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Abstract

Background: A 2% threshold, traditionally used as a level above which breast biopsy recommended, has been generalized
to all patients from several specific situations analyzed in the literature. We use a sequential decision analytic model
considering clinical and mammography features to determine the optimal general threshold for image guided breast biopsy
and the sensitivity of this threshold to variation of these features.

Methodology/Principal Findings: We built a decision analytical model called a Markov Decision Process (MDP) model,
which determines the optimal threshold of breast cancer risk to perform breast biopsy in order to maximize a patient’s total
quality-adjusted life years (QALYs). The optimal biopsy threshold is determined based on a patient’s probability of breast
cancer estimated by a logistic regression model (LRM) which uses demographic risk factors (age, family history, and
hormone use) and mammographic findings (described using the established lexicon–BI-RADS). We estimate the MDP
model’s parameters using SEER data (prevalence of invasive vs. in situ disease, stage at diagnosis, and survival), US life tables
(all cause mortality), and the medical literature (biopsy disutility and treatment efficacy) to determine the optimal ‘‘base
case’’ risk threshold for breast biopsy and perform sensitivity analysis. The base case MDP model reveals that 2% is the
optimal threshold for breast biopsy for patients between 42 and 75 however the thresholds below age 42 is lower (1%) and
above age 75 is higher (range of 3–5%). Our sensitivity analysis reveals that the optimal biopsy threshold varies most
notably with changes in age and disutility of biopsy.

Conclusions/Significance: Our MDP model validates the 2% threshold currently used for biopsy but shows this optimal
threshold varies substantially with patient age and biopsy disutility.
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Introduction

The overall annual utilization rate of breast biopsies of 62.6 per

10,000 patients per year, translates to just over 700,000 breast

biopsies per year in the United States [1,2] While image-guided

core needle biopsy of the breast has certainly become an integral

part of breast cancer diagnosis, little is known about the optimal

breast cancer risk threshold that radiologists should use to

recommend this procedure. Understanding the optimal threshold

for breast biopsy is important for several reasons. Breast biopsy,

which reveals benign findings approximately 75% of the time, is

the most costly per capita component of a breast cancer screening

program [3]. Furthermore, each patient has a unique risk

tolerance and co-morbidities to weigh in contemplating the

decision for breast biopsy. Shared decision-making through

physician-patient communication in order to tailor health care

decisions to individual patient preferences [4] is becoming more

prevalent in the context of novel [5,6] and established screening

tests [7]. This increased interest in personalized medicine in

general [8,9] and in the domain breast cancer in particular [10]

motivates an understanding of the variables that may affect the

optimal level of risk at which to recommend healthcare

interventions like breast biopsy.

A threshold for breast biopsy has evolved based on several high

quality publications in the literature that established certain

mammographic findings to have a low estimated malignancy risk

(,2%) enabling researchers to recommend short-term interval

follow-up rather than biopsy as the standard of care for these

particular scenarios [11–14]. The formal ‘‘Probably Benign’’

category, based on this literature, was established in the Breast

Imaging Reporting and Data System (BI-RADS) lexicon thereby

standardizing a 2% level below which biopsy need not be

recommended [15]. This evidence has led to a more general

application of this threshold for breast biopsy to all lesions thought

to have a probability of malignancy less than or equal to 2%

(Table 1).

Modeling is becoming increasingly important in evaluating

health care interventions and assessing utility and effectiveness

[16]. In fact, such models are now being used to suggest health

care policies [7,17]. In the past, decision analytic modeling has
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been used in the breast imaging literature, primarily for cost-

effectiveness analysis in order to determine the optimal use of

competing healthcare interventions.[18–21] These manuscripts

have used a technique called Markov modeling to evaluate

interventions like staging MR lymphangiography [21], computer-

aided detection [20], breast MRI with core biopsy [18] and MRI

screening in patients with BRCA1 mutations [19]. However,

standard Markov models can evaluate only one set of decision

rules at a time and a single model must be created for each strategy

being analyzed. However, when there are a large number of

embedded decision nodes (e.g. when there are a large number of

decisions occur repetitively over time with a vast array of possible

permutations) standard Markov models or simulation techniques

become computationally impractical. Situations that require

sequential decision making, such as recurrent screening mam-

mography and biopsy decisions, are better addressed with Markov

decision processes (MDPs), which have the computational

capability to solve sequential decisions making problems that

involve uncertainty [22,23].

The overarching reason for this study is two-fold. We wish to

determine if a 2% threshold is reasonable based on accepted

decision-analytic framework considering clinically relevant vari-

ables. We also aim to establish which variables most profoundly

affect this decision threshold. From a clinical perspective, our

model is designed to personalize the risk threshold at which to

recommend breast biopsy in the interest of improving decision-

making based on a patient’s risk of breast cancer.

Methods

The University of Wisconsin Health Sciences Institutional

Review Board (UW-IRB) approved this HIPAA-compliant study.

The UW-IRB did not require informed consent to utilize the

clinical data that informed our model because there were no direct

identifiers associated with the data, thereby minimizing any risk

(specifically, the risk to patient confidentiality). The clinical data

set that we used is described elsewhere but summarized here for

the convenience of the reader [24]. We collected data for

consecutive screening and diagnostic mammography examinations

between April 5, 1999 and February 9, 2004 which included

48,744 mammography examinations on 18,270 patients. All

mammographic findings were described and recorded using BI-

RADS by the interpreting radiologist at the time of mammogra-

phy interpretation using the PenRadH system which records

patient demographic risk factors and mammography findings in a

structured format. We matched our mammography data with our

state’s population-based registry for cancer incidence data. A

finding matched to a registry report of ductal carcinoma in situ or

any invasive carcinoma within 365 days was considered positive

and a finding with no match in the same time frame was

considered negative. Patients diagnosed with a high risk lesion

called lobular carcinoma in situ in the registry were also

considered benign, however we did not have access to other high

risk lesions atypical ductal hyperplasia, atypical lobular hyperpla-

sia, papilloma, radial scar, and others, since these biopsy results

were not recorded in the registry. Patient features reflect a

representative clinical population referred for breast cancer

screening and diagnosis [24,25].

In order to analyze the optimal threshold at which to

recommend breast biopsy, we developed a finite-horizon,

discrete-time MDP [22,26], which provides a mathematical

framework for modeling decision-making in situations where

outcomes are partly uncertain (e.g. the development of breast

cancer) and partly under the control of the decision maker (e.g. the

decision to perform breast biopsy). An MDP has five components

including decision epochs, states, decisions, rewards, and transition

probabilities.

Decision Epochs
In an MDP, a decision epoch is defined as the unit of time in

which a decision is typically made. In our model, we assumed that

decisions are made annually.

States
An MDP is characterized by a set of states that completely

define the possibilities for a patient’s health at a given time. There

are 104 states in our MDP model, illustrated as ‘‘nodes’’ (circles or

ovals) as in Figure 1. One-hundred-one of these states are defined

by the risk of breast cancer (0%, 1%, 2%,…100%) as determined

by a validated logistic regression model (LRM), which uses patient

demographic factors and mammographic features summarized in

Table 2 [24]. These ‘‘risk score states’’ are integer values that

represent risk scores directly converted from our LRM estimate of

the probability of cancer. For example, if a 55-year old patient

with coarse heterogeneous microcalcifications has a 12.2%

probability of having breast cancer according to the LRM, this

patient is placed in the ‘‘risk score state’’ of 12. In addition to risk

score states, we define two biopsy related states–corresponding to a

malignant biopsy outcome (Figure 1–Biopsy-M) and a benign

biopsy outcome (Figure 1–Biopsy-B). Finally, we include ‘‘Death’’

as a state in our model.

States in an MDP model can be categorized as transient states

(including the risk score and Biopsy-B states) or absorbing states

(including the Biopsy-M and Death states). The patient exists in a

transient state temporarily and has the opportunity to move to

another state with each epoch. Once the patient enters an

absorbing state, she does not change states thereafter, i.e. the

radiologist does not have the opportunity to make further decisions

in the states of Biopsy-M or Death.

Table 1. BI-RADS final assessment codes with recommendations.

Category Definition Recommended action

0 Need additional imaging evaluation and/or prior mammograms for comparison Additional imaging evaluation

1 Negative finding Routine yearly screening

2 Benign finding Routine yearly screening

3 Probably benign finding (less than a 2% risk of malignancy) Short-term follow-up (typically 6 months)

4 Suspicious abnormality (risk of malignancy is between 2% and 95%) Biopsy

5 Highly suggestive of malignancy (95% risk of malignancy) Biopsy

doi:10.1371/journal.pone.0048820.t001
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Decisions
For each risk score state, a radiologist, the decision-maker, can

choose from the following decisions: biopsy (Figure 1–BX) or

annual mammography (Figure 1–AM). If annual mammography is

recommended, the patient’s risk changes as defined by the

transition probabilities (description forthcoming) in our model.

Alternatively, if biopsy is recommended, then the patient either

goes to the malignant biopsy state (Figure 1–Biopsy-M) or the

benign biopsy state (Figure 1–Biopsy-B).

Rewards
Patients accrue rewards depending upon the time spent in each

state. In our model, rewards correspond to quality-adjusted life

years (QALYs), which are commonly used in medical decision

making [27]. Living to maximal life expectancy in perfect health is

the goal of any health care system. Diagnostic tests, like

mammography or breast biopsy, can affect QALYs positively by

increasing the number of years (through early detection enabling

cure) or negatively by diminishing quality (causing anxiety or

discomfort). To preserve the simplicity of the model, we included

only disutilities associated with breast biopsy in our model and

excluded all disease-related, treatment-related and age-related

disutilities to focus on the tradeoff between the disutility of biopsy

and potential life-year savings of diagnostic decisions in isolation.

Since there is not a consistent literature on age-related or breast-

cancer-treatment related disutilities, we did not model these

variables realizing that our conclusions may be somewhat

conservative (explored further in the discussion). [28–31].

Our model considers two types of rewards–intermediate and

lump-sum– corresponding to transient states and absorbing states

respectively. Patients accrue intermediate rewards each time they

enter a transient state like a risk-score-state after a routine

mammography recommendation is made or if a biopsy reveals

benign findings. For the risk-score-state when annual mammog-

raphy is recommended (Figure 1–AM), her intermediate reward

depends on her probability of dying from breast cancer or other

causes during that year [32]. We use a parametric model [33] to

adjust the probability of dying from breast cancer based on a

patient’s current risk score, taking into account the probability of

death if a patient with breast cancer is not treated in that year–

discussed in detail in [34].We estimate the treatment effectiveness factor

(defined as the ratio of the probability of death with treatment

versus that without treatment) from the parametric model to

estimate the probability of death if a patient with breast cancer is

Figure 1. The state transition diagram of our MDP model shows transitions between various stages depending on the decision
made. Nodes represent the state of the model and arcs represent the transition of patient from one state to another. Round nodes in the first
column represent the risk-score-states consisting or probability of cancer (e.g. 1%, 2%, …, 100%) of the patient of age 40. Round nodes in the second
column represent the risk after 1 year. At each decision epoch, depending on the risk of cancer, the radiologist needs to make one of the two
decisions–biopsy (BX), or annual mammography (AM). If biopsy is elected, the patient will then move to either the malignant biopsy state (Biopsy-M)
or the benign biopsy state (Biopsy-B).
doi:10.1371/journal.pone.0048820.g001

Table 2. Variable Definitions with Sensitivity Analysis Ranges.

Base case Low High

Disutility @ 40 (weeks) 2 0 3

Disutility Multiplication Factor @ 100 2 0.5 4

Percent invasive 75 65 85

Treatment effect factor 1.6 1.2 2

doi:10.1371/journal.pone.0048820.t002
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not treated. Using this probability, we estimate intermediate

reward as 1 year, if a patient is alive at the end of that year, and 1/

2 year, if the patient dies during that year (from breast cancer or

other causes). Assigning a 1/2 year reward for death reflects an

accepted modeling convention called ‘‘half cycle correction’’

which balances the fact that death can occur at any time over

the year. The intermediate reward for a benign biopsy is

calculated in a manner similar to the risk-score-state with the

additional penalty for biopsy added. For absorbing states like a

malignant biopsy (Figure 1–Biopsy-M), the patient receives a

‘‘lump sum’’ reward equivalent to her post-treatment expected life

with breast cancer estimated using the Surveillance, Epidemiology,

and End Results (SEER) program of the National Cancer

Institute, which takes into account the stage at diagnosis and

probability of dying associated with that stage [35,36]. We assume

that 75% of the cancers at diagnosis are invasive while the

remaining are DCIS in estimating the post-cancer lump-sum

rewards. [36] A patient gets a lump-sum reward of 0 if she moves

to the ‘‘Death’’ state.

In our model, we estimate the reduction in QALYs for

diagnostic tests by introducing a time penalty, a disutility, to

account for discomfort, anxiety, and complications. Based on the

data available in medical literature [29] we assume the disutility of

biopsy at age 40 is 2 weeks for our base case, and it increases

linearly with age at a rate dictated by a variable called the

‘‘disutility factor’’ which determines the disutility at age 100. In

other words, this disutility factor (2 in our base case) is multiplied

by the disutility at age 40 to determine the disutility at age 100

(calculated to be 4 weeks in our base case) and the disutility of

biopsy for ages between 40 and 100 increase linearly between

these established values (Figure 2). Our base case reflects a higher

disutility for older patients because of increasing co-morbidities

and biopsy-complications in this age group. However, equal and

lower disutility based on age is also considered in our sensitivity

analysis.

Transition Probabilities
The transition probabilities determine the state of the patient in

the next decision epoch based on the state and decision at the

current decision epoch. The state transitions of an MDP possess

the Markov property which states that the state of the patient at the

next decision epoch depends only on her current state and decision

and is independent of all previous states or decisions.

We estimated risk-score-state transition probabilities by tracking

the average change in risk scores (the states of our model) for

patients as they undergo annual mammography in our clinical

dataset using a previously constructed and validated logistic

regression model [24]. We matched findings in the same breast

and quadrant from same patients and then calculated the change

in risk for all patients who had findings observed over more than

one time point. If patients were not seen annually, we estimated

the yearly risk change using linear interpolation. For example,

consider a 40-year-old patient who is estimated (with our LRM) to

have a risk score of 1% at the time of her baseline mammogram.

When she returns for routine screening exam at age 42 our LRM

uses demographic and mammographic features to estimate that

she has a breast cancer risk of 5%. Assuming a linear increase in

risk with time, we estimate (or impute) the risk at age 41 was 3%. If

a patient had only a single observation, the data was not used in

the calculation of transition probabilities. After observing risk score

changes (either using LRM or by imputation), we calculated the

average change in each risk score over 1 year. This consolidated

list of average transition probabilities for each risk score comprised

the transition probabilities used in our MDP model to calculate the

optimal biopsy threshold.

We assume that the biopsy has a perfect sensitivity and

specificity, and patient’s risk-score-state completely defines her

current risk of breast cancer. Therefore, if a patient having 5% risk

of cancer is recommended biopsy, she has a 5% chance to move to

Biopsy-M state and a 95% chance to move to the Biopsy-B state,

from which she moves to one of the risk-score-states in the next

epoch based on her risk-score-state transition probabilities defined

above.

Assumptions
We make a series of assumptions to construct the MDP. We

take the patient’s perspective with an objective of finding a policy

that would maximize patients’ QALYs, and therefore do not

model costs. We consider all participants (including the patient

and the radiologist) to be risk neutral which means that

participants would always choose a policy that maximize their

expected QALYs. Routine yearly mammography and biopsy are

Figure 2. Disutility factors used in sensitivity analysis.
doi:10.1371/journal.pone.0048820.g002

Optimal Breast Biopsy Threshold

PLOS ONE | www.plosone.org 4 November 2012 | Volume 7 | Issue 11 | e48820



the only decision options that completely describe the ‘‘state

space’’ thereby excluding short-term interval follow-up or utiliza-

tion of other imaging modalities (like breast ultrasound or breast

MRI). We only consider percutaneous core needle biopsy and do

not consider excisional biopsy as an option for diagnosis.

Once the biopsy is performed, if the patient comes back into the

system the record of a prior biopsy is not preserved. This

assumption does not imply that patients may not have multiple

biopsies, it simply assumes that they are not distinguished from the

patients who do not have a history of biopsy. We assume that

patients adhere to the decisions made by the radiologists, i.e. the

patient will get her annual mammogram (or biopsy) with certainty

if the radiologist recommends annual mammography (or biopsy).

Determining Optimal Policy
The objective of our MDP model is to identify the optimal

policy, i.e. the optimal decision (BX or AM) for a patient of a

particular age and risk score that will maximize her total expected

QALYs. We solve a series of recursive equations (Bellman equations)

for all ages and risk-score-states to identify the optimal policy [22].

Sensitivity Analysis
In addition to finding the optimal base case policy based on the

constructed MDP, we performed sensitivity analysis using ranges

for variables that had the potential to alter our conclusions

(Table 2). We tested high and low values for biopsy disutility at age

40, biopsy disutility factor, percent of invasive versus in situ and

the treatment effectiveness factor in order to determine the effect

on our optimal biopsy threshold.

In summary we constructed our MDP model using patient data

from a clinical breast imaging practice to determine breast cancer

risk (via the LRM) and transition probabilities. The remaining

parameters in the model including rewards, survival statistics, and

assumptions are derived from population-based data and the

literature.

Results

The mean age of women undergoing mammography–the

population used to develop our model–was 56.5 years

(range = 17.7–99.1, SD = 12.7). There were 477 cancers diagnoses

in the 48,744 mammograms included in our model (for a cancer

detection rate of 9.7 per 1000 patients). Of all the 477 cancers, 417

had staging information from our cancer registry and 60 did not.

Of the cases with stage available, 71.9% (300/417) were early

stage (stage 0 or 1) and 25.9% (108/417) had lymph node

metastasis.

We found the optimal threshold for biopsy to be 2% for patients

between 42 and 75 years of age. However the threshold below age

42 was lower (1%) and above age 75 was higher (range 3–5%).

Note that the optimal probability threshold to biopsy increases

with age. This implies that older patients would be less likely while

younger patients would be more likely to benefit from a biopsy

recommendation in terms of total QALYs. (Figure 3).

Sensitivity analysis revealed that the optimal biopsy threshold

varied most substantially as we varied age and disutility of biopsy.

As the disutility of biopsy at age 40 increases (also increasing the

disutility at age 100 because the disutility factor remains the same)

the threshold for biopsy also increases (Figure 4). Similarly, if we

increase the disutility factor (Figure 5), we observe the same trend

of increased optimal biopsy threshold. Interestingly, even if the

disutility of biopsy remains constant for all ages (i.e. the disutility

factor is 1), the biopsy threshold still increases with age. We find

that as the proportion of invasive cancers (relative to in situ

disease) increases, the optimal biopsy threshold decreases (Figure 6)

because the life expectancy is lower for invasive cancer as

compared to in situ disease. Finally, as the treatment effectiveness

factor increases (Figure 7), the biopsy threshold decreases.

Discussion

Adoption of 2% probability of breast cancer as a threshold for

biopsy has been useful from a practical practice standpoint but

until now, has not been supported by decision analytic theory. Our

MDP model demonstrates that 2% is the optimal breast biopsy

threshold for most women of screening age (between 42 and 75)

based on the desire to maximize QALYs. However age is

important in determining an optimal biopsy threshold: for younger

patients (,42) biopsy thresholds given by our MDP model are

lower than for older patients because younger patients accrue

more QALYs as a result of early diagnosis and cure. We must

carefully consider several aspects of our model including sensitivity

analysis, modeling decisions, and assumptions as we judge its

clinical accuracy and applicability.

After age, the disutility of biopsy most profoundly affects the

optimal biopsy threshold. In our sensitivity analysis, anytime we

increase the disutility of biopsy (at age 40 or by increasing the

factor that accelerates increases by age) the threshold for biopsy

also increases because the ‘‘harm’’ of biopsy increases as the

benefit remains the same. However, even if the disutility of biopsy

is the same for younger and older patients, the biopsy threshold

still increases with age because of the limited benefit in terms of

QALYs for older patients. When we increase the fraction of

invasive cancers or increase the treatment effectiveness factor,

biopsy threshold decreases because an early diagnosis is more

valuable for increased length of life and overcomes the disutility of

biopsy. However, underlying the details of our sensitivity analysis,

a larger theme emerges: if in fact personalized breast cancer

screening is a desired goal [10], perhaps we should be tailoring the

biopsy threshold to individual patients based on their unique risk

tolerance and their judgment of the ‘‘harm’’ of biopsy. Our MDP

model provides the framework to offer that individualized

threshold.

We decided to adopt the patient’s perspective and not model

costs in our MDP in contradistinction to prior literature which

concentrated on the cost-effectiveness of interventions from the

societal perspective [18–21]. We chose to include only biopsy

related disutility to estimate rewards, and exclude disutilities

associated with malignancy, treatment and age for several reasons.

Our approach allows us to explicitly capture the influence (harm

or benefit) of breast biopsy on the expected life years in isolation.

Second, there are no well accepted utility weights for breast cancer

treatment and a wide range has been reported [28–31]. Third,

since our model compares the lump-sum post-biopsy rewards with

the sum of intermediate post-mammography rewards to inform a

policy, the inclusion of other disutilities would require the

calibration of the utility weights in both rewards for a fair

comparison, which is beyond the scope of this work. In general,

our approach will have the tendency to conservatively estimate the

difference in optimal biopsy threshold between older and younger

women. Decreasing the value of life with breast cancer disutility

during treatment or in older age groups would disproportionately

lower the value (increase the threshold) of biopsy in older age

groups making the discrepancy between the biopsy threshold in

older versus younger women more pronounced.

The limitations of any decision analytic model lie in the

assumptions made. We have made several assumptions to simplify

our MDP which abbreviate the full complexity inherent in clinical

Optimal Breast Biopsy Threshold
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breast imaging practice. For example, we do not consider other

screening or follow-up methods like breast MRI, ultrasound or

mammographic watchful waiting (short-term interval follow-up).

Furthermore, of the demographic risk factors that we evaluated in

our logistic regression model (age, family history of breast cancer,

personal history of breast cancer, hormone replacement therapy,

and prior breast surgery) only patient age and personal history of

breast cancer were found to be statistically significant and were

ultimately included in the logistic regression model. However,

breast density, prior history of atypia on breast biopsy, and BRCA

mutations, among other risk factors have certainly been found to

confer breast cancer risk from an epidemiologic standpoint in the

larger medical literature. Including a more extensive list of breast

cancer risk factors would be interesting to include in a risk

prediction model to determine if they influence the threshold of

biopsy.

We have not incorporated any risk-aversion into the model and

therefore do not observe the effect on optimal policies. We do not

Figure 3. Optimal biopsy threshold (base case model). Note: In our MDP, we consider age 99 as the last year that a decision is made and we
assign a terminal reward (i.e. expected life) at age 100 irrespective of the action taken. For this reason, optimal threshold calculations for Figures 3–7
end with age 99.
doi:10.1371/journal.pone.0048820.g003

Figure 4. Sensitivity of the optimal biopsy threshold as disutility at age 40 varies.
doi:10.1371/journal.pone.0048820.g004
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consider that a patient’s utilities may change if she has undergone

more than one biopsy (true-positive or false-positive) or incorporate

the possibility that a patient may not adhere to the radiologist

recommendation. All of these modeling decisions may influence

conclusions and we hope to incorporate such scenarios in our model

in the future.

Conclusion
Based on our analysis, a 2% threshold for breast biopsy appears to

be optimal for most women of screening age with the important

caveat that age and biopsy disutility influence this threshold most

profoundly. If personalized care is our goal, we need accurate

estimates for malignancy risk and evidence-based, optimal decision

thresholds for interventions to most effectively diagnose disease.

Decision analytic models, like MDPs, are critically important in

defining these levels and are increasingly pervasive.

Figure 5. Sensitivity of the optimal biopsy threshold as the disutility factor varies.
doi:10.1371/journal.pone.0048820.g005

Figure 6. Sensitivity of the optimal biopsy threshold as the fraction of invasive cancers varies.
doi:10.1371/journal.pone.0048820.g006

Optimal Breast Biopsy Threshold

PLOS ONE | www.plosone.org 7 November 2012 | Volume 7 | Issue 11 | e48820



Our future work will include increasing the complexity of our

model to more accurately reflect actual clinical practice. For

example, including six-month follow-up and other imaging proce-

dures like breast ultrasound and breast MRI will more adequately

reflect the myriad of current tools available for breast cancer

diagnosis. In addition, we also plan to include costs in our model to

evaluate the cost-effectiveness of current and proposed policies to

perform breast biopsy. Once our model is sufficiently validated, we

plan to make it available to radiologists and patients in order to aid

decisions to biopsy breast findings. While validation will entail

testing the generalizability of the model on a wide range of breast

imaging practices, ideally in the form of a multi-institutional trial,

this validation will represent a critical next step for translation of our

methodologies to clinical practice.

Acknowledgments

We thank Charles Kahn, MD and Katherine Shaffer, MD whose

assistance with the mammography database has been an invaluable

resource.

Author Contributions

Conceived and designed the experiments: EB OA JC. Performed the

experiments: EB OA JC. Analyzed the data: EB OA JC. Contributed

reagents/materials/analysis tools: EB OA JC. Wrote the paper: EB OA JC.

References

1. United States Census Bureau (2000) Projections of the Total Resident

Population by 5-Year Age Groups, and Sex with Special Age Categories:

Middle Series, 2001 to 2005. Population Projections Program, Population

Division, U.S. Census Bureau, Washington, D.C. 20233. Available: http://

www.census.gov/population/www/projections/natsum-T3.html. Accessed: 9

October 2012.

2. Ghosh K, Melton LJ, 3rd, Suman VJ, Grant CS, Sterioff S, et al. (2005) Breast

biopsy utilization: a population-based study. Arch Intern Med 165: 1593–1598.

3. Poplack SP, Carney PA, Weiss JE, Titus-Ernstoff L, Goodrich ME, et al. (2005)

Screening mammography: costs and use of screening-related services. Radiology

234: 79–85.

4. Swan JS, Lawrence WF, Roy J (2006) Process utility in breast biopsy. Med Decis

Making 26: 347–359.

5. Chan EC (2005) Promoting an ethical approach to unproven imaging tests. J Am

Coll Radiol 2: 311–320.

6. Hillman BJ (2005) Informed and shared decision making: An alternative to the

debate over unproven screening tests. Journal of the American College of

Radiology 2: 297–298.

7. U.S. Preventive Services Task Force (2009) Screening for breast cancer: U.S.

Preventive Services Task Force recommendation statement. Ann Intern Med

151: 716–726, W-236.

8. Snyderman R, Dinan MA (2010) Improving health by taking it personally.

JAMA 303: 363–364.

9. Williams RS, Willard HF, Snyderman R (2003) Personalized health planning.

Science 300: 549.

10. Schousboe JT, Kerlikowske K, Loh A, Cummings SR (2011) Personalizing

mammography by breast density and other risk factors for breast cancer: analysis

of health benefits and cost-effectiveness. Ann Intern Med 155: 10–20.

11. Sickles EA (1991) Periodic mammographic follow-up of probably benign lesions:

results in 3,184 consecutive cases. Radiology 179: 463–468.

12. Varas X, Leborgne F, Leborgne JH (1992) Nonpalpable, probably benign

lesions: role of follow-up mammography. Radiology 184: 409–414.

13. Varas X, Leborgne J, Leborgne F, Mezzera J, Jaumandreu S, et al. (2002)

Revisiting the mammographic follow-up of BI-RADS category 3 lesions. AJR

Am J Roentgenol 179: 691–695.

14. Vizcaino I, Gadea L, Andreo L, Salas D, Ruiz-Perales F, et al. (2001) Short-term

follow-up results in 795 nonpalpable probably benign lesions detected at

screening mammography. Radiology 219: 475–483.

15. American College of Radiology (2003) ACR BI-RADSH – Mammography. 4th

Edition. In: ACR Breast Imaging Reporting and Data System, Breast Imaging

Atlas. Reston, VA. American College of Radiology.

16. Berry DA, Cronin KA, Plevritis SK, Fryback DG, Clarke L, et al. (2005) Effect

of screening and adjuvant therapy on mortality from breast cancer. N Engl J Med

353: 1784–1792.

17. Mandelblatt JS, Cronin KA, Bailey S, Berry DA, de Koning HJ, et al. (2009)

Effects of mammography screening under different screening schedules: model

estimates of potential benefits and harms. Ann Intern Med 151: 738–747.

18. Hrung JM, Langlotz CP, Orel SG, Fox KR, Schnall MD, et al. (1999) Cost-

effectiveness of MR Imaging and Core-Needle Biopsy in the Preoperative Work-

up of Suspicious Breast Lesions. Radiology 213: 39–49.

19. Lee JM, Kopans DB, McMahon PM, Halpern EF, Ryan PD, et al. (2008) Breast

Cancer Screening in BRCA1 Mutation Carriers: Effectiveness of MR Imaging–

Markov Monte Carlo Decision Analysis. Radiology 246: 763–771.

20. Lindfors KK, McGahan MC, Rosenquist CJ, Hurlock GS (2006) Computer-

aided Detection of Breast Cancer: A Cost-effectiveness Study. Radiology 239:

710–717.

Figure 7. Sensitivity of the optimal biopsy threshold as the treatment effectiveness factor varies.
doi:10.1371/journal.pone.0048820.g007

Optimal Breast Biopsy Threshold

PLOS ONE | www.plosone.org 8 November 2012 | Volume 7 | Issue 11 | e48820



21. Pandharipande PV, Harisinghani MG, Ozanne EM, Specht MC, Hur C, et al.

(2008) Staging MR Lymphangiography of the Axilla for Early Breast Cancer:

Cost-Effectiveness Analysis. AJR Am J Roentgenol 191: 1308–1319.

22. Alagoz O, Hsu H, Schaefer AJ, Roberts MS (2010) Markov Decision Processes:

A Tool for Sequential Decision Making under Uncertainty. Med Decis Making

Epub ahead of print.

23. Chhatwal J, Alagoz O, Burnside ES (2010) Optimal Breast Biopsy Decision

Making Based on Mammographic Features and Demographic Factors

Operations Research 58: 1577–1591.

24. Chhatwal J, Alagoz O, Lindstrom MJ, Kahn CE, Jr., Shaffer KA, et al. (2009) A

logistic regression model based on the national mammography database format

to aid breast cancer diagnosis. AJR Am J Roentgenol 192: 1117–1127.

25. Burnside ES, Davis J, Chhatwal J, Alagoz O, Lindstrom MJ, et al. (2009)

Probabilistic computer model developed from clinical data in national

mammography database format to classify mammographic findings. Radiology

251: 663–672.

26. Puterman ML (1994) Markov Decision Processes: Discrete Stochastic Dynamic

Programming: John Wiley & Sons, Inc. New York, NY, USA.

27. Drummond MF (2005) Methods for the Economic Evaluation of Health Care

Programmes: Oxford University Press.

28. Brennan V, Wolowacz S (2008) A Systematic Review of Breast Cancer Utility

Weights. International Society for Pharmaceutical and Outcomes Research
(ISPOR) 13th Annual International Meeting. Toronto, Ontario, Canada.

29. Gram IT, Lund E, Slenker SE (1990) Quality of life following a false positive

mammogram. Br J Cancer 62: 1018–1022.
30. Lidgren M, Wilking N, Jonsson B, Rehnberg C (2007) Health related quality of

life in different states of breast cancer. Qual Life Res 16: 1073–1081.
31. Peasgood T, Ward S, Brazier J (2010) Health-state utility values in breast cancer.

Expert Review of Pharmacoeconomics and Outcomes Research 10: 553–566.

32. Arias E (2006) United States life tables, 2003. Natl Vital Stat Rep 54: 1–40.
33. Haybittle JL (1998) Life expectancy as a measurement of the benefit shown by

clinical trials of treatment for early breast cancer. Clin Oncol (R Coll Radiol) 10:
92–94.

34. Chhatwal J (2008) Optimal management of mammography findings for breast
cancer diagnosis: Patient’s perspective. Madison: University of Wisconsin-

Madison. 204 p.

35. Ries LAG, Melbert D, Krapcho M, Stinchcomb DG, Howlader N, et al. (2007)
SEER Cancer Statistics Review, 1975–2005. Bethesda MD: National Cancer

Institute.
36. Jemal A, Siegel R, Ward E, Murray T, Xu J, et al. (2007) Cancer Statistics,

2007. CA: A Cancer Journal for Clinicians 57: 43–66.

Optimal Breast Biopsy Threshold

PLOS ONE | www.plosone.org 9 November 2012 | Volume 7 | Issue 11 | e48820


