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Abstract

CD69 is rapidly upregulated on T cells upon activation. In this work we show that this is also the case for CD69 expression
on dendritic cells (DC). Thus, the expression kinetics of CD69 on both cell types is reminiscent of the one of costimulatory
molecules. Using mouse models of transgenic T cells, we aimed at evaluating the effect of monoclonal antibody (MAb)-
based targeting and gene deficiency of CD69 expressed by either DC or T cells on the extent of antigen (Ag)-specific T cell
priming, which could be the result of a putative role in costimulation as well as on DC maturation and Ag-processing and
presentation. CD69 targeting or deficiency of DC did not affect their expression of costimulatory molecules nor their
capacity to induce Ag-specific T cell proliferation in in vitro assays. Also, CD69 targeting or deficiency of transgenic T cells
did not affect the minimal proliferative dose for different peptide agonists in vitro. In in vivo models of transgenic T cell
transfer and local Ag injection, CD69 deficiency of transferred T cells did not affect the extent of the proliferative response in
Ag-draining lymph nodes (LN). In agreement with these results, CD69 MAb targeting or gene deficiency of Vaccinia-virus
(VACV) infected mice did not affect the endogenous formation of virus-specific CD8+ T cell populations at the peak of the
primary immune response. Altogether our results argue against a possible role in costimulation or an effect on Ag
processing and presentation for CD69.
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Introduction

CD69 is a type II C-type lectin of unknown ligand specificity

encoded in the NK-complex. It is known as a very early activation

marker, since it is promptly upregulated on all leukocytes upon

activation [1–2]. Importantly, it is upregulated on T cells by

IFNa/b [3], and upon Ag encounter [4–5], during the first

kinetics phase of brief contacts between T cells and antigen

presenting cells, either in the presence or absence of adjuvant [6].

CD69 expression has been reported in infections [7–10],

autoimmune diseases [11–16], and tumor infiltrates [17–18].

Some C-type lectins are upregulated on T cells upon activation

and have costimulatory or coinhibitory effects, influencing the

extent of TCR-mediated T cell activation [19–20]. Apart from

that, most C-type lectin receptors are expressed by DC [21], and

some of them have been shown to induce signaling or to influence

Toll-like receptors (TLR)-induced signaling, modulating the

maturation status of the DC [22]. This can affect their Ag

processing and presentation activity as well as surface expression of

co-stimulatory molecules and cytokine production, all of which

can influence the capacity of the DC for priming Ag-specific T

cells.

Traditionally, a costimulatory role was attributed to CD69,

since anti-CD69 monoclonal antibody (MAb) treatment of pre-

activated human leukocytes led to further activation. In the case of

T cells, the addition of anti-CD69 MAbs enhanced anti-CD3 and

PMA-induced proliferation [23–25] through increased interleukin

(IL)-2 and IL-2 receptor expression [26] [4]. However a later study

using CD692/2 mice argued against such a role, since Ag-specific

T cell proliferation was unaffected in vivo [27]. Even more in

contrast, our group proposed a negative regulatory role for CD69,

since tumor-bearing CD692/2 mice showed increased anti-tumor

immunity to NK sensible tumors [28]. That was consistent with

later in vivo results showing that CD692/2 mice had increased

incidence and severity of different T cell-dependent autoimmune

and inflammatory diseases such as Collagen II Induced Arthritis

[29], allergic asthma, skin contact hypersensitivity [30] and

autoimmune myocarditis [31]. CD692/2 mice also showed

increased susceptibility to Listeria monocytogenes (Lm) infection,

associated with enhanced type I and II interferon (IFN) responses

[10]. Interestingly, in the tumor, arthritis and contact hypersen-

sitivity models, the in vivo treatment with the anti-CD69 2.2 MAb

also led to increased anti-tumor [32], autoimmune [33] and

inflammatory responses [30]. However, this antibody has agonist

activity, since it induces a variety of downstream functional

outcomes in purified cell types, like IFNc secretion in NK cells

[32], IL-2 secretion in plasmacytoid DC [34], CD25 upregulation

in IL-2-treated T cells [34] and TGFb secretion when crosslinked

on anti-CD3-activated T cells [28]. In vivo, anti-CD69 2.2 MAb

treatment, but not CD69 gene deficiency, induced bystander

proliferation of memory-phenotype T cells [34].
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In this study, we revisit the question of a role for CD69 on T cell

costimulation and priming, which could contribute to the observed

effects of CD69 on the different T cell-dependent immune

responses. To this effect we use antibody-based targeting and

gene knock-out approaches in in vitro and in vivo transgenic T cell

mouse models as well as viral infection models. We expand the

study upon a possible effect of CD69 on the extent of T cell

priming, not only from its expression on T cells, but also from its

expression on the other cell type participating in T cell priming,

the dendritic cells. Our results point to that CD69 does not affect

the extent of T cell priming, suggesting that it does not function as

a costimulatory molecule, and that it does not affect Ag

presentation.

Materials and Methods

Mice
Balb/c, DO10.11 RAG22/2 Balb/c, C57BL/6 and OT-I

C57BL/6 mice, all both CD69+/+ and CD692/2, and OT-I

RAG12/2 C57BL/6, OT-II C57BL/6 and H-2 class I knockout

HLA-A*0201-transgenic [35] mice were bred and housed under

specific pathogen free conditions in the animal facilities of the Parc

Cientific de Barcelona, Barcelona, Instituto de Salud Carlos III, Madrid,

and the Walter and Eliza Hall Institute, Melbourne. CD692/2

mice had been backcrossed on the C57BL/6 and the Balb/c

backgrounds at least nine times [27]. All procedures involving

animals and their care were approved by the University of

Barcelona and ISCIII Ethics Committees and were conducted

according to institutional guidelines in compliance with local

(Generalitat de Catalunya decree 214/1997, DOGC 2450) and

international (Guide for the Care and Use of Laboratory Animals,

NIH 85–23, 1985) laws and policies. Unless otherwise stated,

C57BL/6 mice were used.

Antibodies and immunological reagents
The anti-CD69 2.2 mAb (IgG1 isotype) was generated in our

laboratory [32] by the fusion of NS-1 myeloma cells with spleen

cells from a CD692/2 mouse previously immunized three times

with mouse 300–19 pre-B cells. The Ab was purified from

concentrated hybridoma supernatants using a protein G column

(GE Healhtcare, Piscataway, NJ, USA), dialyzed extensively

against PBS, further purified by high-performance liquid chroma-

Figure 1. CD69 is upregulated on endogenous DC upon activation. A.–C. DC were purified from spleens of C57BL/6 mice and cultured with
CpG in various conditions. 10 cg/ml of anti-CD69 2.2 were added to control samples in order to block CD69 staining and provide a background
staining control. 10 mg/ml of Isotype control Ab were added to test samples. All samples were stained for the different DC subsets markers and for
CD69, and analyzed by flow cytometry. A. Overlay of CD69 expression between CD69 blocked control samples cultured with 0.03 mM CpG for 18h
(grey filled), and unblocked samples, uncultured (dashed line) or cultured with 0.03 mM CpG for 18h (solid line), gated on pDC (CD11cint, CD45RA+),
and cDC (CD11chi, CD45RA2). B. DC were cultured with 0.03 mM CpG during various time-spans and CD69 was assessed in pDC (CD11cint, CD45RA+)
and cDC (CD11chi, CD45RA2). C. pDC (CD11cint, CD45RA+), CD8+ cDC (CD11chi, CD45RA2, CD8+) and CD82 cDC (CD11chi , CD45RA2, CD82) were
analyzed for CD69 expression after 12h culture with different doses of CpG or without having been cultured. In B and C, CD69 levels are expressed as
the difference of CD69 MFI between the unblocked and blocked samples. Results representative of two similar experiments are shown.
doi:10.1371/journal.pone.0048593.g001
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Figure 2. CD69 is upregulated on BMDC upon activation. CD69+/+ or CD692/2 GM-CSF BMDC were treated with LPS at different conditions of
time and dose. Subsequently they were stained for CD11c and CD69, and analyzed by flow cytometry. A. Overlay of CD69 histograms of CD69+/+

untreated cells (dashed line), and CD69–/2 (grey filled) and CD69+/+ (solid line) cells cultured for 12h with 1 mg/ml of LPS (right). B. Time course of
CD69 upregulation in response to 1 mg/ml of LPS. CD69 expression is the difference in MFI between CD69+/+ and CD692/2 BMDC. C. CD69+/+ BMDC
were cultured for 24h with growing doses of LPS and with anti-CD69 2.2 (to provide a background staining control) or Isotype control. CD69 surface
expression is expressed as the difference in MFI between unblocked and blocked samples. Results are representative of two experiments with similar
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tography (HPLC) using a Superdex 200 column (GE Healhcare,)

and stored at 280uC. The IgG1 isotype control antibody was

produced and purified likewise. The resulting antibody prepara-

tions were tested on CD692/2 bone marrow-derived DC (BMDC)

cultures at 10 mg/ml, and were unable to upregulate CD80 or

CD86 expression levels on these cells. Phosphorothioated CpG

oligodeoxynucleotide 1668 was from Geneworks (Hindmarsh,

Australia). Ovalbumin (OVA) and E. coli Lipopolysaccharide (LPS)

were from Sigma (St. Louis, MO, USA). The SIINFEKL was

synthesized by the Proteomics facility of the Instituto de Salud Carlos

III using a peptide synthesizer (model 433A; Applied Biosystems,

Foster City, CA, USA) and purified by reverse-phase HPLC. The

SIIGFEKL and the Catnb1 (b-catenin 329–336, RTYTYEKL)

were purchased from Peptide2.0 Inc. (Chantilly, VA, USA). All

cell line cultures and in vitro cultures were performed in complete

medium (RPMI medium 1640 supplemented with 10% FCS,

50 mM 2-mercaptoethanol, 2 mM L-glutamine, 100 units/mL

penicillin, and 100 mg/mL streptomycin) at 37uC.

Flow cytometry
LN and spleen cells were treated with anti-CD16/32 (Fc-block

2.4G2, BD Biosciences, Franklin Lakes, NJ), and 7-Aminoactino-

results. D. and E. CD69+/+ or CD692/2 Flt3l-derived BMDC were treated with various CpG doses for 24h and stained for the different DC subset
markers and CD69. D. Overlay of the CD69 histograms of 50nM CpG-treated CD692/2 (grey filled), and untreated (dashed line) or 50nM CpG-treated
(black line) CD69+/+ pDC (CD11c+, CD45RA+, left) and cDC (CD11c+, CD45RA2, right). E. CD69+/+ and CD692/2 BMDC were cultured with growing
doses of CpG for 24h. CD69 surface levels are expressed as the difference in MFI between CD69+/+ and CD692/2 BMDC. The results shown are of one
out of two similar experiments.
doi:10.1371/journal.pone.0048593.g002

Figure 3. CD69 deficient DC do not have altered priming capacity. A. CD69+/+ or CD692/2 Flt3l-derived BMDC were cultured with 0.5 mM
CpG for 24 h. Overlays of CD69+/+ (solid line) and CD692/2 (dashed line) Flt3l-derived BMDC showing CD86 and CD40 expression on pDC (CD11c+,
CD45RA+, left) and cDC (CD11c+, CD45RA2, right). B. and C. CD69+/+ or CD692/2 Flt3l-derived BMDC were pulsed with OVA at the indicated doses for
45 minutes, washed, and further cultured with OT-II (B.) or OT-I (C.) T cells for 3 or 2 days, respectively, in the presence of 0.5 mM CpG in duplicate.
Percentage of proliferated Va2+ CD4+ or Va2+ CD8+ cells is depicted. Bars represent Standard Deviation (SD) of duplicate cultures. Experiments
representative of two with similar results.
doi:10.1371/journal.pone.0048593.g003
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mycin D (7AAD, BD Pharmingen) or Propidium Iodide (Molec-

ular Probes, Eugene, OR, USA) were added in order to exclude

dead cells. The following antibodies against mouse surface

antigens were used: anti-CD4 (GK1.5), -CD8 (YTS 169.4), -

CD11c (N418), -CD40 (FGK45.5), -B220/CD45RA (14.8), -

CD69 (H1.2F3), -CD86 (PO3.1), and -Bst2 (120G8), all in-house

produced; -CD4 (GK1.5), -CD8 (53–6.7), -CD25 (PC61.5), -Va2

TCR (B20.1), and -DO10.11 TCR (KJ1), from eBioscience (San

Diego, CA, USA). Cells were analyzed on FACScan, FACScali-

bur, FACScanto or LSRII flow cytometers (Becton Dickinson,

Franklin Lakes, NJ USA), using CELLQuest or BD FacsDiva

software (Becton Dickinson) and data was analyzed with FlowJo

(Tree Star Inc., Ashland, OR, USA). In the experiments where the

Mean Fluorescence Intensity (MFI) is represented, this parameter

corresponds to the Geometric Mean.

BMDC generation
Bone marrows were lysed and cultured in complete medium.

For GM-CSF-derived BMDC, cells were cultured at 0.56106/ml

in 24 well plates in the presence of 20 ng/mL Granulocyte and

Macrophage Colony Stimulating factor (GM-CSF) (Immunotools,

Friesoythe, Germany) for 6 days, changing half of the media for

fresh media every two days. For Fms-related tyrosine kinase 3

ligand (Flt3l)-derived BMDC, cells were cultured at 1.56106/ml in

24well plates supplemented with in-house produced Flt3l for 9

days.

DC Isolation
Splenic DC were isolated as described [36]. Briefly, C57BL/6

spleens were digested with DNase I (0.1%, Roche Molecular

Biochemicals, Mannheim, Germany) and Collagenase (type II,

Worthington Biochemical, Lakewood, NJ, USA), and centrifuged

over Nycodenz medium (density 1.082 g/cm3, 17006 g for 10

Figure 4. CD69 targeting on DC does not alter their costimulation and priming capacity. A. Flt3l BMDC were cultured with 50 nM CpG
and anti-CD69 2.2 (solid line) or IgG1 control (dashed line) for 24 h. CD86 and CD40 expression levels were determined on pDC (CD11c+, CD45RA+,
left) and cDC (CD11c+, CD45RA2, right). Result representative of two experiments. B. Purified DC were cultured with OT-II CD4+ T cells, in the
presence of the indicated OVA doses, 0.03 mM CpG and 10 mg/ml anti-CD69 2.2 or IgG1 isotype control, in duplicate, for 3 days. C. Sorted pDC were
cultured with the indicated OVA doses and 10 mg/ml anti-CD69 2.2 or IgG1 isotype control for 1 h. After wash, they were co-cultured with CD4+ OT-II
T cells for 3 days. D. Sorted cDC were pulsed with the indicated OVA doses for 45 minutes and treated with 0.025 mM CpG and anti-CD69 2.2 or IgG1
control for 18 h. Then, they were cultured with OT-I CD8+ T cells for 2 days. In all cases, the number of divided cells within Va2+ CD8+ or Va2+ CD4+

live cells is represented. Bars represent SD of duplicate cultures.
doi:10.1371/journal.pone.0048593.g004
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min). The light-density fraction was treated with anti-CD3 (KT3-

1.1), anti-Thy1-1 (T24/31.7), anti-Ly6G (IA8), anti-CD19 (ID3)

and anti-erythrocyte (TER119), all home-produced, followed by

immunomagnetic depletion with sheep anti-ratIgG coated Dyna-

beads (Dynal Biotech, Oslo, Norway). Where indicated, DC were

stained with home produced anti-CD11c, -CD45RA and -Bst2

and further purified into conventional DC (cDC, CD11chi

CD45RA2 Bst22) or plasmacytoid DC (pDC, CD11cint

CD45RA+ Bst2+) with a FACS Aria sorter (Becton Dickinson).

In vitro cultures
For T-DC co-cultures, OT-I and OT-II LN T cells were

negatively selected using MAbs against CD11b (M1/70), F4/80,

Ter-119, Gr-1 (RB6), MHC class II (M5/114), and CD4 (GK 1.5)

or CD8 (YTS 169.4), respectively, followed by incubation with

anti-rat IgG-coupled magnetic beads (Dynal Biotech). T cell

preparations were 90–95% pure. T cells were stained with 5 mM

carboxyfluorescein succinimidyl ester (CFSE). DC were plated at

56103 per well in U-bottom 96 well plates and cultured in

complete media with the indicated conditions, in duplicate. Where

indicated anti-CD69 2.2 or IgG1 control were added at 10 mg/ml.

DC were co-cultured with 56104 OT-I CD8+ or OT-II CD4+ per

well for 2 or 3 days respectively. After that, cells were stained with

anti-Va2, PI and anti-CD8 or anti-CD4 MAbs. For cultures of

OT-I RAG12/2 cells with peptide doses, whole LN and spleen

cells were labeled with 2 mM CFSE and plated at 106 cells per well

in 96 well flat-bottom plates and were cultured with the indicated

peptide doses, 10 mg/ml of anti-CD69 2.2 or IgG1 and with or

without 1 mg/ml LPS for 3 days. For cultures of CD69+/+ or

CD692/2 OT-I cells with peptide doses, CD8+ T cells were

negatively purified using CD8+ T cell isolation Kit and MACs

columns (Miltenyi Biotec, Auburn, CA, USA), stained with 2 mM

CFSE and cultured at 0.56106 cells per well together with

0.56105 CD69+/+ antigen presenting cells (the positive fraction) in

96 well flat-bottom plates with the indicated peptide doses for 3

days. Cells were then stained for CD8 and CD25 and analyzed by

flow cytometry. 2.56104 Callibrite beads (Becton Dickinson) were

added to each sample, and samples were acquired until 5x103

beads had been collected.

In vivo cell transfers
OT-I CD8+ T cells or DO10.11 CD4+ T cells were purified

from CD69+/+ or CD692/2 OT-I or DO10.11 mice, respectively,

with CD8+ or CD4+ T cell isolation Kit and MACs columns

(Miltenyi Biotec). After that, they were stained with 5 mM CFSE

and injected intravenously into C57BL/6 or Balb/c recipients,

Figure 5. CD69 deficiency on T cells does not affect Ag-specific T cell proliferation in Ag-draining LN. A. Purified CD69+/+ or CD692/2

OT-I CD8+ T cells were CFSE stained and transferred into recipients receiving the indicated doses of OVA and 5 mg of LPS subcutaneously in a
posterior footpad. The percentage of proliferated OT-I CD8+ T cells was analyzed 42h later in the popliteal LN. Pool of two experiments, with 1 (dose
0) to 4 (doses 0.1–10 mg) mice per point. Bars represent SD. B. As in A, but mice received 10 mg of OVA with or without 5 mg of LPS in the footpad. C.
Purified CD69+/+ or CD692/2 RAG22/2 DO10.11 CD4+ T cells were transferred into Balb/c mice receiving 1 mg of OVA subcutaneously in the footpad.
3 days later the popliteal LN were analyzed for the percentage of proliferated cells within DO10.11 CD4+ T cells.
doi:10.1371/journal.pone.0048593.g005
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respectively. Transferred recipients were anesthetized and received

a subcutaneous injection in a posterior hind-footpad of the

indicated OVA doses in a 10 ml volume using a Hamilton syringe

(Hamilton Bonaduz, Bonaduz, Switzerland). At the indicated

times, popliteal LN were collected, stained with anti-CD8+ or anti-

CD4+ MAbs, and transferred cells were analyzed for CFSE

dilution.

Vaccinia virus infection and ex vivo intracytoplasmic
staining (ICS)

Infections and ICS were performed as described [37]. Briefly,

mice were infected with VACV-WR [38] or VACV-OVA257–264

(encoding the miniprotein MSIINFEKL) [39] with an intraperi-

toneal injection of 107 plate forming units. After 7 days, spleens

were harvested. For VACV-WR-infected mice, 106 spleen cells

were reestimulated with either RMA or RMA-S HLA-A*0201

cells infected with VACV-WR (at a multiplicity of infection of 10

plate forming units per cell for 2 h at 37uC, and washed), in the

presence of brefeldin A (5 mg/ml). For VACV- OVA257–264-

infected mice, 36106 spleen cells were reestimulated for 4h with

SIINFEKL in the presence of brefeldin A (5 mg/ml). Cells were

then surface-stained with anti-CD8 MAb (ProImmune, Oxford,

United Kingdom), fixed with 4% paraformaldehide, washed, and

incubated with anti-IFNc MAb (BD PharMingen, San Diego, CA)

in the presence of 0.1% saponin for 20 min at 4uC. Events were

acquired and analyzed by flow cytometry as described.

Results

CD69 is upregulated on DC upon activation
CD69 upregulation on T cells upon specific Ag encounter has

been well documented. Instead, CD69 expression by the other

Figure 6. CD69 targeting does not alter CD8+ T cell priming threshold at different peptide agonistic affinities. Whole LN and spleen
OT-I RAG12/2 cells were stained with 2 mM CFSE and cultured at 106 cells per well with the indicated doses of SIINFEKL (A), SIIGFEKL (B), Catnb1 (C)
and Catnb1 plus 1 mg/ml of LPS (D), and 10 mg/ml of anti-CD69 2.2 mAb (dashed line) or isotype control (solid line). Graphs showing the number of
proliferated (left column) and of CD25+ (right column) CD8+ T cells per well. Results representative of two experiments.
doi:10.1371/journal.pone.0048593.g006
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prototypic cell type implicated in T cell priming, the DC, has not

been extensively studied. We have recently described certain

constitutive CD69 expression by lymph node (LN) and spleen

plasmacytoid DC (pDC) and by LN conventional DC (cDC) at

steady state [34]. Here, we assess activation-induced CD69

upregulation on different DC subsets, activating them with Toll-

like Receptors (TLR) ligands. CD69 was upregulated on both

splenic pDC and cDC upon CpG olidodeoxynucleotide stimula-

tion (Fig. 1A) in a dose-dependent manner (Fig. 1C), and it was

prominent as soon as 3 hours after activation (Fig. 1B). CD69

upregulation was much higher in pDC than in the cDC subsets,

which has been observed previously [40], and within the cDC

subset, it was more prominent in CD8+ cDC than in CD82 cDC

(Fig. 1C). After 12 hours culture in the absence of CpG, there was

also a marked CD69 upregulation on splenic DC (Fig. 1C),

consistent with the activation that ex vivo purified DC undergo in

culture [41]. CD69 was not expressed by unstimulated Granulo-

cyte-Macrophage Colony Stimulating Factor (GM-CSF) and Fms-

related tyrosine kinase 3 ligand (Flt3l)-derived Bone Marrow DC

(BMDC), but it was upregulated on GM-CSF BMDC when we

treated them with Lipopolysaccharide (LPS) (Fig. 2A) and on Flt3l

BMDC when we treated them with CpG (Fig. 2D), in both cases in

a dose dependent manner (Fig. 2B, E). Therefore, CD69 is

upregulated on endogenous DC upon activation with TLR

ligands, and this induced expression can be reproduced in in

vitro-generated BMDC models.

CD69 deficiency or targeting on DC do not affect their
costimulation or Ag-presentation capacity

We next aimed at studying whether this CD69 expression by

DC can have a role in T cell priming by putatively influencing

costimulation or Ag presentation. To this end, we analyzed the

effect of DC CD69 deficiency on the extent of the proliferation

undergone by Ag-specific T cells, as well as on the expression of

costimulatory molecules by DC. CD69 deficiency did not affect

CD86 or CD40 expression on CpG-activated Flt3l-derived

BMDC (Fig. 3A), and did not alter Ag-specific T cell proliferation

in in vitro co-cultures of ovalbumin (OVA)-pulsed CD69+/+ or

CD692/2 Flt3l-derived BMDC with OVA-specific, transgenic

OT-I CD8+ or OT-II CD4+ T cells (in the presence of CpG to

induce CD69 expression) (Fig. 3B, C). We also analyzed whether

MAb-based engagement of CD69 expressed on DC could have an

effect on their Ag-presenting capacity. CD69 targeting with the

anti-CD69 2.2 MAb in in vitro co-cultures of purified DC and OT-

Figure 7. CD69 deficiency does not alter CD8+ T cell priming threshold at different peptide agonistic affinities. Spleen CD8+ T cells
were purified from CD69+/+ (solid line) or CD692/2 (dashed line) OT-I mice, stained with 2 mM CFSE and cultured at 0.56106 at 10:1 with APC in the
presence of the indicated doses of SIINFEKL (A), SIIGFEKL (B), and Catnb1 (C) peptides. Graphs showing the number of proliferated (left column) and
of CD25+ (right column) CD8+ T cells per well. The results are representative of two similar experiments with similar results.
doi:10.1371/journal.pone.0048593.g007
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II cells in the presence of CpG and various OVA doses did not

affect the OT-II proliferative response (Fig. 4B). In the co-culture

of anti-CD69 2.2-treated pDC with OT-II cells (Fig. 4C) the

proliferation was also unaltered. The treatment of cDC (contain-

ing the cross-presenting CD8+ DC subset) with anti-CD69 2.2 in

the presence of CpG did not alter their cross-priming of OT-I cells

(Fig. 4D). Consistently, treatment of CpG pre-activated Flt3l-

derived BMDC with anti-CD69 2.2 did not affect the surface

expression of CD86 and CD40 (Fig. 4A). Thus, CD69 expression

or CD69 targeting on DC does not affect their costimulation or Ag

presentation capacity to Ag-specific T cells.

CD69 deficiency on T cells does not affect Ag-specific T
cell proliferation in Ag-draining LN in vivo

CD69 has been well documented to be upregulated on T cell in

response to the encounter with specific Ag. We thus wanted to

assess whether CD69 could function as a costimulatory molecule

on T cells. To analyze the effect of T cell CD69 deficiency on Ag

priming in vivo, we transferred CD69+/+ or CD692/2 OT-I cells

into recipients receiving OVA subcutaneously into the footpad. In

this setting, CD69 deficiency on T cells did not affect T cell

proliferation in the popliteal LN of recipients injected with various

OVA doses plus LPS (Fig. 5A) or 10 mg of OVA with or without

LPS (Fig. 5B). A similar observation was made using the DO10.11

transfer model, in which CD69 deficiency did not affect

proliferation of transferred OVA-specific transgenic DO10.11

CD4+ T cells in popliteal LN of recipients receiving OVA

subcutaneously in the footpad (Fig. 5C). These results suggest that

CD69 deficiency on T cells does not affect the extent of their Ag-

specific priming in vivo.

CD69 MAb-targeting or gene deficiency on Ag-specific
CD8+ T cells do not alter the activation threshold at
varying peptide agonistic levels in vitro

We further investigated the effect of CD69 targeting and

deficiency on the extent of proliferation in in vitro cultures of

transgenic CD8+ T cells with different agonist peptides.

The anti-CD69 2.2 MAb has been shown to bind to TCR-

activated T cells [28]. However, the addition of this antibody to

whole LN and spleen OT-I RAG12/2 cultures with growing

SIINFEKL peptide doses did not affect the dose from which T cell

proliferation and CD25 upregulation started (Fig. 6A). This is

consistent with our recently published in vivo results, in which anti-

CD69 2.2 treatment does not alter proliferation of OT-I

transferred T cells in Ag-draining LN of OVA-bearing mice

[34]. Reasoning that SIINFEKL might be a too strong agonist and

Figure 8. CD69 does not affect the primary formation of Vaccinia virus-specific CD8+ T cell populations. A. CD69+/+ or CD692/2 mice
were infected with VACV-WR and 7 days later spleen cells were reestimulated with uninfected (background control) or VACV-WR-infected RMA cells.
B. CD69+/+ or CD692/2 mice were infected with VACV-OVA and 7 days later spleen cells were reestimulated with or without (background control)
SIINFEKL peptide. Pool of two experiments. C. H-2 class I knockout HLA-A*0201-transgenic mice were i.v. treated with 100 mg of anti-CD69 2.2 or left
untreated, and were subsequently infected with VACV-WR. After 7 days, spleen cells were reestimulated with uninfected (background control) or
VACV-WR-infected HLA-A*0201 transfectant RMA cells. In all cases, cells were stained for intracellular IFNc, and the percentage of IFNc+ CD8+ T cells
within total cells was assessed. The background control values were substracted from each reestimulated sample value.
doi:10.1371/journal.pone.0048593.g008
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that a role in costimulation would be better noticed using weaker

agonist peptides, we used the SIIGFEKL peptide variant and the

Catnb1 peptide (an endogenous peptide from the b-catenin

protein mediating positive thymic selection of the OT-I clone). In

both cases, anti-CD69 2.2 MAb addition neither affected the

activation threshold, the extent of the proliferative response, nor

CD25 expression (Fig. 6B, C). We have also recently shown that

anti-CD69 2.2 induces bystander T cell proliferation in vivo and in

vitro, dependent on IL-2 production by pDC and CD25

upregulation by T cells. In vitro, for CD8+ T cells, this bystander

proliferation was observed when LPS was added to whole LN and

spleen cultures. It is unclear whether bystander proliferation

depends on the contact of the TCR with MHC molecules

presenting endogenous weak agonist peptides. In an attempt to

address this question, we added LPS to OT-I RAG12/2 cultures

with Catnb1 peptide. If the anti-CD69 2.2-induced bystander

proliferation was dependent on the recognition of endogenous

weak agonist peptides, the difference in proliferation between the

isotype control and the anti-CD69 2.2-treated samples would be

higher at higher Catnb1 peptide occupancy of the MHC-I, that is,

at higher Catnb1 peptide doses. However, this difference was

already maximal in the absence of peptide, was maintained

through a range of growing peptide doses, and disappeared at

peptide doses giving maximal proliferation (Fig. 6D). This suggests

that this bystander proliferation might be rather independent of

TCR recognition of endogenous weak agonist ligands. In

agreement with this hypothesis, anti-CD69 2.2 treatment induced

bystander proliferation of DO10.11 CD4+ T cells when these were

transferred into CIITA2/2 recipients, which have deficient MHC-

II expression, to the same extent as when they were transferred

into WT mice (our unpublished data). In Fig. 6D, as expected

from previous results, in the presence of LPS and in the absence of

peptide or at low peptide doses, the anti-CD69 2.2 induced CD25

upregulation on CD8+ T cells. Similarly to CD69 targeting, we did

not find a significant effect of CD69 deficiency on the CD8+ T cell

activation threshold, as measured by the peptide dose from which

T cell proliferation and CD25 upregulation start to be apparent

(even though the extent of proliferation and CD25 upregulation

were slightly lower for CD692/2 OT-I cells than for CD69+/+

OT-I cells). This was true for the three peptides tested (Fig. 7).

These results point to that CD69 does not function as a

costimulatory molecule on T cells.

Neither CD69 targeting nor CD69 deficiency affect the
formation of virus-specific CD8+ T cell populations in the
primary immune response to Vaccinia virus infection

To check for a possible role of CD69 expressed by either DC or

T cells on T cell priming in a physiological model of infection, in

which more factors and possible indirect effects can also play a

role, we used various experimental settings of the Vaccinia virus

(VACV) infection model. CD69 deficiency of VACV-WR (wild

type) (Fig. 8A) or VACV-OVA (Fig. 8B) -infected mice did not

alter the formation of the VACV- or SIINFEKL-specific CD8+ T

cell pools, respectively, as measured by the percentage of IFNc
producing spleen CD8+ T cells in response to VACV or

SIINFEKL reestimulation at the peak of the primary immune

responses. To test for the effect of anti-CD69 2.2 treatment on the

anti-Vaccinia virus CD8+ T cell response, we took advantage of

the availability of the H-2 class I knockout HLA-A*0201-

transgenic mouse model, whose surface MHC-I expression is only

the one of HLA-A2. In these mice, the MAb treatment did not

affect the percentage of CD8+ T cells responding to HLA-A2-

presented Vaccinia virus antigens either (Fig. 8C). These results

indicate that neither CD69 targeting nor CD69 deficiency affects

the primary expansion and formation of Ag-specific CD8+ T cell

pools, at least in the Vaccinia virus infection model.

Discussion

CD69 has been found to be rapidly upregulated on all the

leukocyte lineages studied, upon activation with the corresponding

stimuli. When testing whether this was also the case for DC, we

found that CD69 is upregulated on this cell type as soon as 3 hours

after addition of TLR ligands. Thus, the expression pattern of

CD69 on both T cells and DC is reminiscent of the one of

costimulatory molecules. Some C-type lectins are upregulated

upon activation on T cells, and have a costimulatory or

coinhibitory role on Ag-driven T cell activation, influencing,

among other parameters, the proliferative response. Also, C-type

lectins expressed on DC can initiate signaling or modulate TLR

signaling, affecting DC maturation and thus, possibly altering their

Ag presentation and costimulation abilities. In this work we have

examined a possible role for CD69 in the mentioned processes

through analyzing the effect of CD69 targeting and deficiency on

the extent of T cell priming.

In vitro, we did not observe any effect of CD69 deficiency or

targeting of DC using different DC types, OT-I or OT-II

responders and graded OVA doses. In addition, neither CD69

targeting nor its deficiency on T cells influenced the minimal

peptide dose needed for a proliferative response of OT-I T cells to

different peptides, not even to the weak agonist ones. In contrast to

CD69 deficiency, the deficiency of costimulatory molecules such as

CD28 has been observed to lead to the lack of T cell priming to

weak agonist peptides, even at high doses [42]. Consistent with the

in vitro results, in in vivo adoptive transfers of transgenic OT-I CD8+

or DO10.11 CD4+ T cells into recipient mice receiving OVA

subcutaneously in the footpad, CD69 deficiency did not affect the

extent of the Ag-driven T cell proliferation in the Ag draining LNs.

By parallel experimental approaches, we have previously reported

that CD69 deficiency [10] or anti-CD69 2.2 treatment [34] of the

recipient mice do not affect T cell cross-priming. All these data

point to that CD69 does not quantitatively affect the priming of

Ag-specific T cells.

In a recent work we have shown that, in the absence of specific

Ag, CD69 targeting with the anti-CD69 2.2 MAb induces

bystander T cell proliferation dependent on IL-2 and on CD25

upregulation on T cells (in vitro, for CD8+ T cells, it needed the

addition of LPS). This might seem contradictory with the results

shown in the present work, and also with the results in that same

work showing that anti-CD69 2.2 in vivo treatment did not affect

Ag-specific T cell proliferation, since one might expect that the

increased IL-2 and CD25 expression would lead to increased Ag-

specific proliferation. However it is possible that in the presence of

specific Ag, the TCR signaling itself already induces the

production of such IL-2 and CD25 amounts that overrule the

ones induced by CD69 targeting. Alternatively, in the presence of

TCR ligation, CD69 could be uncoupled from the downstream

signaling events leading to the bystander proliferative effect. These

hypotheses are consistent with the data shown in Fig. 5D, in which

the addition of LPS allows anti-CD69 2.2-induced bystander T

cell proliferation in the absence of Ag. In this experiment, the

difference of proliferation versus the wells with isotype control is

already maximal in the absence of peptide, is maintained during a

range of growing specific peptide doses, suggesting that the

bystander proliferation is added on top of the Ag-specific

proliferation, and disappears at the dose that gives a maximal

response.

CD69 Role on T Cell Priming

PLOS ONE | www.plosone.org 10 October 2012 | Volume 7 | Issue 10 | e48593



Our results are in contrast with the initial in vitro data showing

that anti-CD3 or PMA-activated human T cells were further

induced to proliferate by CD69 targeting, but are in agreement

with a posterior observation indicating that Ag-specific T cell

proliferation was unaffected in CD692/2 mouse T cells in vivo

[27]. Of notice, not all the anti-CD69 MAbs tested in initial works

were reported to have this proliferation-enhancing effect on

human T cells [43–44]. Altogether, more physiological in vitro and

in vivo data argue against the initially proposed role for CD69 as a

costimulatory molecule.

When studying the influence of CD69 in a physiological setting

in which the priming occurs to endogenous naı̈ve T cell pools of

various frequencies and TCR affinities, such as the Vaccinia virus

infection, we observed that CD69 targeting or deficiency did not

alter the size of the VACV-specific T cell population at the peak of

the primary response. This is in support of our previous hypothesis

that, if we found a slightly smaller population of Lm-specific T cells

in Lm-infected CD692/2 mice [10], it was not due to an intrinsic

defect in Ag-specific T cell priming. Instead, it could be a collateral

effect of the Lm-induced, type I IFN-mediated massive lympho-

cyte apoptosis [45] affecting also primed Lm-specific T cells. Of

notice, the defect in the control of Lm infection in CD692/2 mice

was noticeable as soon as day 1 post-infection (and thus, induced

by differences in the innate immune response), was associated to

increased type I IFN levels and increased spleen cell death, and

was not observed in lymphocyte deficient mice. In contrast to Lm

infection, Vaccinia virus infection does not lead to massive

lymphocyte apoptosis, and this might be the reason for it not

inducing this innate immunity-based difference in the size of

specific T cell populations.

Altogether, the in vivo and in vitro data point to that targeting of

CD69 expressed or up-regulated on DC does not affect their Ag

processing, Ag presentation or costimulation capacity, and that

CD69 does not function as a costimulatory molecule on DC or on

T cells. These results do not rule out, though, that CD69 could

affect other important aspects influencing or being determined by

DC-T cell interaction, such as DC polarization or T cell

polarization and programming. In this regard, CD69 has recently

been reported to inhibit Th17 differentiation in Ag primed CD4+

T cells [46]. Taking this into account, it could be hypothesized

that the exacerbated forms of Ag-specific T cell-dependent

diseases reported in CD692/2 and anti-CD69 2.2-treated mice

are not due to differential priming of Ag-specific T cells but might

rather be owed to skewed polarization of primed T cells.

On the whole, this work contributes to resolving a previous

controversy and to shift the focus on CD69 towards its effect on T

cell polarization, as it is starting to be apparent, rather than on the

extent of T cell priming and T cell costimulation.
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