

3. Generating of a correlation matrix based on a random Gram

matrix [10]; and

4. Generating of a correlation matrix in which each correlation

coefficient is distributed within its boundaries [11].

This article focuses on the fourth method presenting an efficient

algorithm to calculate the theoretical boundaries of correlation

coefficients without the use of optimization techniques. Instead,

the theoretical boundaries of each correlation coefficient are

calculated from the mathematical structure of the correlation

matrix constructed by hypersphere decomposition [12]. Although

the theoretical work conducted in [11] is similar to the

methodology presented here, its primary technique is the

optimization approach, whereas our work uses a non-optimization

technique. In addition, the sequence for computing the boundaries

of each correlation coefficient is heavily reliant on the concept of

adjusting the correlation matrix [13] and its boundaries [14]. After

finding the theoretical bounds, we present the techniques for

generating a correlation matrix.

Methods

Valid correlation matrix
It is important to have a common understanding of the

definition of a valid correlation matrix. Such a matrix conforms to

the following properties:
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1. All diagonal entries must be equal to one;

2. Non-diagonal elements consist entirely of real numbers in the

closed interval [21, 1];

3. The matrix is symmetric; and

4. The matrix is positive semi-definite.

The first three requirements are relatively easy to satisfy.

However, the final property of being positive semi-definite requires

all eigenvalues to be greater than or equal to zero.

Interestingly, a valid correlation matrix (C) can be constructed

using a method proposed in [12] in terms of trigonometric

functions. The correlation matrix then becomes a function of

angles (h(i,j)), which finally gives an efficient way of computing the

correlation matrix boundaries without using an optimization

method. According to [12], the valid correlation matrix can be

described as:

C~BBT , ð1Þ

bi,j~

coshi,j for j~1

coshi,j
:P k~1

j{1 sinhi,k for j~2 to n{1

P k~1
j{1 sin hi,k for j~n

8><
>: : ð2Þ

Generally, B is a square matrix with n dimensions whose elements

are represented by the bi,j in (2). As explained in [15], (2) can be

simplified by setting hi,i to zero for all i. B then reduces to a lower

triangular matrix, and:

bi,j~

1 for i~1, j~1

cos hi,j for i§2, j~1

P k~1
j{1 sin hi,k for i~j,2ƒi, jƒn

cos hi,j
:P k~1

j{1 sin hi,k for 2ƒjƒi{1

0 for iz1ƒjƒn

8>>>>>><
>>>>>>:

ð3Þ

As a result, B can be expressed as

B~

1 0 0 � � � 0

cos h2,1 sin h2,1 0 � � � 0

cos h3,1 cos h3,2 sin h3,1 sin h3,2 sin h3,1 � � � 0

cos h4,1 cos h4,2 sin h4,1 cos h4,3 sin h4,2 sin h4,1 � � � 0

..

. ..
. ..

.
� � � ..

.

cos hn,1 cos hn,2 sin hn,1 cos hn,3 sin hn,2 sin hn,1 � � � P
n{1

k~1
sin hn,k

2
6666666666664

3
7777777777775

: ð4Þ

It is evident from (4) that matrix B depends solely on hi,j , which

is called the correlative angle. The square matrix of correlative

angles (h) is defined as:

h~

0 0 0 � � � 0 0 0

h2,1 0 0 � � � 0 0 0

h3,1 h3,2 0 � � � 0 0 0

h4,1 h4,2 h4,3 � � � 0 0 0

..

. ..
. ..

.
P

..

. ..
. ..

.

hn{1,1 hn{1,2 hn{1,3 � � � hn{1,n{2 0 0

hn,1 hn,2 hn,3 � � � hn,n{2 hn,n{1 0

2
6666666666664

3
7777777777775

: ð5Þ

Thus, a valid correlation matrix can be calculated if the

correlative angle matrix (h) in (2.5)is known.

Example 1. Let us assume that the four-dimensional correl-

ative angle matrix is:

h~

0 0 0 0

h2,1 0 0 0

h3,1 h3,2 0 0

h4,1 h4,2 h4,3 0

2
6664

3
7775: ð6Þ

The matrix B can then be expressed as:

B ~

1 0 0 0

b2,1 b2,2 0 0

b3,1 b3,2 b3,3 0

b4,1 b4,2 b4,3 b4,4

2
6664

3
7775

~

1 0 0 0

cos h2,1 sin h2,1 0 0

cos h3,1 cos h3,2 sin h3,1 sin h3,2 sin h3,1 0

cos h4,1 cos h4,2 sin h4,1 cos h4,3 sin h4,2 sin h4,1 sin h4,3 sin h4,2 sin h4,1

2
6664

3
7775

:ð7Þ

Finally, the correlation matrix is:

C~BBT~

1 c2,1 c3,1 c4,1

c2,1 1 c3,2 c4,2

c3,1 c3,2 1 c4,3

c4,1 c4,2 c4,3 1

2
6664

3
7775, ð8Þ

where

c2,1 ~b 2,1

c3,1 ~b 3,1

c3,2 ~b 4,1

c4,1 ~b 2,1b3,1zb2,2b3,2

c4,2 ~b 2,1b4,1zb2,2b4,2

c4,3 ~b 3,1b4,1zb3,2b4,2zb3,3b4,3

ð9Þ

which can be written in terms of the correlative angles as

Generation of Correlation Matrices
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c2,1 ~cos h2,1

c3,1 ~cos h3,1

c3,2 ~cos h4,1

c4,1 ~cos h2,1 cos h3,1zsin h2,1 cos h3,2 sin h3,1

c4,2 ~cos h2,1 cos h4,1zsin h2,1 cos h4,2 sin h4,1

c4,3 ~cos h3,1 cos h4,1zcos h3,2 sin h3,1 cos h4,2 sin h4,1

zsin h3,2 sin h3,1 cos h4,3 sin h4,2 sin h4,1

: ð10Þ

Boundaries of the correlation coefficients
As shown in (6) to (10), a valid correlation matrix can be

constructed from the matrix B, and the elements in B are

determined by the correlative angles. Consequently, we can

determine which elements of B are impacted by changes to the

correlative angle in a four-dimensional correlation matrix, from

which two important aspects can be inferred:

1. Correlation coefficients in the first column (ci,1) depend solely

on hi,1.

2. Other correlation coefficients (ci,j ) for j§2) can be calculated if

hp,q are given, where pƒi and qƒjvi.

Because all hi,j are in the closed interval [0, p], the sine

functions will produce non-negative values, whereas the cosine

functions will output values in the range [21, 1]. Using the

correlation coefficients in (10) as an example, it is straight forward

to conclude that the boundaries of each correlation coefficient (ci,j )

can be calculated by setting cos hi,j to 21 or 1. Moreover, the

boundaries require only hp,q where pƒi and qƒjvi, except for

p~i and q~j (although not every hp,q is required), as shown in

Table 1. As a result, if ci,j lies within its boundaries and the

required hp,q are given, hi,j can be calculated by (11).

h2,1~arccos(c2,1)

h3,1~arccos(c3,1)

h4,1~arccos(c4,1)

h3,2~arccos
c3,2{b2,1b3,1

b2,2 sin h3,1

� �

h4,2~arccos
c4,2{b2,1b4,1

b2,2 sin h4,1

� �

h4,3~arccos
c4,3{(b3,1b4,1zb3,2b4,2)

b3,3 sin h4,2 sin h4,1

� �

: ð11Þ

The same logic can easily be applied to higher-dimensional

correlation matrices, albeit that longer formulas and computa-

tional procedures are obtained.

Algorithm for constructing a random correlation matrix
This section describes an algorithm to obtain a correlation

matrix by sequentially computing the boundaries of each

correlation coefficient, as described in earlier section, and

generating uniform random variables (other bounded distributions

can always be substituted) within these boundaries. Nevertheless, it

is important to note that no optimization is needed to calculate the

boundaries of each correlation coefficient. This non-optimization

approach is the major difference between our work and that from

presented in [11]. Let [0, 1] be the strictly lower triangular matrix

of uniform random variables in the closed interval [0, 1], h be the

strictly lower triangular matrix of correlative angles, and Y and Z

be the strictly lower triangular matrix of lower and upper bounds

of the correlation coefficients, respectively. The four-step algo-

rithm for constructing an n|n correlation matrix is then:

Step 1: Calculate correlation coefficients in the first column

N For i = 1, . . ., n, set ci,1~{1z2|ui,1, bi,1~ci,1, and extract

hi,1.

N For i = 2, . . ., n, set bi,j~sin hi,1 for j = 1, . . ., i.

Step 2: Calculate the remaining correlation coefficients from the

third row to the last row and from the second column to the last

column of each row.

For i = 3, . . ., n
For j = 2, . . ., i{1

N Calculate the lower bound (yi,j ) and upper bound (zi,j ) of each

correlation coefficient.

N The method for calculating these boundaries is explained in

the earlier section. Please see Table 1 for an example of the

upper and lower bounds using a four-dimensional correlation

matrix.

N If zi,j{yi,jvK , then ci,j~yi,jz(zi,j{yi,j)=2. Otherwise, using

ci,j~yi,jz(zi,j{yi,j)|ui,j .

N During our large numerical experiment, numerical instability

occurs when the boundary gap (zi,j{yi,j ) becomes very small.

As a result a threshold factor (K ) is introduced. This reduces

instability by forcing every correlation coefficient with a

boundary gap of less than K to be centered within its

boundaries. Larger value of K will produce a more stable

system, but imply less randomization in the ci,j .

N Extract hi,j using similar formulas to those shown in (11).

End

End

N Create a symmetric correlation matrix with unit diagonal

elements based on all generated correlation coefficients.

Step 3: Randomly reorder the correlation matrix. The

underlying concept of this step is to ensure that every correlation

coefficient is equally distributed. Without this step, the cumulative

distribution function (CDF) of correlation coefficients will not be

the same (see Figure 1). After applying random reordering, the

CDF of the same correlation coefficients will be almost identical,

as displayed in Figure 2.

Step 4: Check the validity of the correlation matrix. Even

though the above steps should theoretically generate a valid

correlation matrix, in some cases numerical instability can still

occur. We can detect two major causes of instability: Firstly, K is

too low relative to the dimension of matrix; Secondly, generated

correlation coefficients are very close to the boundaries. Based on

our experiments, in which 1 million 100|100 correlation matrices

were generated with K~0:01, there is only 0.0167% (or 167

matrices) probability that an invalid correlation matrix will occur.

Although the probability of an invalid matrix is very small, it is

non-zero. That is why this step is necessary, to ensure that invalid

correlation matrices will be rejected. The two basic procedures of

this step are:

1. Check the minimum eigenvalue. If it is negative, the

correlation matrix is invalid. Otherwise, the correlation matrix

is valid.

2. Reject the invalid correlation matrix, and regenerate the

correlation matrix by returning to step 1

Generation of Correlation Matrices
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In addition, from (1) to (4), we can generate a valid correlation

matrix directly from random sample of correlative angles.

Unfortunately, based on our experiment, this direct method is

not numerically stable. As a result, one may not be able to use the

matrix generated from this method in some applications. Thus, we

believe that our new algorithm is superior in terms of numerical

stability.

Example 2. For a five-dimensional correlation matrix, let us

assume that the uniform random matrix U described in step 1 of

the algorithm is:

U~

0 0 0 0 0

0:6220 0 0 0 0

0:0751 0:8576 0 0 0

0:9668 0:6035 0:4107 0 0

0:6100 0:8478 0:7324 0:7571 0

2
6666664

3
7777775
: ð12Þ

The lower-bound matrix Y , upper-bound matrix Z, and

correlation matrix C (before being randomly reordered) can then

be generated as follows:

Y~

0 0 0 0 0

{1:0000 0 0 0 0

{1:0000 {0:7185 0 0 0

{1:0000 {0:1197 {0:8946 0 0

{1:0000 {0:8923 {0:1893 0:0213 0

2
6666664

3
7777775

, ð13Þ

Z~

0 0 0 0 0

1:0000 0 0 0 0

1:0000 0:3038 0 0 0

1:0000 0:5753 {0:6363 0 0

0:6100 0:8478 0:7324 0:7571 0

2
6666664

3
7777775

, ð14Þ

Table 1. Boundaries of each correlation coefficient in a 4|4 matrix.

ci,j Lower bound Upper Bound Required hp,q

c2,1 21 1 No

c3,1 21 1 No

c4,1 21 1 No

c3,2 cos h2,1 cos h3,1{sin h2,1 sin h3,1 cos h2,1 cos h3,1zsin h2,1 sin h3,1 h2,1,h3,1

c4,2 cos h2,1 cos h4,1{sin h2,1 sin h4,1 cos h2,1 cos h4,1zsin h2,1 sin h4,1 h2,1,h4,1

c4,3 cos h2,1 cos h4,1zcos h3,2

sin h3,1 cos h4,2 sin h4,1{sin h3,2 sin h3,1

sin h4,2 sin h4,1

cos h2,1 cos h4,1zcos h3,2 sin h3,1

cos h4,2 sin h4,1zsin h3,2 sin h3,1

sin h4,2 sin h4,1

h3,1 , h4,1 , h3,2 , h4,2

doi:10.1371/journal.pone.0048902.t001

Figure 1. CDF from the proposed algorithm without random
reordering.
doi:10.1371/journal.pone.0048902.g001

Figure 2. CDF from the proposed algorithm with random
reordering.
doi:10.1371/journal.pone.0048902.g002
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C~

1:0000 0:2440 {0:8498 0:9336 0:2200

0:2440 1:0000 0:1582 0:2997 0:7117

{0:8498 0:1582 1:0000 {0:7885 0:1889

0:9336 0:2997 {0:7885 1:0000 0:3454

0:2200 0:7117 0:1889 0:3454 1:0000

2
6666664

3
7777775
: ð15Þ

As the minimum eigenvalue of C in (15) is 0.00510, the

correlation matrix is positive semi-definite. This confirms that C is

a valid correlation matrix.

Results

All numerical tests in this study were conducted with MATLAB

7.8.0 (R2009a) on an Intel(R) CoreTM 2 Duo CPU T6600 at

220 GHz with 3.50 GB of RAM. The computational performance

and probability distribution function (PDF) of the proposed

algorithm (NA) with K = 0.01 was evaluated and compared with

the following two algorithms:

1. Rejection sampling method (RS)

The rejection sampling method uses uniform random

variables in the closed interval [21, 1] to represent each

correlation coefficient in the symmetric correlation matrix. The

correlation matrix will be rejected if it is invalid.

Table 2. Comparison of computational performance.

Pvalid (%) Tavg (ms) Texp (ms)

n NA RS RC NA RS RC NA RS RC

2 100 100 100 0.0492 0.0149 0.3819 0.0492 0.0149 0.3819

3 100 61.678 100 0.0710 0.0185 0.4720 0.0710 0.0300 0.4720

4 100 18.2341 100 0.0900 0.0204 0.5688 0.0900 0.1121 0.5688

5 100 2.1723 100 0.1164 0.0229 0.6521 0.1164 1.0532 0.6521

6 100 0.1009 100 0.1501 0.0254 0.7472 0.1501 25.19 0.7472

7 100 0.001 100 0.1827 0.0385 0.8567 0.1827 3,849.7 0.8567

8 100 0 100 0.2306 0.0321 0.9669 0.2306 Inf. 0.9669

9 100 0 100 0.2804 0.0355 1.1653 0.2804 Inf. 1.1653

10 100 0 100 0.3304 0.0404 1.2686 0.3304 Inf. 1.2686

11 100 0 100 0.4039 0.0449 1.2318 0.4039 Inf. 1.2318

12 100 0 100 0.4586 0.0485 1.3230 0.4586 Inf. 1.3230

13 100 0 100 0.5513 0.0546 1.4448 0.5513 Inf. 1.4448

14 100 0 100 0.6138 0.0589 1.5067 0.6138 Inf. 1.5067

15 100 0 100 0.6987 0.0647 1.6531 0.6987 Inf. 1.6531

16 100 0 100 0.7788 0.0785 1.7076 0.7788 Inf. 1.7076

17 100 0 100 0.8957 0.0811 1.8294 0.8957 Inf. 1.8294

18 100 0 100 1.0106 0.0873 1.9429 1.0106 Inf. 1.9429

19 100 0 100 1.0990 0.0907 2.0996 1.0990 Inf. 2.0996

20 100 0 100 1.2094 0.0974 2.2008 1.2094 Inf. 2.2008

21 100 0 100 1.3406 0.1051 2.2840 1.3406 Inf. 2.2840

22 100 0 100 1.4722 0.1132 2.3952 1.4722 Inf. 2.3952

23 100 0 100 1.6269 0.1217 2.5304 1.6269 Inf. 2.5304

24 100 0 100 1.7746 0.1296 2.6631 1.7746 Inf. 2.6631

25 100 0 100 1.9446 0.1393 2.7386 1.9446 Inf. 2.7386

26 100 0 100 2.1356 0.1492 2.8582 2.1356 Inf. 2.8582

27 100 0 100 2.2533 0.1585 2.9899 2.2533 Inf. 2.9899

28 100 0 100 2.4576 0.1689 3.0942 2.4576 Inf. 3.0942

29 100 0 100 2.6411 0.1806 3.2981 2.6411 Inf. 3.2981

30 100 0 100 2.8306 0.1904 3.4048 2.8306 Inf. 3.4048

35 100 0 100 3.9381 0.3315 4.0185 3.9381 Inf. 4.0185

40 100 0 100 5.3749 0.3971 4.7135 5.3749 Inf. 4.7135

45 100 0 100 6.8185 0.5067 5.7925 6.8185 Inf. 5.7925

50 100 0 100 8.5822 0.6172 8.5822 8.5822 Inf. 6.9464

Note: Inf. denotes infinity.
doi:10.1371/journal.pone.0048902.t002
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2. Randcorr function of MATLAB (RC)

This algorithm is implemented as a MATLAB function, and

is based on the work in [6] and [7].

The MATLAB code for the NA algorithm (denoted as

RandomCorr) is available at http://www.mathworks.com/

matlabcentral/fileexchange/loadFile.do?objectId = 37804. The

following MATLAB code was used to generate the correlation

matrices (C) in the RS algorithm and to check their validity:

C = tril(21+2*round(rand(n,n)*10‘8)/(10‘8),21);C = C+C9+ eye(-

n);p = min(eig(C));. And the following MATLAB code was used to

generate the correlation matrices (C) in the RC algorithm and to

check their validity: C = gallery(‘randcorr’,n);p = min(eig(C));.

Computational performance
The computational performance of each algorithm is primarily

measured by the expected run time (Texp), which can be calculated

from the average run time (Tavg) divided by the probability of the

generated correlation matrix being valid (Pvalid ). Tavg includes the

time taken to construct the correlation matrix and calculate the

minimum eigenvalue. The performance summary of the three

algorithms over 1 million simulations is illustrated in Table 2.

With a Pvalid score of 100% in all cases, both NA and RC

algorithms are evidently stable. Moreover, the RC algorithm has

the fastest expected run time when the dimension exceeds 35,

although the RS algorithm is the fastest for dimensions of two and

three. However, the RS method then becomes slower than the NA

algorithm when n§4, and slower than RC for n§5. Even worse,

the RS method cannot generate a valid correlation matrix for

dimensions larger than seven, mainly due to the significant drop in

Pvalid. Hence, the RS method is not very useful in practice. For

dimensions from 4–35, the NA algorithm outperforms RS and RC

in terms of expected run time.

Probability distribution function
To compare the PDF of the coefficients of correlation matrices,

c2,1 and c5,4 are drawn from 100,000 valid 5|5 correlation

matrices constructed by the above algorithms. Comparing

Figures 3 and 4, we can clearly see that the correlation coefficients

generated by the RC algorithm have significant differences.This

fact is verified by the kurtosis and standard deviation of the RC

algorithm, which are given in Table 3. In general, correlation

coefficients from the NA and RC algorithms are equally

distributed, but the NA algorithm produces a higher standard

deviation and lower kurtosis, which implies more extreme

correlation coefficients than the other algorithms.

Discussion

In this paper, we have presented an efficient method to calculate

the boundaries of correlation coefficients. We also demonstrated a

Figure 3. PDF of correlation coefficient (C2,1).
doi:10.1371/journal.pone.0048902.g003

Figure 4. PDF of correlation coefficient (C5,4).
doi:10.1371/journal.pone.0048902.g004

Table 3. Statistical summary of random correlation coefficients (c2,1 and c5,4).

c2,1 c5,4

Statistical measure NA RS RC NA RS RC

Mean 20.001 20.0001 20.0009 0.0004 20.0004 0.001

Median 20.0024 20.0001 20.0015 20.0013 20.0006 0.0011

Standard Deviation 0.5289 0.4079 0.2779 0.5281 0.4086 0.2901

10th Percentile 20.7288 20.5515 20.3536 20.7268 20.5528 20.3667

90th Percentile 0.7301 0.5503 0.3517 0.7297 0.5516 0.3697

Skewness 0.0062 0.0012 20.0015 0.0027 20.0018 0.009

Kurtosis 1.9421 2.2551 3.0207 1.9444 2.2496 2.6727

doi:10.1371/journal.pone.0048902.t003
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technique for generating correlation matrices using any bounded

random variable distribution within the boundaries of each

correlation coefficient. However, this method causes the correla-

tion coefficients to be unevenly distributed. Thus, we incorporated

a technique for random reordering to ensure the even distribution

of all correlation coefficients. The performance of the proposed

algorithm was compared to that of other algorithms. It was shown

that the new algorithm could efficiently construct correlation

matrices, particularly when the dimension of the matrix was in the

range 4–35. In theory, our algorithm should always return valid

correlation matrices. However, without setting a threshold factor

and using rejection sampling logic, the algorithm exhibited some

numerical instability when the dimension became large. It is

possible to adjust invalid matrices to form valid ones; this method

has been developed in many studies [16,17,18]. Therefore, we

strongly believe that our new algorithm is useful in the many

applications where extreme cases are very important. More

importantly, the uniform distribution can be replaced with any

bounded distribution.
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