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Abstract

Introduction: Early discharge from the ICU is desirable because it shortens time in the ICU and reduces care costs, but can
also increase the likelihood of ICU readmission and post-discharge unanticipated death if patients are discharged before
they are stable. We postulated that, using eICUH Research Institute (eRI) data from .400 ICUs, we could develop robust
models predictive of post-discharge death and readmission that may be incorporated into future clinical information
systems (CIS) to assist ICU discharge planning.

Methods: Retrospective, multi-center, exploratory cohort study of ICU survivors within the eRI database between 1/1/2007
and 3/31/2011. Exclusion criteria: DNR or care limitations at ICU discharge and discharge to location external to hospital.
Patients were randomized (2:1) to development and validation cohorts. Multivariable logistic regression was performed on a
broad range of variables including: patient demographics, ICU admission diagnosis, admission severity of illness, laboratory
values and physiologic variables present during the last 24 hours of the ICU stay. Multiple imputation was used to address
missing data. The primary outcomes were the area under the receiver operator characteristic curves (auROC) in the
validation cohorts for the models predicting readmission and death within 48 hours of ICU discharge.

Results: 469,976 and 234,987 patients representing 219 hospitals were in the development and validation cohorts. Early ICU
readmission and death was experienced by 2.54% and 0.92% of all patients, respectively. The relationship between
predictors and outcomes (death vs readmission) differed, justifying the need for separate models. The models for early
readmission and death produced auROCs of 0.71 and 0.92, respectively. Both models calibrated well across risk groups.

Conclusions: Our models for death and readmission after ICU discharge showed good to excellent discrimination and good
calibration. Although prospective validation is warranted, we speculate that these models may have value in assisting
clinicians with ICU discharge planning.
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Introduction

Prolonged duration of stay in the intensive care unit (ICU) is

costly, is stressful for patients and families, reduces the number of

beds available for other patients, and can increase risk for

iatrogenic and nosocomial complications. [1] ICU daily care costs

are 2–3 fold higher than costs on general medical – surgical wards,

reflecting both higher staffing ratios and greater resource

consumption. [2] Strategies to decrease ICU length of stay

(LOS) can improve patient throughput and increase the number of

patients that can be cared for in capacity-constrained ICUs.

Patients also benefit from shorter exposure to the disruptive ICU

environment, and may have less sleep disruption caused by

intensive monitoring and frequent audible alarms. [3,4].

Early discharge from the ICU is not without risk. If patients

requiring high intensity care are discharged before they can be

safely cared for in a lower acuity care environment, they are at risk

for both complications and delayed recognition of clinical

deterioration. The former can result in the need for unplanned

ICU readmission; the latter can result in patient death. Patients

readmitted to ICUs have higher risk-adjusted mortality and

lengths of stay. [5–7] The actual increases in mortality and LOS

may be modified by contextual factors such as bed occupancy rates

and patient inflow volumes. [8,9] In addition, ICU readmission

also places stress on patients and families.

Determining who is ready for ICU discharge is a daily challenge

for ICU leaders, especially in units with high occupancy rates.

Traditionally these decisions are made by attending physicians, in

collaboration with other members of the ICU care team. [10] Due

to the highly subjective nature of these decisions, there is

considerable variability in determining discharge readiness. [11]

There are few data on why patients deteriorate after ICU

discharge, and differentiating problems present at the time of
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discharge from those that originate after discharge oftentimes is

not possible. In the absence of this information it is generally

assumed that the shorter the time between discharge and

readmission or death, the more likely the patient was not ‘ready’

to be discharged from the ICU. As a result, 48 hours has

historically been considered the primary timeframe for evaluating

the quality of ICU discharges. [12].

Several studies have evaluated post-discharge patients and

identified variables that predict these complications. [6–7,13–22]

Previously identified predictors of death or readmission include

duration of ICU LOS, Glasgow Coma Scale (GCS) score at the

time of ICU discharge, mean arterial blood pressure and ICU

admission source. [15] Some investigators have attempted to

create decision support tools to assist in discharge readiness

assessment. Zimmerman and co-workers utilized the probability of

next day risk for life support as a proxy means for determining

discharge readiness. [21] They reported that the greatest risk

factors were the current day’s therapy and the Acute Physiology

and Chronic Health Evaluation III (APACHEH) score (Cerner

Corp, Kansas City, MO). The SWIFT score, which focused on

patients with readmission or death within 1 week of ICU

discharge, demonstrated moderate discrimination, although sig-

nificantly higher than the day of discharge APACHE III score.

[13] The present study leverages a large and rich database of over

1,500,000 critically ill patients cared for in several hundred United

States ICUs. [23,24] The objective of this study was to attempt to

develop robust predictive models, when embedded in electronic

clinical information systems (as the ICU Discharge Readiness

Score), might have value as a decision support tool to assist ICU

leaders in making discharge decisions. We hypothesized that the

very large sample size and the inclusion of several hundred

different ICUs would provide sufficient power and heterogeneity

to enable the creation of generalizable predictive algorithms.

Methods

This was a retrospective, multi-center, exploratory cohort study

utilizing ICU patients in the eICUH Research Institute (eRI)

database with a complete hospitalization between January 1, 2007

and March 31, 2011. Detailed descriptions of the eRI database are

provided elsewhere. [23,24] Although specific data on hospital

demographics were not included in the analytic dataset, the eRI

database represents geographically dispersed hospitals, with

approximately 50% being teaching hospitals, 34% with over 500

beds and 12% with less than 100 beds. [11,13] This study was

exempt from IRB oversight as there were no patient interventions

due to the retrospective design and the security schema for the eRI

database was analyzed and re-identification risk was certified (45

Code of Federal Regulations 164.514(b)(1) and 45 C.F.R.

164.514(b)(1)(i); HIPAA Certification #80503C) as meeting safe

harbor standards by Privacert, Inc. (Pittsburgh, PA). All patients

discharged from participating ICUs were included in the analysis

unless any of the exclusion criteria were met. Patients were

randomized in a 2:1 fashion to development and validation

cohorts. Patients with the following conditions were excluded from

the analysis: ICU LOS of less than 4 hours; age ,16 years;

expired in the ICU; discharge location of transfer to another ICU

or locations external to the hospital; and the presence of a ‘‘do not

resuscitate’’ (DNR) or ‘‘comfort measures only’’ (CMO) order at

ICU discharge. Due to the retrospective design, all discharges

from the ICU were made at the discretion of the attending

physician. The primary study objective was to develop two

predictive models; one predicting death and the other predicting

readmission within 48 hours of ICU discharge.

Differences in baseline characteristics between the development

and validation cohorts were assessed with Pearson Chi-square for

categorical data, student t-test for normally distributed continuous

variables and Wilcoxon-rank-sum for non-normally distributed

continuous variables. Using the development cohort, associations

between predictor variables and the primary outcomes (death or

readmission) were evaluated using multivariable logistic regression.

Continuous variables were assessed for non-linear relationships

with the primary outcome using locally weighted scatterplot

smoothing (LOWESS). Non-linear relationships were handled via

introduction of spline terms (knots) or categorizing continuous

variables. Spline terms were introduced to create intervals of

existing linear relationships which changed slopes at knots

designated by visual inspection of the locally weighted scatterplot

smoothing.

59 different variables were evaluated for inclusion in the

predictive models for post-discharge death and readmission within

48 hours of ICU discharge based upon clinician assessment of

possible relevance. Variables included: patient demographics, ICU

admission diagnosis, admission severity of illness determined by

the APACHE score, intensive care interventions, complications

occurring during the ICU stay, and laboratory and physiologic

variables from the last 24 hours of the ICU stay. A complete list of

variables included is described in Table S1. In order to reduce the

number of diagnoses used in the model the 407 unique APACHE

admission diagnoses were consolidated into 26 diagnosis groups

(Table S2). Diagnoses were first ranked by prevalence and then

grouped according to pathophysiology, with all rare diagnoses

unrelated to newly created diagnosis groups categorized together

as ‘‘Other’’. The number of patients in the development cohort

with original data available is presented for each predictor. To

reduce the potential for introducing bias due to missing data

patterns, multiple imputation was used for all predictors included

in the final model unless specified in Table S1. [25–27]

Multivariable regression was used to create five imputations using

chained equations (ICE) via the ‘‘mi impute chained’’ command in

Stata 12 (StataCorp. 2011. Stata Statistical Software: Release 12.

College Station, TX: StataCorp LP).

A combination of methods was used to identify the initial set of

possible predictors of death or readmission within 48 hours of ICU

discharge. These included prior literature, clinical knowledge and

forward and backward step-wise multivariable logistic regression.

[5,13,18,22] Variables were included in the step-wise regressions if

the difference in log likelihood between the null versus extended

models produced a p-value ,0.05 using the log-likelihood ratio

test for readmission and a p-value ,0.01 for death. A more

conservative threshold was used for the risk of death model due to

the greater number of variables significantly associated with the

outcome. All variables identified by these means were included in

the initial development models. These were reduced to more

parsimonious models by examining the difference in area under

the receiver operating characteristic curve (auROC) between the

null and extended models. As the ultimate goal is to develop

predictive models that can be embedded in electronic clinical

decision support tools, inclusion in the final models was based on

balancing model performance against availability of data in the

clinical information system. Therefore, some variables which did

not tangibly improve model performance were excluded even if a

significant association with the endpoint existed. As opposed to

epidemiology studies seeking to quantify the relationship between

specific variables and outcomes, the focus of predictive modeling

research is on model accuracy. Therefore, collinearity between

variables was allowed (e.g. use of both average heart rate and

highest heart rate) because it improved performance of the
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predictive models. However, allowing multiple related variables

makes it difficult to clinically interpret the adjusted odds ratios.

The unadjusted odds ratio (OR) is presented for each of the

covariates included in the final models.

The primary analytic measure used to assess model discrimi-

nation was the auROC for the development and validation

cohorts. The Hosmer-Lemeshow goodness-of-fit test along with

visual inspection of calibration curves were used to assess

calibration across deciles of risk. The median and range for the

discrimination and calibration across the five imputed datasets was

reported. Performance of the models also were assessed in different

ICU patient types (e.g., medical, surgical) and across hospital size

and teaching status by comparing actual to predicted event rates

within groups. A secondary validation step was performed to

simulate expected real-time performance as a clinical decision

support tool in the ICU. Fitted values (predicted probabilities)

were determined using patients’ clinical data at 24 hour intervals

prior to ICU discharge. The median and interquartile range (IQR)

of the fitted values were calculated for up to 4 days prior to ICU

discharge for 3 patient groups: a) patients discharged without an

event of interest within 48 hours; b) patients discharged with an

event within the subsequent 48 hours; and c) patients who did not

survive the ICU stay. A linear regression (with a robust variance

estimator clustered by patient) of the fitted values across the last

Figure 1. Cohort flow diagram. DNR = Do Not Resuscitate; CMO = comfort measures only; LOS = length of stay.
doi:10.1371/journal.pone.0048758.g001
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4 ICU days was calculated for each of these groups to describe

trends in risk over this time period. All statistics were performed

using Stata 12 (StataCorp. 2011. Stata Statistical Software:

Release 12. College Station, TX: StataCorp LP).

Results

704,963 patients from 32 health systems were included in the

final cohort, representing 219 hospitals and 402 ICUs from

throughout the United States eRI database. 469,976 patients were

randomized to the development set and 234,987 to the validation

cohort. Figure 1 details the number of patients excluded from the

cohort. Of the 704,963 patients in the cohort, 17,874 (2.54%) had

a readmission and 6,492 (0.92%) died within 48 hours of discharge

from the ICU. 499 (0.07%) patients experienced both a

readmission and death within 48 hours of ICU discharge. The

general characteristics of the development and validation cohorts

are presented in Table 1. Although the median LOS appears low

for this cohort of ICU survivors, the mean and standard deviation

for the ICU and hospital LOS were 3.0 (63.6) days and 4.3 (65.0

days) respectively.

Of the 59 variables initially analyzed in the development set, 26

and 23 were retained in the final models for death and

readmission, respectively. Tables 2 and 3 show the unadjusted

ORs of variables used in each model. Eight variables present on

admission to the ICU were retained in at least one of the final

models; admission diagnosis (including whether related to elective

or emergent surgery), admission source, unit type, ICU visit

number, age, and BMI. The remaining predictors came from data

obtained during the last 24 hours of the ICU stay. Numerous

continuous predictors had non-linear associations with the study

outcomes, and were handled with spline terms or by categorizing

in the final model. For example, for average heart rate over the last

24 hours, the odds of death decreased by 6% for each increase in

beat per minute (bpm) up to 60 bpm, but increased by 5% for

each bpm above 60. The relationship between the independent

variables and the two separate outcomes were not necessarily

consistent. In general, the relationships between independent

variables and outcome were stronger for predicting death than

readmission. In some cases there were clinically different

relationships, as observed with average diastolic blood pressure

over the prior 24 hours, where the odds of death increased by 8%

for each mmHg over 100 mmHg while readmission risk was

unchanged above 82 mmHg.

Across the multiply imputed datasets, the final readmission

model produced a median auROC of 0.71 (range: 0.7058–0.7061)

in the development set (N = 469,976) and 0.71(range: 0.7060–

0.7068) in the validation set (N = 234,987). Figure 2 displays the

median ROC curve for the validation cohort. Figure 3 displays the

final model predicting death within 48 hours of ICU discharge,

Table 1. Patient characteristics for patients included in models predicting death and readmission after ICU discharge.

Development
Cohort Complete Data (N) Validation Cohort

Complete Data
(N) P-Value

Gender, % Malea 54.1 469,976 53.9 234,987 0.56

Race, % Whitea 72.7 469,976 72.8 234,987 0.85

Age, mean (SD)b 62.1 (17.0) 469,976 62.1 (16.9) 234,987 0.49

BMI, mean (SD)b 29.0 (8.3) 424,316 29.0 (8.3) 212,085 0.86

ICU Discharge Location, % Floora 83.3 469,976 83.4 234,987 0.26

APACHE IV Score, median (IQR)c 47
(35–62)

342,168 47
(35–62)

170,654 0.84

Hospital Mortality, # (%)a 14,472 (3.1) 469,976 7,275 (3.1) 234,987 0.72

ICU LOS, median days (IQR)c 1.88
(1.04–3.35)

469,976 1.89
(1.05–3.35)

234,987 0.08

Hospital LOS, median days (IQR)c 2.50
(1.39–5.05)

469,976 2.51
(1.39–5.05)

234,987 0.30

Death within 48 hours, # (%)a 4,389
(0.93)

469,976 2,103
(0.89)

234,987 0.11

Readmission within 48 hours, # (%)a 11,925
(2.54)

469,976 5,949
(2.53)

234,987 0.89

ICU Type, # (%)a 469,976 234,987 0.55

Cardiac Medical 91,364 (19.4) 45,934 (19.6)

Cardiovascular or Cardiothoracic Surgery 51,367 (10.9) 25,566 (10.9)

Medical 37,434 (8.0) 18,893 (8.0)

Mixed Medical-Surgical 231,597 (49.3) 115,702 (49.2)

Neurological 22,225 (4.7) 10,963 (4.7)

Surgical 34,787 (7.4) 17,360 (7.0)

Trauma 1,202 (0.3) 569 (0.2)

aP-value calculated using Pearson Chi-square.
bP-value calculated using student t-test.
cP-value calculated using two-sample Wilcoxon rank-sum (Mann-Whitney) test.
APACHE = Acute Physiology and Chronic Health Evaluation IV Score; BMI = Body Mass Index; ICU LOS = ICU length of stay in days; IQR = Interquartile Range; SD =
Standard Deviation.
doi:10.1371/journal.pone.0048758.t001
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Table 2. Unadjusted odds ratios for variables retained in the final logistic regression model predicting death within 48 hours of
ICU discharge in development cohort.

Variable
Unadjusted Odds
Ratio 95% CI

Patients with Complete
Data
N = 469,976

Admission Characteristics

Age (per year) 1.04 1.04–1.04 469,976 (100%)

BMI (per kg/m2)a 424,316 (90.3%)

BMI ,26 0.92 0.90–0.93

BMI .26 0.99 0.98–1.00

Operative Diagnosis (True) 0.30 0.27–0.33 469,976 (100%)b

Elective Surgery (True) 0.25 0.22–0.28 469,976 (100%)b

ICU Interventions

ICU Length of Stay (per day) 469,976 (100%)

ICU LOS ,1 day 0.10 0.08–0.12

ICU LOS 1–2 days 1.93 1.74–2.13

ICU LOS .2 days 1.07 1.06–1.08

Ventilation Status 469,399(99.9%)

Spontaneous Breathing (reference) 1.00 –

Non-Invasive Ventilation 4.50 4.01–5.05

Spontaneous- Tenuous Ventilation 5.36 4.91–5.85

Ventilation- Chronic Dependency 4.70 3.07–7.18

Ventilation- Rapid Wean/Extubation 5.99 3.95–9.09

Ventilation- Daily Extubation Trial 33.13 30.46–36.02

Ventilation- No Daily Extubation Trial 70.35 65.58–79.08

Last Day Labs

Acid Base Statusc 469,976 (100%)

Normal (reference) 1.00 –

Acidosis 6.13 5.68–6.62

Alkalosis 2.72 2.47–2.99

Average Serum Lactate (per mMol/L)d 469,976 (100%)

,0.5 mMol/L 2.74 2.22–3.37

.0.5 mMol/L 1.45 1.41–1.48

Maximum Serum Creatinine 430,885 (91.7%)

,1 mg/dL 0.55 0.42–0.72

1–2 mg/dL 6.30 5.70–6.96

.2 mg/dL 0.91 0.89–0.93

Average White Blood Cell Count (per 103/mL) 418,283 (89.0%)

,46103/mL 0.46 0.43–0.50

4–96103/mL 1.11 1.07–1.14

.96103/mL 1.08 1.08–1.08

Average Serum Glucose (per mg/dL)e 445,317 (94.8%)

,100 mg/dL 0.97 0.96–0.97

100–180 mg/dL 1.01 1.01–1.01

.180 mg/dL 1.00 1.00–1.00

Glucose Variabilityf 2.01 1.67–2.42 445,317 (94.8%)

Last Day Physiology

Average Diastolic Blood Pressure (per mmHg) 456,617 (97.2%)

,60 mmHg 0.92 0.92–0.93

60–100 mmHg 0.98 0.98–0.99

.100 mmHg 1.08 1.04–1.12

Diastolic Blood Pressure Variabilityf (per 100 units) 455,808 (97.0%)

,7.5 0.95 0.82–1.10

The ICU Discharge Readiness Score
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Table 2. Cont.

Variable
Unadjusted Odds
Ratio 95% CI

Patients with Complete
Data
N = 469,976

7.5–15 1.06 1.03–1.08

.15 1.06 1.06–1.06

Average Heart Rate (per bpm) 464,494 (98.8%)

,60 bpm 0.94 0.91–0.96

.60 bpm 1.05 1.05–1.05

Minimum Heart Rate (per bpm) 464,494 (98.8%)

,55 0.90 0.89–0.90

55–70 1.02 1.01–1.03

.70 1.05 1.04–1.05

Heart Rate Variabilitye (per 100 units) 463,780 (98.7%)

,2.2 0.98 0.83–1.16

2.2–8 0.87 0.85–0.89

.8 1.10 1.09–1.10

Average Mean Arterial Pressure (per mmHg) 456,193 (97.1%)

,80 mmHg 0.91 0.91–0.91

80–105 mmHg 1.00 1.00–1.01

.105 mmHg 1.01 1.00–1.03

Minimum Mean Arterial Pressure (per mmHg) 456,193 (97.1%)

,70 mmHg 0.95 0.95–0.95

70–125 mmHg 1.01 1.00–1.01

.125 mmHg 1.03 0.90–1.17

Average Respiratory Rate (per bpm) 452,882 (96.4%)

,18 bpm 0.93 0.91–0.95

.18 bpm 1.17 1.16–1.18

Average SpO2 (per unit) 458,080 (97.5%)

,96% 0.79 0.78–0.80

.96% 1.14 1.10–1.17

Minimum SpO2 (per unit) 458,080 (97.5%)

,93% 0.93 0.93–0.94

.93% 1.04 1.01–1.07

SpO2
c Variability (per 100 units) 455,734 (97.0%)

,1 0.53 0.42–0.66

.1 1.34 1.33–1.35

Average Systolic Blood Pressure (per mmHg) 456,637 (97.2%)

,115 mmHg 0.92 0.92–0.92

115–145 mmHg 1.00 1.00–1.00

.145 mmHg 1.03 1.02–1.03

Systolic Blood Pressure Variabilityf (per 100 units) 455,832 (97.0%)

,6 0.75 0.66–0.85

.6 1.14 1.14–1.15

Most Recent GCS Score (per unit) 0.63 0.63–0.64 264,657 (56.3%)

aBMI considered missing if ,10 or .125.
b47,231 (10.0%) missing and considered to be ‘‘False’’.
cBased on average pH value. pH missing in 358,425 (76.3% of patients).
Normal = pH between 7.34 and 7.44 or absence of data; Acidosis = pH lower than 7.34; and Alkalosis = pH greater than 7.44. d. 441,635 (94.0%) serum lactate values
missing. Absence of a serum lactate value was treated as 0. e. Glucose considered missing if ,10 mg/dL. f. Variability defined by the coefficient of variation.
BMI = Body Mass Index; LOS = Length of Stay; SpO2 = Percent Oxygen Saturation; GCS = Glasgow Coma Scale.
doi:10.1371/journal.pone.0048758.t002
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Table 3. Unadjusted odds ratios for variables retained in the final logistic regression model predicting readmission within 48 hours
of ICU discharge.

Variable
Unadjusted Odds
Ratio 95% CI

Patients with Complete
Data
N = 469,976

Admission Characteristics

Age (per year) 469,976 (100%)

,70 1.02 1.02–1.02

.70 1.00 1.00–1.01

Elective surgery (True)a 0.77 0.73–0.80 469,976 (100%)

ICU Type 469,976 (100%)

Cardiac Medical (reference) 1.00 –

Cardiothoracic Surgery 0.95 0.88–1.03

Cardiovascular Surgery 1.00 0.89–1.13

Medical 1.01 0.94–1.09

Mixed Medical Surgical 0.97 0.92–1.01

Neurological 0.87 0.79–0.96

Surgical 1.09 1.01–1.17

Trauma 0.77 0.51–1.15

Vascular 1.01 0.74–1.38

Admission Diagnosis Categoryb 469,976 (100%)

Acute Coronary Syndrome (reference) 1.00 –

Acute Renal Failure 0.89 0.67–1.16

Arrhythmia 3.05 2.55–3.66

Asthma or Emphysema 2.19 1.79–2.67

Coronary Artery Bypass Graft 1.54 1.28–1.85

Cerebrovascular accident/stroke 1.11 0.92–1.35

Cardiovascular (Medical) 2.71 2.20–3.32

Cardiovascular (Other) 1.54 1.25–1.90

Cancer 1.02 0.78–1.34

Cardiac Arrest 4.98 4.07–6.08

Cardiogenic Shock 3.20 2.09–4.92

Chest Pain Unknown Origin 1.09 0.86–1.39

Coma 3.05 2.50–3.72

Diabetic Ketoacidosis 0.37 0.27–0.50

Gastrointestinal Bleed 1.46 1.21–1.76

Gastrointestinal Obstruction 0.97 0.73–1.30

Acute Myocardial Infarction 0.42 0.33–0.52

Neurologic 1.45 1.19–1.76

Other (including missing) 1.44 1.22–1.71

Overdose 0.27 0.19–0.38

Pneumonia 2.09 1.73–2.53

Respiratory (Medical/Other) 3.85 3.23–4.58

Sepsis 1.21 1.00–1.46

Thoracotomy 0.58 0.43–0.80

Trauma 0.54 0.43–0.68

Valve Disease 0.77 0.58–1.01

Admit Source 469,976 (100%)

Floor (reference) 1.00 –

Direct Admit 1.14 1.06–1.24

Emergency Room 0.91 0.87–0.96

Operating Room or Recovery Room 0.78 0.74–0.83

Other 1.10 1.00–1.20

The ICU Discharge Readiness Score
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Table 3. Cont.

Variable
Unadjusted Odds
Ratio 95% CI

Patients with Complete
Data
N = 469,976

ICU Visit number 469,976 (100%)

First stay of hospitalization (reference) 1.00 –

At least second ICU stay 0.04 0.02–0.05

BMI (per kg/m2)c

,17 1.00 0.94–1.07 424,316 (90.3%)

17–23 0.96 0.94–0.97

.23 1.00 0.99–1.00

ICU Interventions

Number of lactate values in 24 hrs 469,976 (100%)

Zero 1.00 –

At least 1 1.26 1.17–1.35

ICU LOS (days) 469,976 (100%)

,1 day 0.76 0.66–0.89

1–2 days 1.22 1.16–1.29

.2 days 1.03 1.03–1.03

Last Day Labs

Average Sodium (per mEq/L) 431,570 (91.8%)

,124 mEq/L 1.03 0.97–1.10

124–138 mEq/L 0.97 0.96–0.97

138–141 mEq/L 1.05 1.03–1.07

.141 mEq/L 1.06 1.05–1.07

Average Serum Bicarbonate (per mEq/L) 415,625 (88.4%)

,17 mEq/L 1.07 1.01–1.13

17–25 mEq/L 0.95 0.94–0.96

25–38 mEq/L 1.04 1.03–1.05

.38 mEq/L 1.01 0.97–1.05

Average White Blood Cell Count (per 103/mL) 418,283 (89.0%)

,46103/mL 0.86 0.79–0.92

4–96103/mL 1.01 1.00–1.03

9–406103/mL 1.03 1.02–1.03

.406103/mL 0.96 0.93–0.99

Maximum Serum Creatinine (per mg/dL) 430,885 (91.7%)

,1 mg/dL 1.01 0.88–1.15

1–2 mg/dL 1.65 1.55–1.76

.2 mg/dL 0.96 0.95–0.98

Average Hemoglobin (per g/dL) 425,681 (90.6%)

,8 g/dL 1.14 0.98–1.32

8–13 g/dL 0.93 0.91–0.94

.13 g/dL 0.98 0.94–1.01

Last Day Physiology

Heart Rate Variabilityd (per 100 units) 463,780 (98.7%)

,2.2 1.18 1.04–1.35

2.2–8 0.94 0.93–0.95

.8 1.01 1.00–1.01

Maximum Heart Rate (per bpm) 464,494 (98.8%)

,100 bpm 1.00 1.00–1.01

100–185 bpm 1.01 1.01–1.01

.185 bpm 0.99 0.98–1.01

The ICU Discharge Readiness Score

PLOS ONE | www.plosone.org 8 November 2012 | Volume 7 | Issue 11 | e48758



which produced a median auROC of 0.92 (range: 0.9227–0.9241)

in the development set (N = 469,976) and 0.92 (range: 0.9226–

0.9242) in the validation set (N = 234,987).

The actual to predicted ratio of readmissions within 48 hours of

ICU discharge in the validation cohort was 1.0 (5,949 actual

readmissions to 5,954.6 predicted). The actual to predicted ratio of

deaths within 48 hours of ICU discharge in the validation cohort

was 0.96 (2,103 actual deaths to 2,199.4 predicted). The median

Hosmer-Lemeshow goodness-of-fit test statistics for the readmis-

sion model were: Chi2 = 17.57 (range Chi2 = 14.12–20.26;

p = 0.03) and Chi2 = 7.17, (range: 4.52–7.17; p = 0.52) in the

development and validation cohorts respectively. Statistically there

was poor fit in both the development (median Chi2 = 53.24,

p,0.01; range: 49.92–61.26) and validation cohorts (median

Chi2 = 25.68, p,0.01; range: 25.40–29.26) of the mortality

model. Due to the limited clinical value of statistical tests of fit

in such large sample sizes [28], the calibration across deciles of risk

for both models are presented in Figures 4 and 5 to provide clinical

perspective to differences in actual to predicted rates. The actual to

predicted rates of death and readmission across categories of

hospital bed count and teaching status are presented in Table 4.

Actual to predicted rates for different ICU types are presented in

Table 5.

The median sensitivity, specificity, positive predictive value

(PPV) and negative predictive value (NPV) at various predicted

probabilities of early death and readmission after ICU discharge

are presented in Table 6. Due to the relatively low prevalence of

each outcome, both models tend to have high negative predictive

values and low positive predictive values. 17% of ICU discharges

went to a step-down unit compared to 83% to a general ward.

Using a robust variance estimator clustered by ICU, the

unadjusted OR for death was 41% higher (p,0.03) if discharged

to a step-down unit, but this association was reduced once adjusted

for the predicted log-odds of death (OR = 1.31; p = 0.02). The

unadjusted odds of readmission were 35% lower in a step-down

unit and remained 36% lower after adjusting for the predicted log

odds of readmission (p,0.001 for both).

In order to simulate performance in a real-time environment,

fitted values were generated for patients between one and four

days prior to ICU discharge in the validation cohort. Table 7

Table 3. Cont.

Variable
Unadjusted Odds
Ratio 95% CI

Patients with Complete
Data
N = 469,976

Respiratory Rate Variabilityd 448,978 (95.5%)

,0.2 1.19 0.74–1.94

.0.2 0.96 0.67–1.37

Maximum Diastolic Blood Pressure (per mmHg) 456,617 (97.2%)

,82 mmHg 0.99 0.99–1.00

.82 mmHg 1.00 1.00–1.00

Minimum Systolic Blood Pressure (per mmHg) 456,637 (97.2%)

,105 mmHg 0.99 0.99–0.99

.105 mmHg 1.00 1.00–1.01

Minimum Heart Rate (per bpm) 464,494 (98.8%)

,70 bpm 1.00 1.00–1.01

70–120 bpm 1.02 1.02–1.02

.120 bpm 0.98 0.91–1.06

Most Recent GCS Score 264,657 (56.3%)

,10 1.14 1.08–1.20

.10 0.87 0.85–0.88

Minimum SpO2 (per unit) 458,080 (97.5%)

,87% 1.00 0.99–1.00

87–98% 0.94 0.93–0.95

.98% 1.18 1.04–1.34

Average Respiratory Rate (per bpm) 452,882 (96.4%)

,8 bpm 1.36 0.82–2.26

8–12 bpm 0.89 0.81–0.98

12–20 bpm 1.04 1.03–1.05

20–40 bpm 1.07 1.07–1.08

.40 bpm 0.64 0.45–0.90

a47,231 (10.0%) missing and considered to be ‘‘False’’.
b47,231 (10.0%) missing and classified as ‘‘Other’’.
cBMI considered missing if ,10 or .125.
dVariability defined by the coefficient of variation.
BMI = Body Mass Index; LOS = Length of Stay; SpO2 = Percent Oxygen Saturation; GCS = Glasgow Coma Scale.
doi:10.1371/journal.pone.0048758.t003
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shows the median and IQR for the predicted risk of death and

readmission in patients who did not have a complication within 48

hours of ICU discharge, had a complication within 48 hours after

discharge and those who did not survive their ICU stay. The

average change in predicted risk of death across the last four ICU

days is graphically represented in Figure 6.

Discussion

The rate of readmission and death within 48 hours of ICU

discharge was approximately 2.5% and 0.9%, respectively, in this

heterogeneous critically ill population from 219 hospitals and

402 ICUs. Predictive algorithms for death and readmission within

48 hours of ICU discharge developed from this large dataset had

excellent and moderate discrimination, respectively, and both

calibrated well across risk strata. Despite efforts to limit the

number of variables in the predictive models, optimal performance

required more than 20 variables, a number that significantly

exceeds human processing capacity but relatively simple for a

computer to analyze. We intend for these models to be calculated

automatically on a continuous basis for patients all patients eligible

for consideration for ICU discharge. Although predictions would

only be generated for patients with complete data available, the

use of multiply imputed data suggests the discrimination of the

Figure 2. Receiver Operating Characteristic curve for the ICU Discharge Readiness Score prediction model for readmission in the
validation cohort.
doi:10.1371/journal.pone.0048758.g002

Figure 3. Receiver Operating Characteristic curve for the ICU Discharge Readiness Score prediction model for death in the
validation cohort.
doi:10.1371/journal.pone.0048758.g003
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Figure 4. Calibration across deciles of predicted risk of death.
doi:10.1371/journal.pone.0048758.g004

Figure 5. Calibration across deciles of predicted risk of readmission.
doi:10.1371/journal.pone.0048758.g005
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models are robust to the missing data patterns observed in this

cohort. We speculate that post discharge risk estimates might be

helpful in discharge decision making given the time devoted to this

activity and the adverse consequences of delaying discharge or

sending patients out prematurely.

Prior studies of post discharge adverse events have generally

focused on readmission as the endpoint of interest or have used a

combined endpoint of readmission or death. [13,17,18] This

appeared to be a rational approach because it seemed plausible

that both unexpected readmission and death were due to post

discharge clinical deterioration. Moreover, these smaller studies

lacked sufficient numbers of post discharge deaths to analyze the

two endpoints separately. The auROC in these previous studies

ranged between 0.62 and 0.74, and calibration was generally poor.

[13,17,18] It should be noted that the validation arm for the

SWIFT score was a cohort of patients from a different institution,

which is inherently more difficult to achieve good calibration than

during internal validation such as ours. [13] In our analysis, the

auROC for the readmission model was similar to those described

in prior studies, although calibration was excellent, especially

considering it is rare to observe a positive goodness of fit test with

large sample size. [28] Moreover, the model performed well across

different types of ICUs and across hospitals of different sizes and

teaching status which we hypothesize is a function of the broad

population from which it was generated. The moderate discrim-

ination of our model suggests that a significant proportion of

factors contributing to ICU readmission are not clinically

observable at the time of ICU discharge. These may include the

quality of care provided at the lower acuity (receiving) unit and

provider variability in assessing readmission need. There also

appears to be a lower likelihood of readmission when the lower

acuity unit is a step-down unit compared to a general ward. We

attempted to minimize the influence of care provided after

discharge by limiting the outcome to within 48 hours of ICU

discharge, but despite this design, latent variables appear to affect

readmission risk. Surprisingly, this limitation was not a major

factor when predicting death shortly after ICU discharge.

With 469,976 patients and over 4,389 deaths in the develop-

ment cohort, we were able to model death as a distinct outcome;

the differences between the two models were striking. The risk of

death model had extremely high discrimination reflected in an

auROC of 0.92. Although this seems implausibly high, close

examination of the predictors included in the model indicated very

strong relationships with death after discharge (Table 2). Although

the explanation for superior discrimination is unknown, we

speculate that the endpoint of death is less likely to be influenced

by subjective decisions driven by social and political factors. In

support of this hypothesis, the model predicting death requires

fewer static patient characteristics such as, admission diagnosis,

type of ICU and admission source than the readmission model. It

also is likely that ICU readmission criteria vary among the 219

hospitals included in this cohort. We also noted that many

Table 4. Actual to expected events by hospital type.

Hospital Size
(Number of beds) N Actual : Predicted Readmissions Actual : Predicted Deaths

Teaching Hospitals

,100 0 – –

100–250 765 22 : 14 10 : 12

250–500 5,240 127 : 121 62 : 60

.500 43,319 1,116 : 1,157 479 : 439

Non-Teaching Hospitals

,100 13,273 299 : 342 127 : 142

100–250 48,765 1,226 : 1,259 457 : 477

250–500 60,038 1,441 : 1,456 509 : 516

.500 63,587 1,691 : 1,633 459 : 510

doi:10.1371/journal.pone.0048758.t004

Table 5. Calibration across seven different ICU types.

ICU Type
Actual
Deaths

Predicted
Deaths SMR

Actual
Readmits

Predicted
Readmits A:P Ratio

Cardiac Medical 425 430.1 0.99 1,214 1,195.0 1.02

Cardiovascular or Cardiothoracic Surgery 209 193.9 1.08 613 599.0 1.02

Medical 226 222.7 1.01 550 491.7 1.12

Mixed Medical-Surgical 1,023 1,117.0 0.92 2,762 2,883.2 0.96

Neurological 108 81.8 1.32 250 248.3 1.01

Surgical 109 108.3 1.01 501 484.6 1.03

Traumaa 3 1.78 – 15 10.7 –

aToo few patients to reliably calculate.
SMR = standardized mortality ratio; A:P = actual to predicted.
doi:10.1371/journal.pone.0048758.t005
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physiologic variables, when significantly abnormal, were associat-

ed with a high risk of death, but a low risk of readmission. For

example, the risk of death increased linearly for white blood cell

counts above 9,000 cells/mL, but the risk of readmission declined

above 40,000 cells/mL (Tables 2 and 3).

Although the models were developed on data available on the

day of discharge, the secondary validation we performed using

patient data from one, two and three days prior to ICU discharge

suggest that the model might provide clinical utility. The model for

death discriminated between patients who were stable enough for

ICU discharge from those who were not. Despite excluding all

patients who died in the ICU during model development, the

predicted risk of death in these patients was dramatically higher

than those who were discharged without complication, even up to

four days prior to discharge (Table 7 and Figure 6).

Ideally these models can be incorporated into an electronic

clinical decision support tool for use in ICU discharge planning,

with a goal of improving patient safety and increasing ICU

throughput. Zimmerman and Kramer have previously suggested

that patients admitted to the ICU with a low predicted risk of

active treatments, referred to as ‘‘low-risk monitor’’ patients, may

not necessarily require an ICU admission. [29] Using the eRI

database from 2008, Lilly et al. reported that approximately 40%

of ICU admissions had low day 1 mortality risk and received no

major therapies. [24] The trends observed in Table 7 appear to

support this notion that a substantial proportion of ICU days are

attributable to patients not requiring intensive care treatments. In

translating these into CDS tools, we believe that due to the

differences in performance, clinicians should view the risk of

readmission as complementary information to the more accurate

predictions generated from the model predicting death. We also

believe there is value in defining multiple categories of risk, rather

than trying to use a single threshold to determine whether a

patient is ready for discharge. For example, if a threshold for ‘low

risk’ of death is defined as a prediction under 0.1%, greater value

can be derived from the high NPV. With this threshold, 32% of

the validation cohort is defined as ‘low risk’ at the time of

discharge with a false negative rate of 0.046%. For readmission, if

Table 6. Performance of the ICU Discharge Readiness Score models in the validation cohorts.

Predicted Probability Sensitivity (%) Specificity (%) PPVa (%) NPVb (%)

Death/
Readmission Death Readmission Death Readmission Death Readmission Death Readmission

0.1% 98.38 99.88 32.53 3.35 1.30 2.61 99.96 99.91

1% 82.26 96.42 87.23 19.30 5.50 3.01 99.82 99.52

2.5% 69.19 65.78 95.38 62.84 11.90 4.40 99.71 98.61

5% 58.30 29.64 98.00 90.31 20.83 7.36 99.62 98.02

10% 47.27 5.66 99.15 99.01 33.52 12.92 99.52 97.58

25% 33.62 0 99.73 99.99 53.32 0 99.40 97.47

50% 22.63 0 99.91 100 68.99 – 99.31 97.47

aPPV = Positive Predictive Value.
bNPV = Negative Predictive Value.
doi:10.1371/journal.pone.0048758.t006

Figure 6. Average change in estimated probability of death across last four days in the ICU.
doi:10.1371/journal.pone.0048758.g006
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‘low risk’ is defined as below 1% predicted probability of

readmission, 19% of the validation cohort was below this threshold

and the false negative rate was only 0.5% (Table 6). The

simulation study also identified many patients with low risk of

death and readmission who stayed in ICU for additional days.

21% and 18% of all patients discharged would have been classified

as ‘low risk’ of death and readmission, respectively 24 hours prior

to their actual ICU discharge.

Prospective validation is clearly warranted, but there appears to

be an opportunity to use this tool to support clinical programs

aimed at reducing unnecessary ICU days. As Zimmerman and

Kramer point out, ‘‘Improved resource use and reduced costs

might be achieved by strategies to provide care for these patients

on floors or intermediate care units.’’ [29] At the other end of the

risk spectrum, our data indicate that more than 2% of discharges

either died or required readmission. If ‘high risk’ were defined as

greater than 5% predicted risk of death, 2.4% of those discharged

would have been identified as ‘high risk’ at the time of discharge,

with 22% of these dying in the subsequent 48 hours. We speculate

that some of these patients were not recognized as being at high

risk for death after discharge and providing this information may

help clinicians decide to prolong the ICU stay in these patients.

Although we could not confirm this, it seems plausible the

unexpected deaths represented sudden cardiorespiratory arrest

whereas a more gradual deterioration may often be required for a

readmission to occur. With an auROC of 0.92, these deaths were

predictable and potentially preventable. Given this is a very small

proportion of ICU discharges, considering a prolonged ICU stay

to mitigate risks may be a reasonable choice.

This study has several important limitations. Calculation of the

ICU Discharge Readiness Score is relatively complex and cannot

be performed manually, although it can be easily programmed to

provide electronic clinical decision support. As a retrospective

study, the accuracy and completeness of data is limited by the

quality of documentation in the clinical information system, which

likely is less accurate than data collected in a tightly controlled

clinical trial. This approach was utilized to create a very large

sample size with many sentinel events (death and readmission) and

to include data from many different institutions. Several strategies

were employed to minimize artifacts. Vital signs in the eRI

database are archived as 5-minute medians (from the 1-minute

averages received from bedside monitors via interfaces). Many of

the variables used 24 hour averages to minimize the impact of

outlier data. Patients with documented care limitations were

excluded from analysis because death in some of these patients was

seen as their expected outcome, and readmission would have been

inappropriate. It is possible that some patients with care limitations

lacked appropriate documentation and were included in the

analysis.

In general, data completeness was reasonable, especially

considering missing data tends to be more common on the day

of ICU discharge when patients are more stable than earlier in the

ICU stay. Most variables were available during the final 24 hours

before ICU discharge with the exception of GCS scores. The high

proportion of missing GCS values on the day of discharge may be

due to variability in the use of GCS scores in some ICU

populations and the tendency of eICU Programs to use the remote

management software for population management, rather than

focusing on comprehensive documentation for the medical record.

Some participating health systems have not implemented an

interface to import nursing flowsheet data from the primary

electronic medical record, which results in absence of GCS values.

As shown by other investigators (e.g., SWIFT) and confirmed in

this analysis, GCS is an important predictor of death and

readmission after ICU discharge.(12) Introduced by Rubin, the

method of choice for reducing bias introduced by missing data is

through multiple imputation.[25–27] Development and validation

on multiply imputed data provides confidence that our models are

robust to variations in real-world documentation practices.

Because our ultimate goal is to have accurate predictive models

that can be used in large numbers of patients, rather than

establishing causality, decisions regarding which data elements are

Table 7. Predicted risk of death and readmission at 24 hour intervals in up to the last four days in the ICU.

Percent Risk in Patient Subgroups Days Prior to ICU Dischargea Rate of Change

3 2 1 0 Average per Dayb 95% CI

Risk of Death Model

Survived 48 hours after ICU
discharge, Median % (IQR)

0.80
(0.26–2.96)

0.55
(0.19–1.83)

0.30
(0.11–0.89)

0.19
(0.07–0.48)

21.18 21.21 – 21.16c

Did not survive 48 hours after ICU
discharge, Median % (IQR)

7.01
(2.02–23.77)

6.44
(1.83–24.16)

6.29
(1.73–26.63)

8.82
(1.73–43.53)

2.47 1.98 – 2.97d

Did not survive the ICU stay,
Median % (IQR)

11.11
(2.87–36.50)

12.51
(3.07–41.41)

16.61
(3.88–53.16)

69.51
(25.20–94.74)

13.08 12.81 – 13.34e

Risk of Readmission Model

No readmission within 48 hours
after ICU discharge, Median % (IQR)

2.71
(1.63–4.40)

2.50
(1.51–3.98)

2.19
(1.32–3.44)

2.04
(1.24–3.11)

20.31 20.32 – 20.31c

Readmitted within 48 hours after
ICU discharge, Median % (IQR)

4.21
(2.63–6.93)

3.82
(2.43–6.50)

3.42
(2.21–5.76)

3.30
(2.15–5.52)

20.35 20.39 – 20.31d

Did not survive the ICU stay,
Median % (IQR)

4.08
(2.28–7.07)

4.13
(2.19–6.99)

4.14
(2.17–7.14)

4.20
(2.23–7.37)

0.07 0.03 – 20.10e

aDay 0 = predictions generated at the time of ICU discharge; Day 1 = predictions generated 24 hours prior to discharge; Day 2 = predictions generated 48 hours prior to
discharge; Day 3 = predictions generated 72 hours prior to discharge.
bThe average change in predicted risk (%) across the last four ICU days using linear regression with a robust variance estimator clustered by patient across ICU days.
c600,252 observations.
d9,830 observations.
e40,801 observations. All p-values ,0.01.
doi:10.1371/journal.pone.0048758.t007
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used in the final models must balance data availability, data

reliability and model performance considerations. High degrees of

collinearity (e.g., use of both average heart rate and highest heart

rate) were allowed because the goal was not to determine the

independent effect of factors such as, average heart rate, but to

provide the best estimate of the risk of post-discharge death and

readmission. As a result, it is not possible to clinically interpret the

adjusted odds ratios for many of the variables (data not shown).

Also, the list of variables predictive of readmission and death

presented is not exhaustive since variables were only retained if

they resulted in improved performance of the models. Lastly, these

models should be viewed as tools to support clinical workflow

rather than replace clinical judgment. We believe any successful

program for improving ICU discharge planning will require

establishing standardized processes to reduce the variability with

which these decisions are generally made today.

Conclusion
Death and readmission within 48 hours of ICU discharge are

clinically distinct outcomes, requiring independent predictive

models. The predictive models for death and readmission calibrate

well across deciles of risk and exhibit excellent and moderate

discrimination respectively. The model predicting the risk of death

accurately discriminated between patients who would and would

not experience a complication as early as four days prior to ICU

discharge. We speculate that these predictive models may improve

ICU discharge planning if incorporated into a clinical decision

support application that can provide actionable information to

ICU clinicians.
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